Spaces:
Runtime error
Runtime error
akhaliq3
commited on
Commit
•
a8c8bc6
1
Parent(s):
15b8733
stylegan3
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE.txt +97 -0
- app.py +169 -0
- avg_spectra.py +276 -0
- calc_metrics.py +188 -0
- dataset_tool.py +455 -0
- dnnlib/__init__.py +9 -0
- dnnlib/util.py +491 -0
- environment.yml +24 -0
- gen_images.py +144 -0
- gen_video.py +178 -0
- gui_utils/__init__.py +9 -0
- gui_utils/gl_utils.py +374 -0
- gui_utils/glfw_window.py +229 -0
- gui_utils/imgui_utils.py +169 -0
- gui_utils/imgui_window.py +103 -0
- gui_utils/text_utils.py +123 -0
- legacy.py +323 -0
- metrics/__init__.py +9 -0
- metrics/equivariance.py +267 -0
- metrics/frechet_inception_distance.py +41 -0
- metrics/inception_score.py +38 -0
- metrics/kernel_inception_distance.py +46 -0
- metrics/metric_main.py +153 -0
- metrics/metric_utils.py +279 -0
- metrics/perceptual_path_length.py +125 -0
- metrics/precision_recall.py +62 -0
- torch_utils/__init__.py +9 -0
- torch_utils/custom_ops.py +157 -0
- torch_utils/misc.py +266 -0
- torch_utils/ops/__init__.py +9 -0
- torch_utils/ops/bias_act.cpp +99 -0
- torch_utils/ops/bias_act.cu +173 -0
- torch_utils/ops/bias_act.h +38 -0
- torch_utils/ops/bias_act.py +209 -0
- torch_utils/ops/conv2d_gradfix.py +198 -0
- torch_utils/ops/conv2d_resample.py +143 -0
- torch_utils/ops/filtered_lrelu.cpp +300 -0
- torch_utils/ops/filtered_lrelu.cu +1284 -0
- torch_utils/ops/filtered_lrelu.h +90 -0
- torch_utils/ops/filtered_lrelu.py +274 -0
- torch_utils/ops/filtered_lrelu_ns.cu +27 -0
- torch_utils/ops/filtered_lrelu_rd.cu +27 -0
- torch_utils/ops/filtered_lrelu_wr.cu +27 -0
- torch_utils/ops/fma.py +60 -0
- torch_utils/ops/grid_sample_gradfix.py +77 -0
- torch_utils/ops/upfirdn2d.cpp +107 -0
- torch_utils/ops/upfirdn2d.cu +384 -0
- torch_utils/ops/upfirdn2d.h +59 -0
- torch_utils/ops/upfirdn2d.py +389 -0
- torch_utils/persistence.py +251 -0
LICENSE.txt
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2021, NVIDIA Corporation & affiliates. All rights reserved.
|
2 |
+
|
3 |
+
|
4 |
+
NVIDIA Source Code License for StyleGAN3
|
5 |
+
|
6 |
+
|
7 |
+
=======================================================================
|
8 |
+
|
9 |
+
1. Definitions
|
10 |
+
|
11 |
+
"Licensor" means any person or entity that distributes its Work.
|
12 |
+
|
13 |
+
"Software" means the original work of authorship made available under
|
14 |
+
this License.
|
15 |
+
|
16 |
+
"Work" means the Software and any additions to or derivative works of
|
17 |
+
the Software that are made available under this License.
|
18 |
+
|
19 |
+
The terms "reproduce," "reproduction," "derivative works," and
|
20 |
+
"distribution" have the meaning as provided under U.S. copyright law;
|
21 |
+
provided, however, that for the purposes of this License, derivative
|
22 |
+
works shall not include works that remain separable from, or merely
|
23 |
+
link (or bind by name) to the interfaces of, the Work.
|
24 |
+
|
25 |
+
Works, including the Software, are "made available" under this License
|
26 |
+
by including in or with the Work either (a) a copyright notice
|
27 |
+
referencing the applicability of this License to the Work, or (b) a
|
28 |
+
copy of this License.
|
29 |
+
|
30 |
+
2. License Grants
|
31 |
+
|
32 |
+
2.1 Copyright Grant. Subject to the terms and conditions of this
|
33 |
+
License, each Licensor grants to you a perpetual, worldwide,
|
34 |
+
non-exclusive, royalty-free, copyright license to reproduce,
|
35 |
+
prepare derivative works of, publicly display, publicly perform,
|
36 |
+
sublicense and distribute its Work and any resulting derivative
|
37 |
+
works in any form.
|
38 |
+
|
39 |
+
3. Limitations
|
40 |
+
|
41 |
+
3.1 Redistribution. You may reproduce or distribute the Work only
|
42 |
+
if (a) you do so under this License, (b) you include a complete
|
43 |
+
copy of this License with your distribution, and (c) you retain
|
44 |
+
without modification any copyright, patent, trademark, or
|
45 |
+
attribution notices that are present in the Work.
|
46 |
+
|
47 |
+
3.2 Derivative Works. You may specify that additional or different
|
48 |
+
terms apply to the use, reproduction, and distribution of your
|
49 |
+
derivative works of the Work ("Your Terms") only if (a) Your Terms
|
50 |
+
provide that the use limitation in Section 3.3 applies to your
|
51 |
+
derivative works, and (b) you identify the specific derivative
|
52 |
+
works that are subject to Your Terms. Notwithstanding Your Terms,
|
53 |
+
this License (including the redistribution requirements in Section
|
54 |
+
3.1) will continue to apply to the Work itself.
|
55 |
+
|
56 |
+
3.3 Use Limitation. The Work and any derivative works thereof only
|
57 |
+
may be used or intended for use non-commercially. Notwithstanding
|
58 |
+
the foregoing, NVIDIA and its affiliates may use the Work and any
|
59 |
+
derivative works commercially. As used herein, "non-commercially"
|
60 |
+
means for research or evaluation purposes only.
|
61 |
+
|
62 |
+
3.4 Patent Claims. If you bring or threaten to bring a patent claim
|
63 |
+
against any Licensor (including any claim, cross-claim or
|
64 |
+
counterclaim in a lawsuit) to enforce any patents that you allege
|
65 |
+
are infringed by any Work, then your rights under this License from
|
66 |
+
such Licensor (including the grant in Section 2.1) will terminate
|
67 |
+
immediately.
|
68 |
+
|
69 |
+
3.5 Trademarks. This License does not grant any rights to use any
|
70 |
+
Licensor’s or its affiliates’ names, logos, or trademarks, except
|
71 |
+
as necessary to reproduce the notices described in this License.
|
72 |
+
|
73 |
+
3.6 Termination. If you violate any term of this License, then your
|
74 |
+
rights under this License (including the grant in Section 2.1) will
|
75 |
+
terminate immediately.
|
76 |
+
|
77 |
+
4. Disclaimer of Warranty.
|
78 |
+
|
79 |
+
THE WORK IS PROVIDED "AS IS" WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
80 |
+
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
|
81 |
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR
|
82 |
+
NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER
|
83 |
+
THIS LICENSE.
|
84 |
+
|
85 |
+
5. Limitation of Liability.
|
86 |
+
|
87 |
+
EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL
|
88 |
+
THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE
|
89 |
+
SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT,
|
90 |
+
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
|
91 |
+
OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK
|
92 |
+
(INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION,
|
93 |
+
LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER
|
94 |
+
COMMERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF
|
95 |
+
THE POSSIBILITY OF SUCH DAMAGES.
|
96 |
+
|
97 |
+
=======================================================================
|
app.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system("pip install --upgrade torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html")
|
3 |
+
os.system("git clone https://github.com/NVlabs/stylegan3")
|
4 |
+
os.system("git clone https://github.com/openai/CLIP")
|
5 |
+
os.system("pip install -e ./CLIP")
|
6 |
+
os.system("pip install einops ninja scipy numpy Pillow tqdm")
|
7 |
+
import sys
|
8 |
+
sys.path.append('./CLIP')
|
9 |
+
sys.path.append('./stylegan3')
|
10 |
+
import io
|
11 |
+
import os, time
|
12 |
+
import pickle
|
13 |
+
import shutil
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import requests
|
19 |
+
import torchvision.transforms as transforms
|
20 |
+
import torchvision.transforms.functional as TF
|
21 |
+
import clip
|
22 |
+
from tqdm.notebook import tqdm
|
23 |
+
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
24 |
+
from einops import rearrange
|
25 |
+
device = torch.device('cuda:0')
|
26 |
+
def fetch(url_or_path):
|
27 |
+
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
|
28 |
+
r = requests.get(url_or_path)
|
29 |
+
r.raise_for_status()
|
30 |
+
fd = io.BytesIO()
|
31 |
+
fd.write(r.content)
|
32 |
+
fd.seek(0)
|
33 |
+
return fd
|
34 |
+
return open(url_or_path, 'rb')
|
35 |
+
def fetch_model(url_or_path):
|
36 |
+
basename = os.path.basename(url_or_path)
|
37 |
+
if os.path.exists(basename):
|
38 |
+
return basename
|
39 |
+
else:
|
40 |
+
os.system("wget -c '{url_or_path}'")
|
41 |
+
return basename
|
42 |
+
def norm1(prompt):
|
43 |
+
"Normalize to the unit sphere."
|
44 |
+
return prompt / prompt.square().sum(dim=-1,keepdim=True).sqrt()
|
45 |
+
def spherical_dist_loss(x, y):
|
46 |
+
x = F.normalize(x, dim=-1)
|
47 |
+
y = F.normalize(y, dim=-1)
|
48 |
+
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
|
49 |
+
class MakeCutouts(torch.nn.Module):
|
50 |
+
def __init__(self, cut_size, cutn, cut_pow=1.):
|
51 |
+
super().__init__()
|
52 |
+
self.cut_size = cut_size
|
53 |
+
self.cutn = cutn
|
54 |
+
self.cut_pow = cut_pow
|
55 |
+
def forward(self, input):
|
56 |
+
sideY, sideX = input.shape[2:4]
|
57 |
+
max_size = min(sideX, sideY)
|
58 |
+
min_size = min(sideX, sideY, self.cut_size)
|
59 |
+
cutouts = []
|
60 |
+
for _ in range(self.cutn):
|
61 |
+
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
|
62 |
+
offsetx = torch.randint(0, sideX - size + 1, ())
|
63 |
+
offsety = torch.randint(0, sideY - size + 1, ())
|
64 |
+
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
|
65 |
+
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
|
66 |
+
return torch.cat(cutouts)
|
67 |
+
make_cutouts = MakeCutouts(224, 32, 0.5)
|
68 |
+
def embed_image(image):
|
69 |
+
n = image.shape[0]
|
70 |
+
cutouts = make_cutouts(image)
|
71 |
+
embeds = clip_model.embed_cutout(cutouts)
|
72 |
+
embeds = rearrange(embeds, '(cc n) c -> cc n c', n=n)
|
73 |
+
return embeds
|
74 |
+
def embed_url(url):
|
75 |
+
image = Image.open(fetch(url)).convert('RGB')
|
76 |
+
return embed_image(TF.to_tensor(image).to(device).unsqueeze(0)).mean(0).squeeze(0)
|
77 |
+
class CLIP(object):
|
78 |
+
def __init__(self):
|
79 |
+
clip_model = "ViT-B/32"
|
80 |
+
self.model, _ = clip.load(clip_model)
|
81 |
+
self.model = self.model.requires_grad_(False)
|
82 |
+
self.normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
|
83 |
+
std=[0.26862954, 0.26130258, 0.27577711])
|
84 |
+
@torch.no_grad()
|
85 |
+
def embed_text(self, prompt):
|
86 |
+
"Normalized clip text embedding."
|
87 |
+
return norm1(self.model.encode_text(clip.tokenize(prompt).to(device)).float())
|
88 |
+
def embed_cutout(self, image):
|
89 |
+
"Normalized clip image embedding."
