stylegan3_clip / app.py
Ahsen Khaliq
Update app.py
3fd99ec
raw
history blame
6.33 kB
import os
os.system("pip install --upgrade torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html")
os.system("git clone https://github.com/openai/CLIP")
os.system("pip install -e ./CLIP")
os.system("pip install einops ninja scipy numpy Pillow tqdm")
import sys
sys.path.append('./CLIP')
import io
import os, time
import pickle
import shutil
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
import requests
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import clip
from tqdm.notebook import tqdm
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
from einops import rearrange
import gradio as gr
device = torch.device('cuda:0')
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
def fetch_model(url_or_path):
basename = os.path.basename(url_or_path)
if os.path.exists(basename):
return basename
else:
os.system("wget -c '{url_or_path}'")
return basename
def norm1(prompt):
"Normalize to the unit sphere."
return prompt / prompt.square().sum(dim=-1,keepdim=True).sqrt()
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
class MakeCutouts(torch.nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
make_cutouts = MakeCutouts(224, 32, 0.5)
def embed_image(image):
n = image.shape[0]
cutouts = make_cutouts(image)
embeds = clip_model.embed_cutout(cutouts)
embeds = rearrange(embeds, '(cc n) c -> cc n c', n=n)
return embeds
def embed_url(url):
image = Image.open(fetch(url)).convert('RGB')
return embed_image(TF.to_tensor(image).to(device).unsqueeze(0)).mean(0).squeeze(0)
class CLIP(object):
def __init__(self):
clip_model = "ViT-B/32"
self.model, _ = clip.load(clip_model)
self.model = self.model.requires_grad_(False)
self.normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
@torch.no_grad()
def embed_text(self, prompt):
"Normalized clip text embedding."
return norm1(self.model.encode_text(clip.tokenize(prompt).to(device)).float())
def embed_cutout(self, image):
"Normalized clip image embedding."
return norm1(self.model.encode_image(self.normalize(image)))
clip_model = CLIP()
# Load stylegan model
base_url = "https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/"
model_name = "stylegan3-t-ffhqu-1024x1024.pkl"
#model_name = "stylegan3-r-metfacesu-1024x1024.pkl"
#model_name = "stylegan3-t-afhqv2-512x512.pkl"
network_url = base_url + model_name
os.system("wget -c https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhqu-1024x1024.pkl")
with open('stylegan3-t-ffhqu-1024x1024.pkl', 'rb') as fp:
G = pickle.load(fp)['G_ema'].to(device)
zs = torch.randn([10000, G.mapping.z_dim], device=device)
w_stds = G.mapping(zs, None).std(0)
def inference(text):
target = clip_model.embed_text(text)
steps = 20
seed = 2
tf = Compose([
Resize(224),
lambda x: torch.clamp((x+1)/2,min=0,max=1),
])
torch.manual_seed(seed)
timestring = time.strftime('%Y%m%d%H%M%S')
with torch.no_grad():
qs = []
losses = []
for _ in range(8):
q = (G.mapping(torch.randn([4,G.mapping.z_dim], device=device), None, truncation_psi=0.7) - G.mapping.w_avg) / w_stds
images = G.synthesis(q * w_stds + G.mapping.w_avg)
embeds = embed_image(images.add(1).div(2))
loss = spherical_dist_loss(embeds, target).mean(0)
i = torch.argmin(loss)
qs.append(q[i])
losses.append(loss[i])
qs = torch.stack(qs)
losses = torch.stack(losses)
print(losses)
print(losses.shape, qs.shape)
i = torch.argmin(losses)
q = qs[i].unsqueeze(0)
q.requires_grad_()
q_ema = q
opt = torch.optim.AdamW([q], lr=0.03, betas=(0.0,0.999))
loop = tqdm(range(steps))
for i in loop:
opt.zero_grad()
w = q * w_stds
image = G.synthesis(w + G.mapping.w_avg, noise_mode='const')
embed = embed_image(image.add(1).div(2))
loss = spherical_dist_loss(embed, target).mean()
loss.backward()
opt.step()
loop.set_postfix(loss=loss.item(), q_magnitude=q.std().item())
q_ema = q_ema * 0.9 + q * 0.1
image = G.synthesis(q_ema * w_stds + G.mapping.w_avg, noise_mode='const')
pil_image = TF.to_pil_image(image[0].add(1).div(2).clamp(0,1))
#os.makedirs(f'samples/{timestring}', exist_ok=True)
#pil_image.save(f'samples/{timestring}/{i:04}.jpg')
return pil_image
title = "StyleGAN3+CLIP"
description = "Gradio demo for StyleGAN3+CLIP. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'>colab by https://twitter.com/nshepperd1 <a href='https://colab.research.google.com/drive/1eYlenR1GHPZXt-YuvXabzO9wfh9CWY36' target='_blank'>Colab</a></p>"
examples = [['elon musk']]
gr.Interface(
inference,
"text",
gr.outputs.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
enable_queue=True,
examples=examples
).launch(debug=True)