|
90 |
+
return norm1(self.model.encode_image(self.normalize(image)))
|
91 |
+
|
92 |
+
clip_model = CLIP()
|
93 |
+
# Load stylegan model
|
94 |
+
base_url = "https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/"
|
95 |
+
model_name = "stylegan3-t-ffhqu-1024x1024.pkl"
|
96 |
+
#model_name = "stylegan3-r-metfacesu-1024x1024.pkl"
|
97 |
+
#model_name = "stylegan3-t-afhqv2-512x512.pkl"
|
98 |
+
network_url = base_url + model_name
|
99 |
+
os.system("wget -c https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhqu-1024x1024.pkl")
|
100 |
+
with open('stylegan3-t-ffhqu-1024x1024.pkl', 'rb') as fp:
|
101 |
+
G = pickle.load(fp)['G_ema'].to(device)
|
102 |
+
zs = torch.randn([10000, G.mapping.z_dim], device=device)
|
103 |
+
w_stds = G.mapping(zs, None).std(0)
|
104 |
+
|
105 |
+
|
106 |
+
def inference(text):
|
107 |
+
target = clip_model.embed_text(text)
|
108 |
+
steps = 600
|
109 |
+
seed = 2
|
110 |
+
tf = Compose([
|
111 |
+
Resize(224),
|
112 |
+
lambda x: torch.clamp((x+1)/2,min=0,max=1),
|
113 |
+
])
|
114 |
+
torch.manual_seed(seed)
|
115 |
+
timestring = time.strftime('%Y%m%d%H%M%S')
|
116 |
+
with torch.no_grad():
|
117 |
+
qs = []
|
118 |
+
losses = []
|
119 |
+
for _ in range(8):
|
120 |
+
q = (G.mapping(torch.randn([4,G.mapping.z_dim], device=device), None, truncation_psi=0.7) - G.mapping.w_avg) / w_stds
|
121 |
+
images = G.synthesis(q * w_stds + G.mapping.w_avg)
|
122 |
+
embeds = embed_image(images.add(1).div(2))
|
123 |
+
loss = spherical_dist_loss(embeds, target).mean(0)
|
124 |
+
i = torch.argmin(loss)
|
125 |
+
qs.append(q[i])
|
126 |
+
losses.append(loss[i])
|
127 |
+
qs = torch.stack(qs)
|
128 |
+
losses = torch.stack(losses)
|
129 |
+
print(losses)
|
130 |
+
print(losses.shape, qs.shape)
|
131 |
+
i = torch.argmin(losses)
|
132 |
+
q = qs[i].unsqueeze(0)
|
133 |
+
q.requires_grad_()
|
134 |
+
q_ema = q
|
135 |
+
opt = torch.optim.AdamW([q], lr=0.03, betas=(0.0,0.999))
|
136 |
+
loop = tqdm(range(steps))
|
137 |
+
for i in loop:
|
138 |
+
opt.zero_grad()
|
139 |
+
w = q * w_stds
|
140 |
+
image = G.synthesis(w + G.mapping.w_avg, noise_mode='const')
|
141 |
+
embed = embed_image(image.add(1).div(2))
|
142 |
+
loss = spherical_dist_loss(embed, target).mean()
|
143 |
+
loss.backward()
|
144 |
+
opt.step()
|
145 |
+
loop.set_postfix(loss=loss.item(), q_magnitude=q.std().item())
|
146 |
+
q_ema = q_ema * 0.9 + q * 0.1
|
147 |
+
image = G.synthesis(q_ema * w_stds + G.mapping.w_avg, noise_mode='const')
|
148 |
+
if i % 10 == 0:
|
149 |
+
display(TF.to_pil_image(tf(image)[0]))
|
150 |
+
pil_image = TF.to_pil_image(image[0].add(1).div(2).clamp(0,1))
|
151 |
+
#os.makedirs(f'samples/{timestring}', exist_ok=True)
|
152 |
+
#pil_image.save(f'samples/{timestring}/{i:04}.jpg')
|
153 |
+
return pil_image
|
154 |
+
|
155 |
+
|
156 |
+
title = "StyleGAN+CLIP_with_Latent_Bootstraping"
|
157 |
+
description = "Gradio demo for StyleGAN+CLIP_with_Latent_Bootstraping. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
|
158 |
+
article = "<p style='text-align: center'>colab by https://twitter.com/EricHallahan <a href='https://colab.research.google.com/drive/1br7GP_D6XCgulxPTAFhwGaV-ijFe084X' target='_blank'>Colab</a></p>"
|
159 |
+
examples = [['elon musk']]
|
160 |
+
gr.Interface(
|
161 |
+
inference,
|
162 |
+
"text",
|
163 |
+
gr.outputs.Image(type="pil", label="Output"),
|
164 |
+
title=title,
|
165 |
+
description=description,
|
166 |
+
article=article,
|
167 |
+
enable_queue=True,
|
168 |
+
examples=examples
|
169 |
+
).launch(debug=True)
|
avg_spectra.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Compare average power spectra between real and generated images,
|
10 |
+
or between multiple generators."""
|
11 |
+
|
12 |
+
import os
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import torch.fft
|
16 |
+
import scipy.ndimage
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
+
import click
|
19 |
+
import tqdm
|
20 |
+
import dnnlib
|
21 |
+
|
22 |
+
import legacy
|
23 |
+
from training import dataset
|
24 |
+
|
25 |
+
#----------------------------------------------------------------------------
|
26 |
+
# Setup an iterator for streaming images, in uint8 NCHW format, based on the
|
27 |
+
# respective command line options.
|
28 |
+
|
29 |
+
def stream_source_images(source, num, seed, device, data_loader_kwargs=None): # => num_images, image_size, image_iter
|
30 |
+
ext = source.split('.')[-1].lower()
|
31 |
+
if data_loader_kwargs is None:
|
32 |
+
data_loader_kwargs = dict(pin_memory=True, num_workers=3, prefetch_factor=2)
|
33 |
+
|
34 |
+
if ext == 'pkl':
|
35 |
+
if num is None:
|
36 |
+
raise click.ClickException('--num is required when --source points to network pickle')
|
37 |
+
with dnnlib.util.open_url(source) as f:
|
38 |
+
G = legacy.load_network_pkl(f)['G_ema'].to(device)
|
39 |
+
def generate_image(seed):
|
40 |
+
rnd = np.random.RandomState(seed)
|
41 |
+
z = torch.from_numpy(rnd.randn(1, G.z_dim)).to(device)
|
42 |
+
c = torch.zeros([1, G.c_dim], device=device)
|
43 |
+
if G.c_dim > 0:
|
44 |
+
c[:, rnd.randint(G.c_dim)] = 1
|
45 |
+
return (G(z=z, c=c) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
46 |
+
_ = generate_image(seed) # warm up
|
47 |
+
image_iter = (generate_image(seed + idx) for idx in range(num))
|
48 |
+
return num, G.img_resolution, image_iter
|
49 |
+
|
50 |
+
elif ext == 'zip' or os.path.isdir(source):
|
51 |
+
dataset_obj = dataset.ImageFolderDataset(path=source, max_size=num, random_seed=seed)
|
52 |
+
if num is not None and num != len(dataset_obj):
|
53 |
+
raise click.ClickException(f'--source contains fewer than {num} images')
|
54 |
+
data_loader = torch.utils.data.DataLoader(dataset_obj, batch_size=1, **data_loader_kwargs)
|
55 |
+
image_iter = (image.to(device) for image, _label in data_loader)
|
56 |
+
return len(dataset_obj), dataset_obj.resolution, image_iter
|
57 |
+
|
58 |
+
else:
|
59 |
+
raise click.ClickException('--source must point to network pickle, dataset zip, or directory')
|
60 |
+
|
61 |
+
#----------------------------------------------------------------------------
|
62 |
+
# Load average power spectrum from the specified .npz file and construct
|
63 |
+
# the corresponding heatmap for visualization.
|
64 |
+
|
65 |
+
def construct_heatmap(npz_file, smooth):
|
66 |
+
npz_data = np.load(npz_file)
|
67 |
+
spectrum = npz_data['spectrum']
|
68 |
+
image_size = npz_data['image_size']
|
69 |
+
hmap = np.log10(spectrum) * 10 # dB
|
70 |
+
hmap = np.fft.fftshift(hmap)
|
71 |
+
hmap = np.concatenate([hmap, hmap[:1, :]], axis=0)
|
72 |
+
hmap = np.concatenate([hmap, hmap[:, :1]], axis=1)
|
73 |
+
if smooth > 0:
|
74 |
+
sigma = spectrum.shape[0] / image_size * smooth
|
75 |
+
hmap = scipy.ndimage.gaussian_filter(hmap, sigma=sigma, mode='nearest')
|
76 |
+
return hmap, image_size
|
77 |
+
|
78 |
+
#----------------------------------------------------------------------------
|
79 |
+
|
80 |
+
@click.group()
|
81 |
+
def main():
|
82 |
+
"""Compare average power spectra between real and generated images,
|
83 |
+
or between multiple generators.
|
84 |
+
|
85 |
+
Example:
|
86 |
+
|
87 |
+
\b
|
88 |
+
# Calculate dataset mean and std, needed in subsequent steps.
|
89 |
+
python avg_spectra.py stats --source=~/datasets/ffhq-1024x1024.zip
|
90 |
+
|
91 |
+
\b
|
92 |
+
# Calculate average spectrum for the training data.
|
93 |
+
python avg_spectra.py calc --source=~/datasets/ffhq-1024x1024.zip \\
|
94 |
+
--dest=tmp/training-data.npz --mean=112.684 --std=69.509
|
95 |
+
|
96 |
+
\b
|
97 |
+
# Calculate average spectrum for a pre-trained generator.
|
98 |
+
python avg_spectra.py calc \\
|
99 |
+
--source=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhq-1024x1024.pkl \\
|
100 |
+
--dest=tmp/stylegan3-r.npz --mean=112.684 --std=69.509 --num=70000
|
101 |
+
|
102 |
+
\b
|
103 |
+
# Display results.
|
104 |
+
python avg_spectra.py heatmap tmp/training-data.npz
|
105 |
+
python avg_spectra.py heatmap tmp/stylegan3-r.npz
|
106 |
+
python avg_spectra.py slices tmp/training-data.npz tmp/stylegan3-r.npz
|
107 |
+
|
108 |
+
\b
|
109 |
+
# Save as PNG.
|
110 |
+
python avg_spectra.py heatmap tmp/training-data.npz --save=tmp/training-data.png --dpi=300
|
111 |
+
python avg_spectra.py heatmap tmp/stylegan3-r.npz --save=tmp/stylegan3-r.png --dpi=300
|
112 |
+
python avg_spectra.py slices tmp/training-data.npz tmp/stylegan3-r.npz --save=tmp/slices.png --dpi=300
|
113 |
+
"""
|
114 |
+
|
115 |
+
#----------------------------------------------------------------------------
|
116 |
+
|
117 |
+
@main.command()
|
118 |
+
@click.option('--source', help='Network pkl, dataset zip, or directory', metavar='[PKL|ZIP|DIR]', required=True)
|
119 |
+
@click.option('--num', help='Number of images to process [default: all]', metavar='INT', type=click.IntRange(min=1))
|
120 |
+
@click.option('--seed', help='Random seed for selecting the images', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
|
121 |
+
def stats(source, num, seed, device=torch.device('cuda')):
|
122 |
+
"""Calculate dataset mean and standard deviation needed by 'calc'."""
|
123 |
+
torch.multiprocessing.set_start_method('spawn')
|
124 |
+
num_images, _image_size, image_iter = stream_source_images(source=source, num=num, seed=seed, device=device)
|
125 |
+
|
126 |
+
# Accumulate moments.
|
127 |
+
moments = torch.zeros([3], dtype=torch.float64, device=device)
|
128 |
+
for image in tqdm.tqdm(image_iter, total=num_images):
|
129 |
+
image = image.to(torch.float64)
|
130 |
+
moments += torch.stack([torch.ones_like(image).sum(), image.sum(), image.square().sum()])
|
131 |
+
moments = moments / moments[0]
|
132 |
+
|
133 |
+
# Compute mean and standard deviation.
|
134 |
+
mean = moments[1]
|
135 |
+
std = (moments[2] - moments[1].square()).sqrt()
|
136 |
+
print(f'--mean={mean:g} --std={std:g}')
|
137 |
+
|
138 |
+
#----------------------------------------------------------------------------
|
139 |
+
|
140 |
+
@main.command()
|
141 |
+
@click.option('--source', help='Network pkl, dataset zip, or directory', metavar='[PKL|ZIP|DIR]', required=True)
|
142 |
+
@click.option('--dest', help='Where to store the result', metavar='NPZ', required=True)
|
143 |
+
@click.option('--mean', help='Dataset mean for whitening', metavar='FLOAT', type=float, required=True)
|
144 |
+
@click.option('--std', help='Dataset standard deviation for whitening', metavar='FLOAT', type=click.FloatRange(min=0), required=True)
|
145 |
+
@click.option('--num', help='Number of images to process [default: all]', metavar='INT', type=click.IntRange(min=1))
|
146 |
+
@click.option('--seed', help='Random seed for selecting the images', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
|
147 |
+
@click.option('--beta', help='Shape parameter for the Kaiser window', metavar='FLOAT', type=click.FloatRange(min=0), default=8, show_default=True)
|
148 |
+
@click.option('--interp', help='Frequency-domain interpolation factor', metavar='INT', type=click.IntRange(min=1), default=4, show_default=True)
|
149 |
+
def calc(source, dest, mean, std, num, seed, beta, interp, device=torch.device('cuda')):
|
150 |
+
"""Calculate average power spectrum and store it in .npz file."""
|
151 |
+
torch.multiprocessing.set_start_method('spawn')
|
152 |
+
num_images, image_size, image_iter = stream_source_images(source=source, num=num, seed=seed, device=device)
|
153 |
+
spectrum_size = image_size * interp
|
154 |
+
padding = spectrum_size - image_size
|
155 |
+
|
156 |
+
# Setup window function.
|
157 |
+
window = torch.kaiser_window(image_size, periodic=False, beta=beta, device=device)
|
158 |
+
window *= window.square().sum().rsqrt()
|
159 |
+
window = window.ger(window).unsqueeze(0).unsqueeze(1)
|
160 |
+
|
161 |
+
# Accumulate power spectrum.
|
162 |
+
spectrum = torch.zeros([spectrum_size, spectrum_size], dtype=torch.float64, device=device)
|
163 |
+
for image in tqdm.tqdm(image_iter, total=num_images):
|
164 |
+
image = (image.to(torch.float64) - mean) / std
|
165 |
+
image = torch.nn.functional.pad(image * window, [0, padding, 0, padding])
|
166 |
+
spectrum += torch.fft.fftn(image, dim=[2,3]).abs().square().mean(dim=[0,1])
|
167 |
+
spectrum /= num_images
|
168 |
+
|
169 |
+
# Save result.
|
170 |
+
if os.path.dirname(dest):
|
171 |
+
os.makedirs(os.path.dirname(dest), exist_ok=True)
|
172 |
+
np.savez(dest, spectrum=spectrum.cpu().numpy(), image_size=image_size)
|
173 |
+
|
174 |
+
#----------------------------------------------------------------------------
|
175 |
+
|
176 |
+
@main.command()
|
177 |
+
@click.argument('npz-file', nargs=1)
|
178 |
+
@click.option('--save', help='Save the plot and exit', metavar='[PNG|PDF|...]')
|
179 |
+
@click.option('--dpi', help='Figure resolution', metavar='FLOAT', type=click.FloatRange(min=1), default=100, show_default=True)
|
180 |
+
@click.option('--smooth', help='Amount of smoothing', metavar='FLOAT', type=click.FloatRange(min=0), default=1.25, show_default=True)
|
181 |
+
def heatmap(npz_file, save, smooth, dpi):
|
182 |
+
"""Visualize 2D heatmap based on the given .npz file."""
|
183 |
+
hmap, image_size = construct_heatmap(npz_file=npz_file, smooth=smooth)
|
184 |
+
|
185 |
+
# Setup plot.
|
186 |
+
plt.figure(figsize=[6, 4.8], dpi=dpi, tight_layout=True)
|
187 |
+
freqs = np.linspace(-0.5, 0.5, num=hmap.shape[0], endpoint=True) * image_size
|
188 |
+
ticks = np.linspace(freqs[0], freqs[-1], num=5, endpoint=True)
|
189 |
+
levels = np.linspace(-40, 20, num=13, endpoint=True)
|
190 |
+
|
191 |
+
# Draw heatmap.
|
192 |
+
plt.xlim(ticks[0], ticks[-1])
|
193 |
+
plt.ylim(ticks[0], ticks[-1])
|
194 |
+
plt.xticks(ticks)
|
195 |
+
plt.yticks(ticks)
|
196 |
+
plt.contourf(freqs, freqs, hmap, levels=levels, extend='both', cmap='Blues')
|
197 |
+
plt.gca().set_aspect('equal')
|
198 |
+
plt.colorbar(ticks=levels)
|
199 |
+
plt.contour(freqs, freqs, hmap, levels=levels, extend='both', linestyles='solid', linewidths=1, colors='midnightblue', alpha=0.2)
|
200 |
+
|
201 |
+
# Display or save.
|
202 |
+
if save is None:
|
203 |
+
plt.show()
|
204 |
+
else:
|
205 |
+
if os.path.dirname(save):
|
206 |
+
os.makedirs(os.path.dirname(save), exist_ok=True)
|
207 |
+
plt.savefig(save)
|
208 |
+
|
209 |
+
#----------------------------------------------------------------------------
|
210 |
+
|
211 |
+
@main.command()
|
212 |
+
@click.argument('npz-files', nargs=-1, required=True)
|
213 |
+
@click.option('--save', help='Save the plot and exit', metavar='[PNG|PDF|...]')
|
214 |
+
@click.option('--dpi', help='Figure resolution', metavar='FLOAT', type=click.FloatRange(min=1), default=100, show_default=True)
|
215 |
+
@click.option('--smooth', help='Amount of smoothing', metavar='FLOAT', type=click.FloatRange(min=0), default=0, show_default=True)
|
216 |
+
def slices(npz_files, save, dpi, smooth):
|
217 |
+
"""Visualize 1D slices based on the given .npz files."""
|
218 |
+
cases = [dnnlib.EasyDict(npz_file=npz_file) for npz_file in npz_files]
|
219 |
+
for c in cases:
|
220 |
+
c.hmap, c.image_size = construct_heatmap(npz_file=c.npz_file, smooth=smooth)
|
221 |
+
c.label = os.path.splitext(os.path.basename(c.npz_file))[0]
|
222 |
+
|
223 |
+
# Check consistency.
|
224 |
+
image_size = cases[0].image_size
|
225 |
+
hmap_size = cases[0].hmap.shape[0]
|
226 |
+
if any(c.image_size != image_size or c.hmap.shape[0] != hmap_size for c in cases):
|
227 |
+
raise click.ClickException('All .npz must have the same resolution')
|
228 |
+
|
229 |
+
# Setup plot.
|
230 |
+
plt.figure(figsize=[12, 4.6], dpi=dpi, tight_layout=True)
|
231 |
+
hmap_center = hmap_size // 2
|
232 |
+
hmap_range = np.arange(hmap_center, hmap_size)
|
233 |
+
freqs0 = np.linspace(0, image_size / 2, num=(hmap_size // 2 + 1), endpoint=True)
|
234 |
+
freqs45 = np.linspace(0, image_size / np.sqrt(2), num=(hmap_size // 2 + 1), endpoint=True)
|
235 |
+
xticks0 = np.linspace(freqs0[0], freqs0[-1], num=9, endpoint=True)
|
236 |
+
xticks45 = np.round(np.linspace(freqs45[0], freqs45[-1], num=9, endpoint=True))
|
237 |
+
yticks = np.linspace(-50, 30, num=9, endpoint=True)
|
238 |
+
|
239 |
+
# Draw 0 degree slice.
|
240 |
+
plt.subplot(1, 2, 1)
|
241 |
+
plt.title('0\u00b0 slice')
|
242 |
+
plt.xlim(xticks0[0], xticks0[-1])
|
243 |
+
plt.ylim(yticks[0], yticks[-1])
|
244 |
+
plt.xticks(xticks0)
|
245 |
+
plt.yticks(yticks)
|
246 |
+
for c in cases:
|
247 |
+
plt.plot(freqs0, c.hmap[hmap_center, hmap_range], label=c.label)
|
248 |
+
plt.grid()
|
249 |
+
plt.legend(loc='upper right')
|
250 |
+
|
251 |
+
# Draw 45 degree slice.
|
252 |
+
plt.subplot(1, 2, 2)
|
253 |
+
plt.title('45\u00b0 slice')
|
254 |
+
plt.xlim(xticks45[0], xticks45[-1])
|
255 |
+
plt.ylim(yticks[0], yticks[-1])
|
256 |
+
plt.xticks(xticks45)
|
257 |
+
plt.yticks(yticks)
|
258 |
+
for c in cases:
|
259 |
+
plt.plot(freqs45, c.hmap[hmap_range, hmap_range], label=c.label)
|
260 |
+
plt.grid()
|
261 |
+
plt.legend(loc='upper right')
|
262 |
+
|
263 |
+
# Display or save.
|
264 |
+
if save is None:
|
265 |
+
plt.show()
|
266 |
+
else:
|
267 |
+
if os.path.dirname(save):
|
268 |
+
os.makedirs(os.path.dirname(save), exist_ok=True)
|
269 |
+
plt.savefig(save)
|
270 |
+
|
271 |
+
#----------------------------------------------------------------------------
|
272 |
+
|
273 |
+
if __name__ == "__main__":
|
274 |
+
main() # pylint: disable=no-value-for-parameter
|
275 |
+
|
276 |
+
#----------------------------------------------------------------------------
|
calc_metrics.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Calculate quality metrics for previous training run or pretrained network pickle."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import click
|
13 |
+
import json
|
14 |
+
import tempfile
|
15 |
+
import copy
|
16 |
+
import torch
|
17 |
+
|
18 |
+
import dnnlib
|
19 |
+
import legacy
|
20 |
+
from metrics import metric_main
|
21 |
+
from metrics import metric_utils
|
22 |
+
from torch_utils import training_stats
|
23 |
+
from torch_utils import custom_ops
|
24 |
+
from torch_utils import misc
|
25 |
+
from torch_utils.ops import conv2d_gradfix
|
26 |
+
|
27 |
+
#----------------------------------------------------------------------------
|
28 |
+
|
29 |
+
def subprocess_fn(rank, args, temp_dir):
|
30 |
+
dnnlib.util.Logger(should_flush=True)
|
31 |
+
|
32 |
+
# Init torch.distributed.
|
33 |
+
if args.num_gpus > 1:
|
34 |
+
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
|
35 |
+
if os.name == 'nt':
|
36 |
+
init_method = 'file:///' + init_file.replace('\\', '/')
|
37 |
+
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=args.num_gpus)
|
38 |
+
else:
|
39 |
+
init_method = f'file://{init_file}'
|
40 |
+
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=args.num_gpus)
|
41 |
+
|
42 |
+
# Init torch_utils.
|
43 |
+
sync_device = torch.device('cuda', rank) if args.num_gpus > 1 else None
|
44 |
+
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
|
45 |
+
if rank != 0 or not args.verbose:
|
46 |
+
custom_ops.verbosity = 'none'
|
47 |
+
|
48 |
+
# Configure torch.
|
49 |
+
device = torch.device('cuda', rank)
|
50 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
51 |
+
torch.backends.cudnn.allow_tf32 = False
|
52 |
+
conv2d_gradfix.enabled = True
|
53 |
+
|
54 |
+
# Print network summary.
|
55 |
+
G = copy.deepcopy(args.G).eval().requires_grad_(False).to(device)
|
56 |
+
if rank == 0 and args.verbose:
|
57 |
+
z = torch.empty([1, G.z_dim], device=device)
|
58 |
+
c = torch.empty([1, G.c_dim], device=device)
|
59 |
+
misc.print_module_summary(G, [z, c])
|
60 |
+
|
61 |
+
# Calculate each metric.
|
62 |
+
for metric in args.metrics:
|
63 |
+
if rank == 0 and args.verbose:
|
64 |
+
print(f'Calculating {metric}...')
|
65 |
+
progress = metric_utils.ProgressMonitor(verbose=args.verbose)
|
66 |
+
result_dict = metric_main.calc_metric(metric=metric, G=G, dataset_kwargs=args.dataset_kwargs,
|
67 |
+
num_gpus=args.num_gpus, rank=rank, device=device, progress=progress)
|
68 |
+
if rank == 0:
|
69 |
+
metric_main.report_metric(result_dict, run_dir=args.run_dir, snapshot_pkl=args.network_pkl)
|
70 |
+
if rank == 0 and args.verbose:
|
71 |
+
print()
|
72 |
+
|
73 |
+
# Done.
|
74 |
+
if rank == 0 and args.verbose:
|
75 |
+
print('Exiting...')
|
76 |
+
|
77 |
+
#----------------------------------------------------------------------------
|
78 |
+
|
79 |
+
def parse_comma_separated_list(s):
|
80 |
+
if isinstance(s, list):
|
81 |
+
return s
|
82 |
+
if s is None or s.lower() == 'none' or s == '':
|
83 |
+
return []
|
84 |
+
return s.split(',')
|
85 |
+
|
86 |
+
#----------------------------------------------------------------------------
|
87 |
+
|
88 |
+
@click.command()
|
89 |
+
@click.pass_context
|
90 |
+
@click.option('network_pkl', '--network', help='Network pickle filename or URL', metavar='PATH', required=True)
|
91 |
+
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid50k_full', show_default=True)
|
92 |
+
@click.option('--data', help='Dataset to evaluate against [default: look up]', metavar='[ZIP|DIR]')
|
93 |
+
@click.option('--mirror', help='Enable dataset x-flips [default: look up]', type=bool, metavar='BOOL')
|
94 |
+
@click.option('--gpus', help='Number of GPUs to use', type=int, default=1, metavar='INT', show_default=True)
|
95 |
+
@click.option('--verbose', help='Print optional information', type=bool, default=True, metavar='BOOL', show_default=True)
|
96 |
+
|
97 |
+
def calc_metrics(ctx, network_pkl, metrics, data, mirror, gpus, verbose):
|
98 |
+
"""Calculate quality metrics for previous training run or pretrained network pickle.
|
99 |
+
|
100 |
+
Examples:
|
101 |
+
|
102 |
+
\b
|
103 |
+
# Previous training run: look up options automatically, save result to JSONL file.
|
104 |
+
python calc_metrics.py --metrics=eqt50k_int,eqr50k \\
|
105 |
+
--network=~/training-runs/00000-stylegan3-r-mydataset/network-snapshot-000000.pkl
|
106 |
+
|
107 |
+
\b
|
108 |
+
# Pre-trained network pickle: specify dataset explicitly, print result to stdout.
|
109 |
+
python calc_metrics.py --metrics=fid50k_full --data=~/datasets/ffhq-1024x1024.zip --mirror=1 \\
|
110 |
+
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-ffhq-1024x1024.pkl
|
111 |
+
|
112 |
+
\b
|
113 |
+
Recommended metrics:
|
114 |
+
fid50k_full Frechet inception distance against the full dataset.
|
115 |
+
kid50k_full Kernel inception distance against the full dataset.
|
116 |
+
pr50k3_full Precision and recall againt the full dataset.
|
117 |
+
ppl2_wend Perceptual path length in W, endpoints, full image.
|
118 |
+
eqt50k_int Equivariance w.r.t. integer translation (EQ-T).
|
119 |
+
eqt50k_frac Equivariance w.r.t. fractional translation (EQ-T_frac).
|
120 |
+
eqr50k Equivariance w.r.t. rotation (EQ-R).
|
121 |
+
|
122 |
+
\b
|
123 |
+
Legacy metrics:
|
124 |
+
fid50k Frechet inception distance against 50k real images.
|
125 |
+
kid50k Kernel inception distance against 50k real images.
|
126 |
+
pr50k3 Precision and recall against 50k real images.
|
127 |
+
is50k Inception score for CIFAR-10.
|
128 |
+
"""
|
129 |
+
dnnlib.util.Logger(should_flush=True)
|
130 |
+
|
131 |
+
# Validate arguments.
|
132 |
+
args = dnnlib.EasyDict(metrics=metrics, num_gpus=gpus, network_pkl=network_pkl, verbose=verbose)
|
133 |
+
if not all(metric_main.is_valid_metric(metric) for metric in args.metrics):
|
134 |
+
ctx.fail('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
|
135 |
+
if not args.num_gpus >= 1:
|
136 |
+
ctx.fail('--gpus must be at least 1')
|
137 |
+
|
138 |
+
# Load network.
|
139 |
+
if not dnnlib.util.is_url(network_pkl, allow_file_urls=True) and not os.path.isfile(network_pkl):
|
140 |
+
ctx.fail('--network must point to a file or URL')
|
141 |
+
if args.verbose:
|
142 |
+
print(f'Loading network from "{network_pkl}"...')
|
143 |
+
with dnnlib.util.open_url(network_pkl, verbose=args.verbose) as f:
|
144 |
+
network_dict = legacy.load_network_pkl(f)
|
145 |
+
args.G = network_dict['G_ema'] # subclass of torch.nn.Module
|
146 |
+
|
147 |
+
# Initialize dataset options.
|
148 |
+
if data is not None:
|
149 |
+
args.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data)
|
150 |
+
elif network_dict['training_set_kwargs'] is not None:
|
151 |
+
args.dataset_kwargs = dnnlib.EasyDict(network_dict['training_set_kwargs'])
|
152 |
+
else:
|
153 |
+
ctx.fail('Could not look up dataset options; please specify --data')
|
154 |
+
|
155 |
+
# Finalize dataset options.
|
156 |
+
args.dataset_kwargs.resolution = args.G.img_resolution
|
157 |
+
args.dataset_kwargs.use_labels = (args.G.c_dim != 0)
|
158 |
+
if mirror is not None:
|
159 |
+
args.dataset_kwargs.xflip = mirror
|
160 |
+
|
161 |
+
# Print dataset options.
|
162 |
+
if args.verbose:
|
163 |
+
print('Dataset options:')
|
164 |
+
print(json.dumps(args.dataset_kwargs, indent=2))
|
165 |
+
|
166 |
+
# Locate run dir.
|
167 |
+
args.run_dir = None
|
168 |
+
if os.path.isfile(network_pkl):
|
169 |
+
pkl_dir = os.path.dirname(network_pkl)
|
170 |
+
if os.path.isfile(os.path.join(pkl_dir, 'training_options.json')):
|
171 |
+
args.run_dir = pkl_dir
|
172 |
+
|
173 |
+
# Launch processes.
|
174 |
+
if args.verbose:
|
175 |
+
print('Launching processes...')
|
176 |
+
torch.multiprocessing.set_start_method('spawn')
|
177 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
178 |
+
if args.num_gpus == 1:
|
179 |
+
subprocess_fn(rank=0, args=args, temp_dir=temp_dir)
|
180 |
+
else:
|
181 |
+
torch.multiprocessing.spawn(fn=subprocess_fn, args=(args, temp_dir), nprocs=args.num_gpus)
|
182 |
+
|
183 |
+
#----------------------------------------------------------------------------
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
calc_metrics() # pylint: disable=no-value-for-parameter
|
187 |
+
|
188 |
+
#----------------------------------------------------------------------------
|
dataset_tool.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Tool for creating ZIP/PNG based datasets."""
|
10 |
+
|
11 |
+
import functools
|
12 |
+
import gzip
|
13 |
+
import io
|
14 |
+
import json
|
15 |
+
import os
|
16 |
+
import pickle
|
17 |
+
import re
|
18 |
+
import sys
|
19 |
+
import tarfile
|
20 |
+
import zipfile
|
21 |
+
from pathlib import Path
|
22 |
+
from typing import Callable, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import click
|
25 |
+
import numpy as np
|
26 |
+
import PIL.Image
|
27 |
+
from tqdm import tqdm
|
28 |
+
|
29 |
+
#----------------------------------------------------------------------------
|
30 |
+
|
31 |
+
def error(msg):
|
32 |
+
print('Error: ' + msg)
|
33 |
+
sys.exit(1)
|
34 |
+
|
35 |
+
#----------------------------------------------------------------------------
|
36 |
+
|
37 |
+
def parse_tuple(s: str) -> Tuple[int, int]:
|
38 |
+
'''Parse a 'M,N' or 'MxN' integer tuple.
|
39 |
+
|
40 |
+
Example:
|
41 |
+
'4x2' returns (4,2)
|
42 |
+
'0,1' returns (0,1)
|
43 |
+
'''
|
44 |
+
if m := re.match(r'^(\d+)[x,](\d+)$', s):
|
45 |
+
return (int(m.group(1)), int(m.group(2)))
|
46 |
+
raise ValueError(f'cannot parse tuple {s}')
|
47 |
+
|
48 |
+
#----------------------------------------------------------------------------
|
49 |
+
|
50 |
+
def maybe_min(a: int, b: Optional[int]) -> int:
|
51 |
+
if b is not None:
|
52 |
+
return min(a, b)
|
53 |
+
return a
|
54 |
+
|
55 |
+
#----------------------------------------------------------------------------
|
56 |
+
|
57 |
+
def file_ext(name: Union[str, Path]) -> str:
|
58 |
+
return str(name).split('.')[-1]
|
59 |
+
|
60 |
+
#----------------------------------------------------------------------------
|
61 |
+
|
62 |
+
def is_image_ext(fname: Union[str, Path]) -> bool:
|
63 |
+
ext = file_ext(fname).lower()
|
64 |
+
return f'.{ext}' in PIL.Image.EXTENSION # type: ignore
|
65 |
+
|
66 |
+
#----------------------------------------------------------------------------
|
67 |
+
|
68 |
+
def open_image_folder(source_dir, *, max_images: Optional[int]):
|
69 |
+
input_images = [str(f) for f in sorted(Path(source_dir).rglob('*')) if is_image_ext(f) and os.path.isfile(f)]
|
70 |
+
|
71 |
+
# Load labels.
|
72 |
+
labels = {}
|
73 |
+
meta_fname = os.path.join(source_dir, 'dataset.json')
|
74 |
+
if os.path.isfile(meta_fname):
|
75 |
+
with open(meta_fname, 'r') as file:
|
76 |
+
labels = json.load(file)['labels']
|
77 |
+
if labels is not None:
|
78 |
+
labels = { x[0]: x[1] for x in labels }
|
79 |
+
else:
|
80 |
+
labels = {}
|
81 |
+
|
82 |
+
max_idx = maybe_min(len(input_images), max_images)
|
83 |
+
|
84 |
+
def iterate_images():
|
85 |
+
for idx, fname in enumerate(input_images):
|
86 |
+
arch_fname = os.path.relpath(fname, source_dir)
|
87 |
+
arch_fname = arch_fname.replace('\\', '/')
|
88 |
+
img = np.array(PIL.Image.open(fname))
|
89 |
+
yield dict(img=img, label=labels.get(arch_fname))
|
90 |
+
if idx >= max_idx-1:
|
91 |
+
break
|
92 |
+
return max_idx, iterate_images()
|
93 |
+
|
94 |
+
#----------------------------------------------------------------------------
|
95 |
+
|
96 |
+
def open_image_zip(source, *, max_images: Optional[int]):
|
97 |
+
with zipfile.ZipFile(source, mode='r') as z:
|
98 |
+
input_images = [str(f) for f in sorted(z.namelist()) if is_image_ext(f)]
|
99 |
+
|
100 |
+
# Load labels.
|
101 |
+
labels = {}
|
102 |
+
if 'dataset.json' in z.namelist():
|
103 |
+
with z.open('dataset.json', 'r') as file:
|
104 |
+
labels = json.load(file)['labels']
|
105 |
+
if labels is not None:
|
106 |
+
labels = { x[0]: x[1] for x in labels }
|
107 |
+
else:
|
108 |
+
labels = {}
|
109 |
+
|
110 |
+
max_idx = maybe_min(len(input_images), max_images)
|
111 |
+
|
112 |
+
def iterate_images():
|
113 |
+
with zipfile.ZipFile(source, mode='r') as z:
|
114 |
+
for idx, fname in enumerate(input_images):
|
115 |
+
with z.open(fname, 'r') as file:
|
116 |
+
img = PIL.Image.open(file) # type: ignore
|
117 |
+
img = np.array(img)
|
118 |
+
yield dict(img=img, label=labels.get(fname))
|
119 |
+
if idx >= max_idx-1:
|
120 |
+
break
|
121 |
+
return max_idx, iterate_images()
|
122 |
+
|
123 |
+
#----------------------------------------------------------------------------
|
124 |
+
|
125 |
+
def open_lmdb(lmdb_dir: str, *, max_images: Optional[int]):
|
126 |
+
import cv2 # pip install opencv-python # pylint: disable=import-error
|
127 |
+
import lmdb # pip install lmdb # pylint: disable=import-error
|
128 |
+
|
129 |
+
with lmdb.open(lmdb_dir, readonly=True, lock=False).begin(write=False) as txn:
|
130 |
+
max_idx = maybe_min(txn.stat()['entries'], max_images)
|
131 |
+
|
132 |
+
def iterate_images():
|
133 |
+
with lmdb.open(lmdb_dir, readonly=True, lock=False).begin(write=False) as txn:
|
134 |
+
for idx, (_key, value) in enumerate(txn.cursor()):
|
135 |
+
try:
|
136 |
+
try:
|
137 |
+
img = cv2.imdecode(np.frombuffer(value, dtype=np.uint8), 1)
|
138 |
+
if img is None:
|
139 |
+
raise IOError('cv2.imdecode failed')
|
140 |
+
img = img[:, :, ::-1] # BGR => RGB
|
141 |
+
except IOError:
|
142 |
+
img = np.array(PIL.Image.open(io.BytesIO(value)))
|
143 |
+
yield dict(img=img, label=None)
|
144 |
+
if idx >= max_idx-1:
|
145 |
+
break
|
146 |
+
except:
|
147 |
+
print(sys.exc_info()[1])
|
148 |
+
|
149 |
+
return max_idx, iterate_images()
|
150 |
+
|
151 |
+
#----------------------------------------------------------------------------
|
152 |
+
|
153 |
+
def open_cifar10(tarball: str, *, max_images: Optional[int]):
|
154 |
+
images = []
|
155 |
+
labels = []
|
156 |
+
|
157 |
+
with tarfile.open(tarball, 'r:gz') as tar:
|
158 |
+
for batch in range(1, 6):
|
159 |
+
member = tar.getmember(f'cifar-10-batches-py/data_batch_{batch}')
|
160 |
+
with tar.extractfile(member) as file:
|
161 |
+
data = pickle.load(file, encoding='latin1')
|
162 |
+
images.append(data['data'].reshape(-1, 3, 32, 32))
|
163 |
+
labels.append(data['labels'])
|
164 |
+
|
165 |
+
images = np.concatenate(images)
|
166 |
+
labels = np.concatenate(labels)
|
167 |
+
images = images.transpose([0, 2, 3, 1]) # NCHW -> NHWC
|
168 |
+
assert images.shape == (50000, 32, 32, 3) and images.dtype == np.uint8
|
169 |
+
assert labels.shape == (50000,) and labels.dtype in [np.int32, np.int64]
|
170 |
+
assert np.min(images) == 0 and np.max(images) == 255
|
171 |
+
assert np.min(labels) == 0 and np.max(labels) == 9
|
172 |
+
|
173 |
+
max_idx = maybe_min(len(images), max_images)
|
174 |
+
|
175 |
+
def iterate_images():
|
176 |
+
for idx, img in enumerate(images):
|
177 |
+
yield dict(img=img, label=int(labels[idx]))
|
178 |
+
if idx >= max_idx-1:
|
179 |
+
break
|
180 |
+
|
181 |
+
return max_idx, iterate_images()
|
182 |
+
|
183 |
+
#----------------------------------------------------------------------------
|
184 |
+
|
185 |
+
def open_mnist(images_gz: str, *, max_images: Optional[int]):
|
186 |
+
labels_gz = images_gz.replace('-images-idx3-ubyte.gz', '-labels-idx1-ubyte.gz')
|
187 |
+
assert labels_gz != images_gz
|
188 |
+
images = []
|
189 |
+
labels = []
|
190 |
+
|
191 |
+
with gzip.open(images_gz, 'rb') as f:
|
192 |
+
images = np.frombuffer(f.read(), np.uint8, offset=16)
|
193 |
+
with gzip.open(labels_gz, 'rb') as f:
|
194 |
+
labels = np.frombuffer(f.read(), np.uint8, offset=8)
|
195 |
+
|
196 |
+
images = images.reshape(-1, 28, 28)
|
197 |
+
images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0)
|
198 |
+
assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
|
199 |
+
assert labels.shape == (60000,) and labels.dtype == np.uint8
|
200 |
+
assert np.min(images) == 0 and np.max(images) == 255
|
201 |
+
assert np.min(labels) == 0 and np.max(labels) == 9
|
202 |
+
|
203 |
+
max_idx = maybe_min(len(images), max_images)
|
204 |
+
|
205 |
+
def iterate_images():
|
206 |
+
for idx, img in enumerate(images):
|
207 |
+
yield dict(img=img, label=int(labels[idx]))
|
208 |
+
if idx >= max_idx-1:
|
209 |
+
break
|
210 |
+
|
211 |
+
return max_idx, iterate_images()
|
212 |
+
|
213 |
+
#----------------------------------------------------------------------------
|
214 |
+
|
215 |
+
def make_transform(
|
216 |
+
transform: Optional[str],
|
217 |
+
output_width: Optional[int],
|
218 |
+
output_height: Optional[int]
|
219 |
+
) -> Callable[[np.ndarray], Optional[np.ndarray]]:
|
220 |
+
def scale(width, height, img):
|
221 |
+
w = img.shape[1]
|
222 |
+
h = img.shape[0]
|
223 |
+
if width == w and height == h:
|
224 |
+
return img
|
225 |
+
img = PIL.Image.fromarray(img)
|
226 |
+
ww = width if width is not None else w
|
227 |
+
hh = height if height is not None else h
|
228 |
+
img = img.resize((ww, hh), PIL.Image.LANCZOS)
|
229 |
+
return np.array(img)
|
230 |
+
|
231 |
+
def center_crop(width, height, img):
|
232 |
+
crop = np.min(img.shape[:2])
|
233 |
+
img = img[(img.shape[0] - crop) // 2 : (img.shape[0] + crop) // 2, (img.shape[1] - crop) // 2 : (img.shape[1] + crop) // 2]
|
234 |
+
img = PIL.Image.fromarray(img, 'RGB')
|
235 |
+
img = img.resize((width, height), PIL.Image.LANCZOS)
|
236 |
+
return np.array(img)
|
237 |
+
|
238 |
+
def center_crop_wide(width, height, img):
|
239 |
+
ch = int(np.round(width * img.shape[0] / img.shape[1]))
|
240 |
+
if img.shape[1] < width or ch < height:
|
241 |
+
return None
|
242 |
+
|
243 |
+
img = img[(img.shape[0] - ch) // 2 : (img.shape[0] + ch) // 2]
|
244 |
+
img = PIL.Image.fromarray(img, 'RGB')
|
245 |
+
img = img.resize((width, height), PIL.Image.LANCZOS)
|
246 |
+
img = np.array(img)
|
247 |
+
|
248 |
+
canvas = np.zeros([width, width, 3], dtype=np.uint8)
|
249 |
+
canvas[(width - height) // 2 : (width + height) // 2, :] = img
|
250 |
+
return canvas
|
251 |
+
|
252 |
+
if transform is None:
|
253 |
+
return functools.partial(scale, output_width, output_height)
|
254 |
+
if transform == 'center-crop':
|
255 |
+
if (output_width is None) or (output_height is None):
|
256 |
+
error ('must specify --resolution=WxH when using ' + transform + 'transform')
|
257 |
+
return functools.partial(center_crop, output_width, output_height)
|
258 |
+
if transform == 'center-crop-wide':
|
259 |
+
if (output_width is None) or (output_height is None):
|
260 |
+
error ('must specify --resolution=WxH when using ' + transform + ' transform')
|
261 |
+
return functools.partial(center_crop_wide, output_width, output_height)
|
262 |
+
assert False, 'unknown transform'
|
263 |
+
|
264 |
+
#----------------------------------------------------------------------------
|
265 |
+
|
266 |
+
def open_dataset(source, *, max_images: Optional[int]):
|
267 |
+
if os.path.isdir(source):
|
268 |
+
if source.rstrip('/').endswith('_lmdb'):
|
269 |
+
return open_lmdb(source, max_images=max_images)
|
270 |
+
else:
|
271 |
+
return open_image_folder(source, max_images=max_images)
|
272 |
+
elif os.path.isfile(source):
|
273 |
+
if os.path.basename(source) == 'cifar-10-python.tar.gz':
|
274 |
+
return open_cifar10(source, max_images=max_images)
|
275 |
+
elif os.path.basename(source) == 'train-images-idx3-ubyte.gz':
|
276 |
+
return open_mnist(source, max_images=max_images)
|
277 |
+
elif file_ext(source) == 'zip':
|
278 |
+
return open_image_zip(source, max_images=max_images)
|
279 |
+
else:
|
280 |
+
assert False, 'unknown archive type'
|
281 |
+
else:
|
282 |
+
error(f'Missing input file or directory: {source}')
|
283 |
+
|
284 |
+
#----------------------------------------------------------------------------
|
285 |
+
|
286 |
+
def open_dest(dest: str) -> Tuple[str, Callable[[str, Union[bytes, str]], None], Callable[[], None]]:
|
287 |
+
dest_ext = file_ext(dest)
|
288 |
+
|
289 |
+
if dest_ext == 'zip':
|
290 |
+
if os.path.dirname(dest) != '':
|
291 |
+
os.makedirs(os.path.dirname(dest), exist_ok=True)
|
292 |
+
zf = zipfile.ZipFile(file=dest, mode='w', compression=zipfile.ZIP_STORED)
|
293 |
+
def zip_write_bytes(fname: str, data: Union[bytes, str]):
|
294 |
+
zf.writestr(fname, data)
|
295 |
+
return '', zip_write_bytes, zf.close
|
296 |
+
else:
|
297 |
+
# If the output folder already exists, check that is is
|
298 |
+
# empty.
|
299 |
+
#
|
300 |
+
# Note: creating the output directory is not strictly
|
301 |
+
# necessary as folder_write_bytes() also mkdirs, but it's better
|
302 |
+
# to give an error message earlier in case the dest folder
|
303 |
+
# somehow cannot be created.
|
304 |
+
if os.path.isdir(dest) and len(os.listdir(dest)) != 0:
|
305 |
+
error('--dest folder must be empty')
|
306 |
+
os.makedirs(dest, exist_ok=True)
|
307 |
+
|
308 |
+
def folder_write_bytes(fname: str, data: Union[bytes, str]):
|
309 |
+
os.makedirs(os.path.dirname(fname), exist_ok=True)
|
310 |
+
with open(fname, 'wb') as fout:
|
311 |
+
if isinstance(data, str):
|
312 |
+
data = data.encode('utf8')
|
313 |
+
fout.write(data)
|
314 |
+
return dest, folder_write_bytes, lambda: None
|
315 |
+
|
316 |
+
#----------------------------------------------------------------------------
|
317 |
+
|
318 |
+
@click.command()
|
319 |
+
@click.pass_context
|
320 |
+
@click.option('--source', help='Directory or archive name for input dataset', required=True, metavar='PATH')
|
321 |
+
@click.option('--dest', help='Output directory or archive name for output dataset', required=True, metavar='PATH')
|
322 |
+
@click.option('--max-images', help='Output only up to `max-images` images', type=int, default=None)
|
323 |
+
@click.option('--transform', help='Input crop/resize mode', type=click.Choice(['center-crop', 'center-crop-wide']))
|
324 |
+
@click.option('--resolution', help='Output resolution (e.g., \'512x512\')', metavar='WxH', type=parse_tuple)
|
325 |
+
def convert_dataset(
|
326 |
+
ctx: click.Context,
|
327 |
+
source: str,
|
328 |
+
dest: str,
|
329 |
+
max_images: Optional[int],
|
330 |
+
transform: Optional[str],
|
331 |
+
resolution: Optional[Tuple[int, int]]
|
332 |
+
):
|
333 |
+
"""Convert an image dataset into a dataset archive usable with StyleGAN2 ADA PyTorch.
|
334 |
+
|
335 |
+
The input dataset format is guessed from the --source argument:
|
336 |
+
|
337 |
+
\b
|
338 |
+
--source *_lmdb/ Load LSUN dataset
|
339 |
+
--source cifar-10-python.tar.gz Load CIFAR-10 dataset
|
340 |
+
--source train-images-idx3-ubyte.gz Load MNIST dataset
|
341 |
+
--source path/ Recursively load all images from path/
|
342 |
+
--source dataset.zip Recursively load all images from dataset.zip
|
343 |
+
|
344 |
+
Specifying the output format and path:
|
345 |
+
|
346 |
+
\b
|
347 |
+
--dest /path/to/dir Save output files under /path/to/dir
|
348 |
+
--dest /path/to/dataset.zip Save output files into /path/to/dataset.zip
|
349 |
+
|
350 |
+
The output dataset format can be either an image folder or an uncompressed zip archive.
|
351 |
+
Zip archives makes it easier to move datasets around file servers and clusters, and may
|
352 |
+
offer better training performance on network file systems.
|
353 |
+
|
354 |
+
Images within the dataset archive will be stored as uncompressed PNG.
|
355 |
+
Uncompresed PNGs can be efficiently decoded in the training loop.
|
356 |
+
|
357 |
+
Class labels are stored in a file called 'dataset.json' that is stored at the
|
358 |
+
dataset root folder. This file has the following structure:
|
359 |
+
|
360 |
+
\b
|
361 |
+
{
|
362 |
+
"labels": [
|
363 |
+
["00000/img00000000.png",6],
|
364 |
+
["00000/img00000001.png",9],
|
365 |
+
... repeated for every image in the datase
|
366 |
+
["00049/img00049999.png",1]
|
367 |
+
]
|
368 |
+
}
|
369 |
+
|
370 |
+
If the 'dataset.json' file cannot be found, the dataset is interpreted as
|
371 |
+
not containing class labels.
|
372 |
+
|
373 |
+
Image scale/crop and resolution requirements:
|
374 |
+
|
375 |
+
Output images must be square-shaped and they must all have the same power-of-two
|
376 |
+
dimensions.
|
377 |
+
|
378 |
+
To scale arbitrary input image size to a specific width and height, use the
|
379 |
+
--resolution option. Output resolution will be either the original
|
380 |
+
input resolution (if resolution was not specified) or the one specified with
|
381 |
+
--resolution option.
|
382 |
+
|
383 |
+
Use the --transform=center-crop or --transform=center-crop-wide options to apply a
|
384 |
+
center crop transform on the input image. These options should be used with the
|
385 |
+
--resolution option. For example:
|
386 |
+
|
387 |
+
\b
|
388 |
+
python dataset_tool.py --source LSUN/raw/cat_lmdb --dest /tmp/lsun_cat \\
|
389 |
+
--transform=center-crop-wide --resolution=512x384
|
390 |
+
"""
|
391 |
+
|
392 |
+
PIL.Image.init() # type: ignore
|
393 |
+
|
394 |
+
if dest == '':
|
395 |
+
ctx.fail('--dest output filename or directory must not be an empty string')
|
396 |
+
|
397 |
+
num_files, input_iter = open_dataset(source, max_images=max_images)
|
398 |
+
archive_root_dir, save_bytes, close_dest = open_dest(dest)
|
399 |
+
|
400 |
+
if resolution is None: resolution = (None, None)
|
401 |
+
transform_image = make_transform(transform, *resolution)
|
402 |
+
|
403 |
+
dataset_attrs = None
|
404 |
+
|
405 |
+
labels = []
|
406 |
+
for idx, image in tqdm(enumerate(input_iter), total=num_files):
|
407 |
+
idx_str = f'{idx:08d}'
|
408 |
+
archive_fname = f'{idx_str[:5]}/img{idx_str}.png'
|
409 |
+
|
410 |
+
# Apply crop and resize.
|
411 |
+
img = transform_image(image['img'])
|
412 |
+
|
413 |
+
# Transform may drop images.
|
414 |
+
if img is None:
|
415 |
+
continue
|
416 |
+
|
417 |
+
# Error check to require uniform image attributes across
|
418 |
+
# the whole dataset.
|
419 |
+
channels = img.shape[2] if img.ndim == 3 else 1
|
420 |
+
cur_image_attrs = {
|
421 |
+
'width': img.shape[1],
|
422 |
+
'height': img.shape[0],
|
423 |
+
'channels': channels
|
424 |
+
}
|
425 |
+
if dataset_attrs is None:
|
426 |
+
dataset_attrs = cur_image_attrs
|
427 |
+
width = dataset_attrs['width']
|
428 |
+
height = dataset_attrs['height']
|
429 |
+
if width != height:
|
430 |
+
error(f'Image dimensions after scale and crop are required to be square. Got {width}x{height}')
|
431 |
+
if dataset_attrs['channels'] not in [1, 3]:
|
432 |
+
error('Input images must be stored as RGB or grayscale')
|
433 |
+
if width != 2 ** int(np.floor(np.log2(width))):
|
434 |
+
error('Image width/height after scale and crop are required to be power-of-two')
|
435 |
+
elif dataset_attrs != cur_image_attrs:
|
436 |
+
err = [f' dataset {k}/cur image {k}: {dataset_attrs[k]}/{cur_image_attrs[k]}' for k in dataset_attrs.keys()] # pylint: disable=unsubscriptable-object
|
437 |
+
error(f'Image {archive_fname} attributes must be equal across all images of the dataset. Got:\n' + '\n'.join(err))
|
438 |
+
|
439 |
+
# Save the image as an uncompressed PNG.
|
440 |
+
img = PIL.Image.fromarray(img, { 1: 'L', 3: 'RGB' }[channels])
|
441 |
+
image_bits = io.BytesIO()
|
442 |
+
img.save(image_bits, format='png', compress_level=0, optimize=False)
|
443 |
+
save_bytes(os.path.join(archive_root_dir, archive_fname), image_bits.getbuffer())
|
444 |
+
labels.append([archive_fname, image['label']] if image['label'] is not None else None)
|
445 |
+
|
446 |
+
metadata = {
|
447 |
+
'labels': labels if all(x is not None for x in labels) else None
|
448 |
+
}
|
449 |
+
save_bytes(os.path.join(archive_root_dir, 'dataset.json'), json.dumps(metadata))
|
450 |
+
close_dest()
|
451 |
+
|
452 |
+
#----------------------------------------------------------------------------
|
453 |
+
|
454 |
+
if __name__ == "__main__":
|
455 |
+
convert_dataset() # pylint: disable=no-value-for-parameter
|
dnnlib/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from .util import EasyDict, make_cache_dir_path
|
dnnlib/util.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Miscellaneous utility classes and functions."""
|
10 |
+
|
11 |
+
import ctypes
|
12 |
+
import fnmatch
|
13 |
+
import importlib
|
14 |
+
import inspect
|
15 |
+
import numpy as np
|
16 |
+
import os
|
17 |
+
import shutil
|
18 |
+
import sys
|
19 |
+
import types
|
20 |
+
import io
|
21 |
+
import pickle
|
22 |
+
import re
|
23 |
+
import requests
|
24 |
+
import html
|
25 |
+
import hashlib
|
26 |
+
import glob
|
27 |
+
import tempfile
|
28 |
+
import urllib
|
29 |
+
import urllib.request
|
30 |
+
import uuid
|
31 |
+
|
32 |
+
from distutils.util import strtobool
|
33 |
+
from typing import Any, List, Tuple, Union
|
34 |
+
|
35 |
+
|
36 |
+
# Util classes
|
37 |
+
# ------------------------------------------------------------------------------------------
|
38 |
+
|
39 |
+
|
40 |
+
class EasyDict(dict):
|
41 |
+
"""Convenience class that behaves like a dict but allows access with the attribute syntax."""
|
42 |
+
|
43 |
+
def __getattr__(self, name: str) -> Any:
|
44 |
+
try:
|
45 |
+
return self[name]
|
46 |
+
except KeyError:
|
47 |
+
raise AttributeError(name)
|
48 |
+
|
49 |
+
def __setattr__(self, name: str, value: Any) -> None:
|
50 |
+
self[name] = value
|
51 |
+
|
52 |
+
def __delattr__(self, name: str) -> None:
|
53 |
+
del self[name]
|
54 |
+
|
55 |
+
|
56 |
+
class Logger(object):
|
57 |
+
"""Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
|
58 |
+
|
59 |
+
def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
|
60 |
+
self.file = None
|
61 |
+
|
62 |
+
if file_name is not None:
|
63 |
+
self.file = open(file_name, file_mode)
|
64 |
+
|
65 |
+
self.should_flush = should_flush
|
66 |
+
self.stdout = sys.stdout
|
67 |
+
self.stderr = sys.stderr
|
68 |
+
|
69 |
+
sys.stdout = self
|
70 |
+
sys.stderr = self
|
71 |
+
|
72 |
+
def __enter__(self) -> "Logger":
|
73 |
+
return self
|
74 |
+
|
75 |
+
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
|
76 |
+
self.close()
|
77 |
+
|
78 |
+
def write(self, text: Union[str, bytes]) -> None:
|
79 |
+
"""Write text to stdout (and a file) and optionally flush."""
|
80 |
+
if isinstance(text, bytes):
|
81 |
+
text = text.decode()
|
82 |
+
if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
|
83 |
+
return
|
84 |
+
|
85 |
+
if self.file is not None:
|
86 |
+
self.file.write(text)
|
87 |
+
|
88 |
+
self.stdout.write(text)
|
89 |
+
|
90 |
+
if self.should_flush:
|
91 |
+
self.flush()
|
92 |
+
|
93 |
+
def flush(self) -> None:
|
94 |
+
"""Flush written text to both stdout and a file, if open."""
|
95 |
+
if self.file is not None:
|
96 |
+
self.file.flush()
|
97 |
+
|
98 |
+
self.stdout.flush()
|
99 |
+
|
100 |
+
def close(self) -> None:
|
101 |
+
"""Flush, close possible files, and remove stdout/stderr mirroring."""
|
102 |
+
self.flush()
|
103 |
+
|
104 |
+
# if using multiple loggers, prevent closing in wrong order
|
105 |
+
if sys.stdout is self:
|
106 |
+
sys.stdout = self.stdout
|
107 |
+
if sys.stderr is self:
|
108 |
+
sys.stderr = self.stderr
|
109 |
+
|
110 |
+
if self.file is not None:
|
111 |
+
self.file.close()
|
112 |
+
self.file = None
|
113 |
+
|
114 |
+
|
115 |
+
# Cache directories
|
116 |
+
# ------------------------------------------------------------------------------------------
|
117 |
+
|
118 |
+
_dnnlib_cache_dir = None
|
119 |
+
|
120 |
+
def set_cache_dir(path: str) -> None:
|
121 |
+
global _dnnlib_cache_dir
|
122 |
+
_dnnlib_cache_dir = path
|
123 |
+
|
124 |
+
def make_cache_dir_path(*paths: str) -> str:
|
125 |
+
if _dnnlib_cache_dir is not None:
|
126 |
+
return os.path.join(_dnnlib_cache_dir, *paths)
|
127 |
+
if 'DNNLIB_CACHE_DIR' in os.environ:
|
128 |
+
return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
|
129 |
+
if 'HOME' in os.environ:
|
130 |
+
return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
|
131 |
+
if 'USERPROFILE' in os.environ:
|
132 |
+
return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
|
133 |
+
return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
|
134 |
+
|
135 |
+
# Small util functions
|
136 |
+
# ------------------------------------------------------------------------------------------
|
137 |
+
|
138 |
+
|
139 |
+
def format_time(seconds: Union[int, float]) -> str:
|
140 |
+
"""Convert the seconds to human readable string with days, hours, minutes and seconds."""
|
141 |
+
s = int(np.rint(seconds))
|
142 |
+
|
143 |
+
if s < 60:
|
144 |
+
return "{0}s".format(s)
|
145 |
+
elif s < 60 * 60:
|
146 |
+
return "{0}m {1:02}s".format(s // 60, s % 60)
|
147 |
+
elif s < 24 * 60 * 60:
|
148 |
+
return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
|
149 |
+
else:
|
150 |
+
return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
|
151 |
+
|
152 |
+
|
153 |
+
def format_time_brief(seconds: Union[int, float]) -> str:
|
154 |
+
"""Convert the seconds to human readable string with days, hours, minutes and seconds."""
|
155 |
+
s = int(np.rint(seconds))
|
156 |
+
|
157 |
+
if s < 60:
|
158 |
+
return "{0}s".format(s)
|
159 |
+
elif s < 60 * 60:
|
160 |
+
return "{0}m {1:02}s".format(s // 60, s % 60)
|
161 |
+
elif s < 24 * 60 * 60:
|
162 |
+
return "{0}h {1:02}m".format(s // (60 * 60), (s // 60) % 60)
|
163 |
+
else:
|
164 |
+
return "{0}d {1:02}h".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24)
|
165 |
+
|
166 |
+
|
167 |
+
def ask_yes_no(question: str) -> bool:
|
168 |
+
"""Ask the user the question until the user inputs a valid answer."""
|
169 |
+
while True:
|
170 |
+
try:
|
171 |
+
print("{0} [y/n]".format(question))
|
172 |
+
return strtobool(input().lower())
|
173 |
+
except ValueError:
|
174 |
+
pass
|
175 |
+
|
176 |
+
|
177 |
+
def tuple_product(t: Tuple) -> Any:
|
178 |
+
"""Calculate the product of the tuple elements."""
|
179 |
+
result = 1
|
180 |
+
|
181 |
+
for v in t:
|
182 |
+
result *= v
|
183 |
+
|
184 |
+
return result
|
185 |
+
|
186 |
+
|
187 |
+
_str_to_ctype = {
|
188 |
+
"uint8": ctypes.c_ubyte,
|
189 |
+
"uint16": ctypes.c_uint16,
|
190 |
+
"uint32": ctypes.c_uint32,
|
191 |
+
"uint64": ctypes.c_uint64,
|
192 |
+
"int8": ctypes.c_byte,
|
193 |
+
"int16": ctypes.c_int16,
|
194 |
+
"int32": ctypes.c_int32,
|
195 |
+
"int64": ctypes.c_int64,
|
196 |
+
"float32": ctypes.c_float,
|
197 |
+
"float64": ctypes.c_double
|
198 |
+
}
|
199 |
+
|
200 |
+
|
201 |
+
def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
|
202 |
+
"""Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
|
203 |
+
type_str = None
|
204 |
+
|
205 |
+
if isinstance(type_obj, str):
|
206 |
+
type_str = type_obj
|
207 |
+
elif hasattr(type_obj, "__name__"):
|
208 |
+
type_str = type_obj.__name__
|
209 |
+
elif hasattr(type_obj, "name"):
|
210 |
+
type_str = type_obj.name
|
211 |
+
else:
|
212 |
+
raise RuntimeError("Cannot infer type name from input")
|
213 |
+
|
214 |
+
assert type_str in _str_to_ctype.keys()
|
215 |
+
|
216 |
+
my_dtype = np.dtype(type_str)
|
217 |
+
my_ctype = _str_to_ctype[type_str]
|
218 |
+
|
219 |
+
assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
|
220 |
+
|
221 |
+
return my_dtype, my_ctype
|
222 |
+
|
223 |
+
|
224 |
+
def is_pickleable(obj: Any) -> bool:
|
225 |
+
try:
|
226 |
+
with io.BytesIO() as stream:
|
227 |
+
pickle.dump(obj, stream)
|
228 |
+
return True
|
229 |
+
except:
|
230 |
+
return False
|
231 |
+
|
232 |
+
|
233 |
+
# Functionality to import modules/objects by name, and call functions by name
|
234 |
+
# ------------------------------------------------------------------------------------------
|
235 |
+
|
236 |
+
def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
|
237 |
+
"""Searches for the underlying module behind the name to some python object.
|
238 |
+
Returns the module and the object name (original name with module part removed)."""
|
239 |
+
|
240 |
+
# allow convenience shorthands, substitute them by full names
|
241 |
+
obj_name = re.sub("^np.", "numpy.", obj_name)
|
242 |
+
obj_name = re.sub("^tf.", "tensorflow.", obj_name)
|
243 |
+
|
244 |
+
# list alternatives for (module_name, local_obj_name)
|
245 |
+
parts = obj_name.split(".")
|
246 |
+
name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
|
247 |
+
|
248 |
+
# try each alternative in turn
|
249 |
+
for module_name, local_obj_name in name_pairs:
|
250 |
+
try:
|
251 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
252 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
253 |
+
return module, local_obj_name
|
254 |
+
except:
|
255 |
+
pass
|
256 |
+
|
257 |
+
# maybe some of the modules themselves contain errors?
|
258 |
+
for module_name, _local_obj_name in name_pairs:
|
259 |
+
try:
|
260 |
+
importlib.import_module(module_name) # may raise ImportError
|
261 |
+
except ImportError:
|
262 |
+
if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
|
263 |
+
raise
|
264 |
+
|
265 |
+
# maybe the requested attribute is missing?
|
266 |
+
for module_name, local_obj_name in name_pairs:
|
267 |
+
try:
|
268 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
269 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
270 |
+
except ImportError:
|
271 |
+
pass
|
272 |
+
|
273 |
+
# we are out of luck, but we have no idea why
|
274 |
+
raise ImportError(obj_name)
|
275 |
+
|
276 |
+
|
277 |
+
def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
|
278 |
+
"""Traverses the object name and returns the last (rightmost) python object."""
|
279 |
+
if obj_name == '':
|
280 |
+
return module
|
281 |
+
obj = module
|
282 |
+
for part in obj_name.split("."):
|
283 |
+
obj = getattr(obj, part)
|
284 |
+
return obj
|
285 |
+
|
286 |
+
|
287 |
+
def get_obj_by_name(name: str) -> Any:
|
288 |
+
"""Finds the python object with the given name."""
|
289 |
+
module, obj_name = get_module_from_obj_name(name)
|
290 |
+
return get_obj_from_module(module, obj_name)
|
291 |
+
|
292 |
+
|
293 |
+
def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
|
294 |
+
"""Finds the python object with the given name and calls it as a function."""
|
295 |
+
assert func_name is not None
|
296 |
+
func_obj = get_obj_by_name(func_name)
|
297 |
+
assert callable(func_obj)
|
298 |
+
return func_obj(*args, **kwargs)
|
299 |
+
|
300 |
+
|
301 |
+
def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
|
302 |
+
"""Finds the python class with the given name and constructs it with the given arguments."""
|
303 |
+
return call_func_by_name(*args, func_name=class_name, **kwargs)
|
304 |
+
|
305 |
+
|
306 |
+
def get_module_dir_by_obj_name(obj_name: str) -> str:
|
307 |
+
"""Get the directory path of the module containing the given object name."""
|
308 |
+
module, _ = get_module_from_obj_name(obj_name)
|
309 |
+
return os.path.dirname(inspect.getfile(module))
|
310 |
+
|
311 |
+
|
312 |
+
def is_top_level_function(obj: Any) -> bool:
|
313 |
+
"""Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
|
314 |
+
return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
|
315 |
+
|
316 |
+
|
317 |
+
def get_top_level_function_name(obj: Any) -> str:
|
318 |
+
"""Return the fully-qualified name of a top-level function."""
|
319 |
+
assert is_top_level_function(obj)
|
320 |
+
module = obj.__module__
|
321 |
+
if module == '__main__':
|
322 |
+
module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
|
323 |
+
return module + "." + obj.__name__
|
324 |
+
|
325 |
+
|
326 |
+
# File system helpers
|
327 |
+
# ------------------------------------------------------------------------------------------
|
328 |
+
|
329 |
+
def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
|
330 |
+
"""List all files recursively in a given directory while ignoring given file and directory names.
|
331 |
+
Returns list of tuples containing both absolute and relative paths."""
|
332 |
+
assert os.path.isdir(dir_path)
|
333 |
+
base_name = os.path.basename(os.path.normpath(dir_path))
|
334 |
+
|
335 |
+
if ignores is None:
|
336 |
+
ignores = []
|
337 |
+
|
338 |
+
result = []
|
339 |
+
|
340 |
+
for root, dirs, files in os.walk(dir_path, topdown=True):
|
341 |
+
for ignore_ in ignores:
|
342 |
+
dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
|
343 |
+
|
344 |
+
# dirs need to be edited in-place
|
345 |
+
for d in dirs_to_remove:
|
346 |
+
dirs.remove(d)
|
347 |
+
|
348 |
+
files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
|
349 |
+
|
350 |
+
absolute_paths = [os.path.join(root, f) for f in files]
|
351 |
+
relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
|
352 |
+
|
353 |
+
if add_base_to_relative:
|
354 |
+
relative_paths = [os.path.join(base_name, p) for p in relative_paths]
|
355 |
+
|
356 |
+
assert len(absolute_paths) == len(relative_paths)
|
357 |
+
result += zip(absolute_paths, relative_paths)
|
358 |
+
|
359 |
+
return result
|
360 |
+
|
361 |
+
|
362 |
+
def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
|
363 |
+
"""Takes in a list of tuples of (src, dst) paths and copies files.
|
364 |
+
Will create all necessary directories."""
|
365 |
+
for file in files:
|
366 |
+
target_dir_name = os.path.dirname(file[1])
|
367 |
+
|
368 |
+
# will create all intermediate-level directories
|
369 |
+
if not os.path.exists(target_dir_name):
|
370 |
+
os.makedirs(target_dir_name)
|
371 |
+
|
372 |
+
shutil.copyfile(file[0], file[1])
|
373 |
+
|
374 |
+
|
375 |
+
# URL helpers
|
376 |
+
# ------------------------------------------------------------------------------------------
|
377 |
+
|
378 |
+
def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
|
379 |
+
"""Determine whether the given object is a valid URL string."""
|
380 |
+
if not isinstance(obj, str) or not "://" in obj:
|
381 |
+
return False
|
382 |
+
if allow_file_urls and obj.startswith('file://'):
|
383 |
+
return True
|
384 |
+
try:
|
385 |
+
res = requests.compat.urlparse(obj)
|
386 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
387 |
+
return False
|
388 |
+
res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
|
389 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
390 |
+
return False
|
391 |
+
except:
|
392 |
+
return False
|
393 |
+
return True
|
394 |
+
|
395 |
+
|
396 |
+
def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
|
397 |
+
"""Download the given URL and return a binary-mode file object to access the data."""
|
398 |
+
assert num_attempts >= 1
|
399 |
+
assert not (return_filename and (not cache))
|
400 |
+
|
401 |
+
# Doesn't look like an URL scheme so interpret it as a local filename.
|
402 |
+
if not re.match('^[a-z]+://', url):
|
403 |
+
return url if return_filename else open(url, "rb")
|
404 |
+
|
405 |
+
# Handle file URLs. This code handles unusual file:// patterns that
|
406 |
+
# arise on Windows:
|
407 |
+
#
|
408 |
+
# file:///c:/foo.txt
|
409 |
+
#
|
410 |
+
# which would translate to a local '/c:/foo.txt' filename that's
|
411 |
+
# invalid. Drop the forward slash for such pathnames.
|
412 |
+
#
|
413 |
+
# If you touch this code path, you should test it on both Linux and
|
414 |
+
# Windows.
|
415 |
+
#
|
416 |
+
# Some internet resources suggest using urllib.request.url2pathname() but
|
417 |
+
# but that converts forward slashes to backslashes and this causes
|
418 |
+
# its own set of problems.
|
419 |
+
if url.startswith('file://'):
|
420 |
+
filename = urllib.parse.urlparse(url).path
|
421 |
+
if re.match(r'^/[a-zA-Z]:', filename):
|
422 |
+
filename = filename[1:]
|
423 |
+
return filename if return_filename else open(filename, "rb")
|
424 |
+
|
425 |
+
assert is_url(url)
|
426 |
+
|
427 |
+
# Lookup from cache.
|
428 |
+
if cache_dir is None:
|
429 |
+
cache_dir = make_cache_dir_path('downloads')
|
430 |
+
|
431 |
+
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
|
432 |
+
if cache:
|
433 |
+
cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
|
434 |
+
if len(cache_files) == 1:
|
435 |
+
filename = cache_files[0]
|
436 |
+
return filename if return_filename else open(filename, "rb")
|
437 |
+
|
438 |
+
# Download.
|
439 |
+
url_name = None
|
440 |
+
url_data = None
|
441 |
+
with requests.Session() as session:
|
442 |
+
if verbose:
|
443 |
+
print("Downloading %s ..." % url, end="", flush=True)
|
444 |
+
for attempts_left in reversed(range(num_attempts)):
|
445 |
+
try:
|
446 |
+
with session.get(url) as res:
|
447 |
+
res.raise_for_status()
|
448 |
+
if len(res.content) == 0:
|
449 |
+
raise IOError("No data received")
|
450 |
+
|
451 |
+
if len(res.content) < 8192:
|
452 |
+
content_str = res.content.decode("utf-8")
|
453 |
+
if "download_warning" in res.headers.get("Set-Cookie", ""):
|
454 |
+
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
|
455 |
+
if len(links) == 1:
|
456 |
+
url = requests.compat.urljoin(url, links[0])
|
457 |
+
raise IOError("Google Drive virus checker nag")
|
458 |
+
if "Google Drive - Quota exceeded" in content_str:
|
459 |
+
raise IOError("Google Drive download quota exceeded -- please try again later")
|
460 |
+
|
461 |
+
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
|
462 |
+
url_name = match[1] if match else url
|
463 |
+
url_data = res.content
|
464 |
+
if verbose:
|
465 |
+
print(" done")
|
466 |
+
break
|
467 |
+
except KeyboardInterrupt:
|
468 |
+
raise
|
469 |
+
except:
|
470 |
+
if not attempts_left:
|
471 |
+
if verbose:
|
472 |
+
print(" failed")
|
473 |
+
raise
|
474 |
+
if verbose:
|
475 |
+
print(".", end="", flush=True)
|
476 |
+
|
477 |
+
# Save to cache.
|
478 |
+
if cache:
|
479 |
+
safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
|
480 |
+
cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
|
481 |
+
temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
|
482 |
+
os.makedirs(cache_dir, exist_ok=True)
|
483 |
+
with open(temp_file, "wb") as f:
|
484 |
+
f.write(url_data)
|
485 |
+
os.replace(temp_file, cache_file) # atomic
|
486 |
+
if return_filename:
|
487 |
+
return cache_file
|
488 |
+
|
489 |
+
# Return data as file object.
|
490 |
+
assert not return_filename
|
491 |
+
return io.BytesIO(url_data)
|
environment.yml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: stylegan3
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- nvidia
|
5 |
+
dependencies:
|
6 |
+
- python >= 3.8
|
7 |
+
- pip
|
8 |
+
- numpy>=1.20
|
9 |
+
- click>=8.0
|
10 |
+
- pillow=8.3.1
|
11 |
+
- scipy=1.7.1
|
12 |
+
- pytorch=1.9.1
|
13 |
+
- cudatoolkit=11.1
|
14 |
+
- requests=2.26.0
|
15 |
+
- tqdm=4.62.2
|
16 |
+
- ninja=1.10.2
|
17 |
+
- matplotlib=3.4.2
|
18 |
+
- imageio=2.9.0
|
19 |
+
- pip:
|
20 |
+
- imgui==1.3.0
|
21 |
+
- glfw==2.2.0
|
22 |
+
- pyopengl==3.1.5
|
23 |
+
- imageio-ffmpeg==0.4.3
|
24 |
+
- pyspng
|
gen_images.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Generate images using pretrained network pickle."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import re
|
13 |
+
from typing import List, Optional, Tuple, Union
|
14 |
+
|
15 |
+
import click
|
16 |
+
import dnnlib
|
17 |
+
import numpy as np
|
18 |
+
import PIL.Image
|
19 |
+
import torch
|
20 |
+
|
21 |
+
import legacy
|
22 |
+
|
23 |
+
#----------------------------------------------------------------------------
|
24 |
+
|
25 |
+
def parse_range(s: Union[str, List]) -> List[int]:
|
26 |
+
'''Parse a comma separated list of numbers or ranges and return a list of ints.
|
27 |
+
|
28 |
+
Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
|
29 |
+
'''
|
30 |
+
if isinstance(s, list): return s
|
31 |
+
ranges = []
|
32 |
+
range_re = re.compile(r'^(\d+)-(\d+)$')
|
33 |
+
for p in s.split(','):
|
34 |
+
if m := range_re.match(p):
|
35 |
+
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
|
36 |
+
else:
|
37 |
+
ranges.append(int(p))
|
38 |
+
return ranges
|
39 |
+
|
40 |
+
#----------------------------------------------------------------------------
|
41 |
+
|
42 |
+
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]:
|
43 |
+
'''Parse a floating point 2-vector of syntax 'a,b'.
|
44 |
+
|
45 |
+
Example:
|
46 |
+
'0,1' returns (0,1)
|
47 |
+
'''
|
48 |
+
if isinstance(s, tuple): return s
|
49 |
+
parts = s.split(',')
|
50 |
+
if len(parts) == 2:
|
51 |
+
return (float(parts[0]), float(parts[1]))
|
52 |
+
raise ValueError(f'cannot parse 2-vector {s}')
|
53 |
+
|
54 |
+
#----------------------------------------------------------------------------
|
55 |
+
|
56 |
+
def make_transform(translate: Tuple[float,float], angle: float):
|
57 |
+
m = np.eye(3)
|
58 |
+
s = np.sin(angle/360.0*np.pi*2)
|
59 |
+
c = np.cos(angle/360.0*np.pi*2)
|
60 |
+
m[0][0] = c
|
61 |
+
m[0][1] = s
|
62 |
+
m[0][2] = translate[0]
|
63 |
+
m[1][0] = -s
|
64 |
+
m[1][1] = c
|
65 |
+
m[1][2] = translate[1]
|
66 |
+
return m
|
67 |
+
|
68 |
+
#----------------------------------------------------------------------------
|
69 |
+
|
70 |
+
@click.command()
|
71 |
+
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
|
72 |
+
@click.option('--seeds', type=parse_range, help='List of random seeds (e.g., \'0,1,4-6\')', required=True)
|
73 |
+
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
|
74 |
+
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)')
|
75 |
+
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
|
76 |
+
@click.option('--translate', help='Translate XY-coordinate (e.g. \'0.3,1\')', type=parse_vec2, default='0,0', show_default=True, metavar='VEC2')
|
77 |
+
@click.option('--rotate', help='Rotation angle in degrees', type=float, default=0, show_default=True, metavar='ANGLE')
|
78 |
+
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
|
79 |
+
def generate_images(
|
80 |
+
network_pkl: str,
|
81 |
+
seeds: List[int],
|
82 |
+
truncation_psi: float,
|
83 |
+
noise_mode: str,
|
84 |
+
outdir: str,
|
85 |
+
translate: Tuple[float,float],
|
86 |
+
rotate: float,
|
87 |
+
class_idx: Optional[int]
|
88 |
+
):
|
89 |
+
"""Generate images using pretrained network pickle.
|
90 |
+
|
91 |
+
Examples:
|
92 |
+
|
93 |
+
\b
|
94 |
+
# Generate an image using pre-trained AFHQv2 model ("Ours" in Figure 1, left).
|
95 |
+
python gen_images.py --outdir=out --trunc=1 --seeds=2 \\
|
96 |
+
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl
|
97 |
+
|
98 |
+
\b
|
99 |
+
# Generate uncurated images with truncation using the MetFaces-U dataset
|
100 |
+
python gen_images.py --outdir=out --trunc=0.7 --seeds=600-605 \\
|
101 |
+
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl
|
102 |
+
"""
|
103 |
+
|
104 |
+
print('Loading networks from "%s"...' % network_pkl)
|
105 |
+
device = torch.device('cuda')
|
106 |
+
with dnnlib.util.open_url(network_pkl) as f:
|
107 |
+
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
|
108 |
+
|
109 |
+
os.makedirs(outdir, exist_ok=True)
|
110 |
+
|
111 |
+
# Labels.
|
112 |
+
label = torch.zeros([1, G.c_dim], device=device)
|
113 |
+
if G.c_dim != 0:
|
114 |
+
if class_idx is None:
|
115 |
+
raise click.ClickException('Must specify class label with --class when using a conditional network')
|
116 |
+
label[:, class_idx] = 1
|
117 |
+
else:
|
118 |
+
if class_idx is not None:
|
119 |
+
print ('warn: --class=lbl ignored when running on an unconditional network')
|
120 |
+
|
121 |
+
# Generate images.
|
122 |
+
for seed_idx, seed in enumerate(seeds):
|
123 |
+
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
|
124 |
+
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
|
125 |
+
|
126 |
+
# Construct an inverse rotation/translation matrix and pass to the generator. The
|
127 |
+
# generator expects this matrix as an inverse to avoid potentially failing numerical
|
128 |
+
# operations in the network.
|
129 |
+
if hasattr(G.synthesis, 'input'):
|
130 |
+
m = make_transform(translate, rotate)
|
131 |
+
m = np.linalg.inv(m)
|
132 |
+
G.synthesis.input.transform.copy_(torch.from_numpy(m))
|
133 |
+
|
134 |
+
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)
|
135 |
+
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
136 |
+
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png')
|
137 |
+
|
138 |
+
|
139 |
+
#----------------------------------------------------------------------------
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
generate_images() # pylint: disable=no-value-for-parameter
|
143 |
+
|
144 |
+
#----------------------------------------------------------------------------
|
gen_video.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Generate lerp videos using pretrained network pickle."""
|
10 |
+
|
11 |
+
import copy
|
12 |
+
import os
|
13 |
+
import re
|
14 |
+
from typing import List, Optional, Tuple, Union
|
15 |
+
|
16 |
+
import click
|
17 |
+
import dnnlib
|
18 |
+
import imageio
|
19 |
+
import numpy as np
|
20 |
+
import scipy.interpolate
|
21 |
+
import torch
|
22 |
+
from tqdm import tqdm
|
23 |
+
|
24 |
+
import legacy
|
25 |
+
|
26 |
+
#----------------------------------------------------------------------------
|
27 |
+
|
28 |
+
def layout_grid(img, grid_w=None, grid_h=1, float_to_uint8=True, chw_to_hwc=True, to_numpy=True):
|
29 |
+
batch_size, channels, img_h, img_w = img.shape
|
30 |
+
if grid_w is None:
|
31 |
+
grid_w = batch_size // grid_h
|
32 |
+
assert batch_size == grid_w * grid_h
|
33 |
+
if float_to_uint8:
|
34 |
+
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
35 |
+
img = img.reshape(grid_h, grid_w, channels, img_h, img_w)
|
36 |
+
img = img.permute(2, 0, 3, 1, 4)
|
37 |
+
img = img.reshape(channels, grid_h * img_h, grid_w * img_w)
|
38 |
+
if chw_to_hwc:
|
39 |
+
img = img.permute(1, 2, 0)
|
40 |
+
if to_numpy:
|
41 |
+
img = img.cpu().numpy()
|
42 |
+
return img
|
43 |
+
|
44 |
+
#----------------------------------------------------------------------------
|
45 |
+
|
46 |
+
def gen_interp_video(G, mp4: str, seeds, shuffle_seed=None, w_frames=60*4, kind='cubic', grid_dims=(1,1), num_keyframes=None, wraps=2, psi=1, device=torch.device('cuda'), **video_kwargs):
|
47 |
+
grid_w = grid_dims[0]
|
48 |
+
grid_h = grid_dims[1]
|
49 |
+
|
50 |
+
if num_keyframes is None:
|
51 |
+
if len(seeds) % (grid_w*grid_h) != 0:
|
52 |
+
raise ValueError('Number of input seeds must be divisible by grid W*H')
|
53 |
+
num_keyframes = len(seeds) // (grid_w*grid_h)
|
54 |
+
|
55 |
+
all_seeds = np.zeros(num_keyframes*grid_h*grid_w, dtype=np.int64)
|
56 |
+
for idx in range(num_keyframes*grid_h*grid_w):
|
57 |
+
all_seeds[idx] = seeds[idx % len(seeds)]
|
58 |
+
|
59 |
+
if shuffle_seed is not None:
|
60 |
+
rng = np.random.RandomState(seed=shuffle_seed)
|
61 |
+
rng.shuffle(all_seeds)
|
62 |
+
|
63 |
+
zs = torch.from_numpy(np.stack([np.random.RandomState(seed).randn(G.z_dim) for seed in all_seeds])).to(device)
|
64 |
+
ws = G.mapping(z=zs, c=None, truncation_psi=psi)
|
65 |
+
_ = G.synthesis(ws[:1]) # warm up
|
66 |
+
ws = ws.reshape(grid_h, grid_w, num_keyframes, *ws.shape[1:])
|
67 |
+
|
68 |
+
# Interpolation.
|
69 |
+
grid = []
|
70 |
+
for yi in range(grid_h):
|
71 |
+
row = []
|
72 |
+
for xi in range(grid_w):
|
73 |
+
x = np.arange(-num_keyframes * wraps, num_keyframes * (wraps + 1))
|
74 |
+
y = np.tile(ws[yi][xi].cpu().numpy(), [wraps * 2 + 1, 1, 1])
|
75 |
+
interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=0)
|
76 |
+
row.append(interp)
|
77 |
+
grid.append(row)
|
78 |
+
|
79 |
+
# Render video.
|
80 |
+
video_out = imageio.get_writer(mp4, mode='I', fps=60, codec='libx264', **video_kwargs)
|
81 |
+
for frame_idx in tqdm(range(num_keyframes * w_frames)):
|
82 |
+
imgs = []
|
83 |
+
for yi in range(grid_h):
|
84 |
+
for xi in range(grid_w):
|
85 |
+
interp = grid[yi][xi]
|
86 |
+
w = torch.from_numpy(interp(frame_idx / w_frames)).to(device)
|
87 |
+
img = G.synthesis(ws=w.unsqueeze(0), noise_mode='const')[0]
|
88 |
+
imgs.append(img)
|
89 |
+
video_out.append_data(layout_grid(torch.stack(imgs), grid_w=grid_w, grid_h=grid_h))
|
90 |
+
video_out.close()
|
91 |
+
|
92 |
+
#----------------------------------------------------------------------------
|
93 |
+
|
94 |
+
def parse_range(s: Union[str, List[int]]) -> List[int]:
|
95 |
+
'''Parse a comma separated list of numbers or ranges and return a list of ints.
|
96 |
+
|
97 |
+
Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
|
98 |
+
'''
|
99 |
+
if isinstance(s, list): return s
|
100 |
+
ranges = []
|
101 |
+
range_re = re.compile(r'^(\d+)-(\d+)$')
|
102 |
+
for p in s.split(','):
|
103 |
+
if m := range_re.match(p):
|
104 |
+
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
|
105 |
+
else:
|
106 |
+
ranges.append(int(p))
|
107 |
+
return ranges
|
108 |
+
|
109 |
+
#----------------------------------------------------------------------------
|
110 |
+
|
111 |
+
def parse_tuple(s: Union[str, Tuple[int,int]]) -> Tuple[int, int]:
|
112 |
+
'''Parse a 'M,N' or 'MxN' integer tuple.
|
113 |
+
|
114 |
+
Example:
|
115 |
+
'4x2' returns (4,2)
|
116 |
+
'0,1' returns (0,1)
|
117 |
+
'''
|
118 |
+
if isinstance(s, tuple): return s
|
119 |
+
if m := re.match(r'^(\d+)[x,](\d+)$', s):
|
120 |
+
return (int(m.group(1)), int(m.group(2)))
|
121 |
+
raise ValueError(f'cannot parse tuple {s}')
|
122 |
+
|
123 |
+
#----------------------------------------------------------------------------
|
124 |
+
|
125 |
+
@click.command()
|
126 |
+
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
|
127 |
+
@click.option('--seeds', type=parse_range, help='List of random seeds', required=True)
|
128 |
+
@click.option('--shuffle-seed', type=int, help='Random seed to use for shuffling seed order', default=None)
|
129 |
+
@click.option('--grid', type=parse_tuple, help='Grid width/height, e.g. \'4x3\' (default: 1x1)', default=(1,1))
|
130 |
+
@click.option('--num-keyframes', type=int, help='Number of seeds to interpolate through. If not specified, determine based on the length of the seeds array given by --seeds.', default=None)
|
131 |
+
@click.option('--w-frames', type=int, help='Number of frames to interpolate between latents', default=120)
|
132 |
+
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
|
133 |
+
@click.option('--output', help='Output .mp4 filename', type=str, required=True, metavar='FILE')
|
134 |
+
def generate_images(
|
135 |
+
network_pkl: str,
|
136 |
+
seeds: List[int],
|
137 |
+
shuffle_seed: Optional[int],
|
138 |
+
truncation_psi: float,
|
139 |
+
grid: Tuple[int,int],
|
140 |
+
num_keyframes: Optional[int],
|
141 |
+
w_frames: int,
|
142 |
+
output: str
|
143 |
+
):
|
144 |
+
"""Render a latent vector interpolation video.
|
145 |
+
|
146 |
+
Examples:
|
147 |
+
|
148 |
+
\b
|
149 |
+
# Render a 4x2 grid of interpolations for seeds 0 through 31.
|
150 |
+
python gen_video.py --output=lerp.mp4 --trunc=1 --seeds=0-31 --grid=4x2 \\
|
151 |
+
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl
|
152 |
+
|
153 |
+
Animation length and seed keyframes:
|
154 |
+
|
155 |
+
The animation length is either determined based on the --seeds value or explicitly
|
156 |
+
specified using the --num-keyframes option.
|
157 |
+
|
158 |
+
When num keyframes is specified with --num-keyframes, the output video length
|
159 |
+
will be 'num_keyframes*w_frames' frames.
|
160 |
+
|
161 |
+
If --num-keyframes is not specified, the number of seeds given with
|
162 |
+
--seeds must be divisible by grid size W*H (--grid). In this case the
|
163 |
+
output video length will be '# seeds/(w*h)*w_frames' frames.
|
164 |
+
"""
|
165 |
+
|
166 |
+
print('Loading networks from "%s"...' % network_pkl)
|
167 |
+
device = torch.device('cuda')
|
168 |
+
with dnnlib.util.open_url(network_pkl) as f:
|
169 |
+
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
|
170 |
+
|
171 |
+
gen_interp_video(G=G, mp4=output, bitrate='12M', grid_dims=grid, num_keyframes=num_keyframes, w_frames=w_frames, seeds=seeds, shuffle_seed=shuffle_seed, psi=truncation_psi)
|
172 |
+
|
173 |
+
#----------------------------------------------------------------------------
|
174 |
+
|
175 |
+
if __name__ == "__main__":
|
176 |
+
generate_images() # pylint: disable=no-value-for-parameter
|
177 |
+
|
178 |
+
#----------------------------------------------------------------------------
|
gui_utils/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|
gui_utils/gl_utils.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import os
|
10 |
+
import functools
|
11 |
+
import contextlib
|
12 |
+
import numpy as np
|
13 |
+
import OpenGL.GL as gl
|
14 |
+
import OpenGL.GL.ARB.texture_float
|
15 |
+
import dnnlib
|
16 |
+
|
17 |
+
#----------------------------------------------------------------------------
|
18 |
+
|
19 |
+
def init_egl():
|
20 |
+
assert os.environ['PYOPENGL_PLATFORM'] == 'egl' # Must be set before importing OpenGL.
|
21 |
+
import OpenGL.EGL as egl
|
22 |
+
import ctypes
|
23 |
+
|
24 |
+
# Initialize EGL.
|
25 |
+
display = egl.eglGetDisplay(egl.EGL_DEFAULT_DISPLAY)
|
26 |
+
assert display != egl.EGL_NO_DISPLAY
|
27 |
+
major = ctypes.c_int32()
|
28 |
+
minor = ctypes.c_int32()
|
29 |
+
ok = egl.eglInitialize(display, major, minor)
|
30 |
+
assert ok
|
31 |
+
assert major.value * 10 + minor.value >= 14
|
32 |
+
|
33 |
+
# Choose config.
|
34 |
+
config_attribs = [
|
35 |
+
egl.EGL_RENDERABLE_TYPE, egl.EGL_OPENGL_BIT,
|
36 |
+
egl.EGL_SURFACE_TYPE, egl.EGL_PBUFFER_BIT,
|
37 |
+
egl.EGL_NONE
|
38 |
+
]
|
39 |
+
configs = (ctypes.c_int32 * 1)()
|
40 |
+
num_configs = ctypes.c_int32()
|
41 |
+
ok = egl.eglChooseConfig(display, config_attribs, configs, 1, num_configs)
|
42 |
+
assert ok
|
43 |
+
assert num_configs.value == 1
|
44 |
+
config = configs[0]
|
45 |
+
|
46 |
+
# Create dummy pbuffer surface.
|
47 |
+
surface_attribs = [
|
48 |
+
egl.EGL_WIDTH, 1,
|
49 |
+
egl.EGL_HEIGHT, 1,
|
50 |
+
egl.EGL_NONE
|
51 |
+
]
|
52 |
+
surface = egl.eglCreatePbufferSurface(display, config, surface_attribs)
|
53 |
+
assert surface != egl.EGL_NO_SURFACE
|
54 |
+
|
55 |
+
# Setup GL context.
|
56 |
+
ok = egl.eglBindAPI(egl.EGL_OPENGL_API)
|
57 |
+
assert ok
|
58 |
+
context = egl.eglCreateContext(display, config, egl.EGL_NO_CONTEXT, None)
|
59 |
+
assert context != egl.EGL_NO_CONTEXT
|
60 |
+
ok = egl.eglMakeCurrent(display, surface, surface, context)
|
61 |
+
assert ok
|
62 |
+
|
63 |
+
#----------------------------------------------------------------------------
|
64 |
+
|
65 |
+
_texture_formats = {
|
66 |
+
('uint8', 1): dnnlib.EasyDict(type=gl.GL_UNSIGNED_BYTE, format=gl.GL_LUMINANCE, internalformat=gl.GL_LUMINANCE8),
|
67 |
+
('uint8', 2): dnnlib.EasyDict(type=gl.GL_UNSIGNED_BYTE, format=gl.GL_LUMINANCE_ALPHA, internalformat=gl.GL_LUMINANCE8_ALPHA8),
|
68 |
+
('uint8', 3): dnnlib.EasyDict(type=gl.GL_UNSIGNED_BYTE, format=gl.GL_RGB, internalformat=gl.GL_RGB8),
|
69 |
+
('uint8', 4): dnnlib.EasyDict(type=gl.GL_UNSIGNED_BYTE, format=gl.GL_RGBA, internalformat=gl.GL_RGBA8),
|
70 |
+
('float32', 1): dnnlib.EasyDict(type=gl.GL_FLOAT, format=gl.GL_LUMINANCE, internalformat=OpenGL.GL.ARB.texture_float.GL_LUMINANCE32F_ARB),
|
71 |
+
('float32', 2): dnnlib.EasyDict(type=gl.GL_FLOAT, format=gl.GL_LUMINANCE_ALPHA, internalformat=OpenGL.GL.ARB.texture_float.GL_LUMINANCE_ALPHA32F_ARB),
|
72 |
+
('float32', 3): dnnlib.EasyDict(type=gl.GL_FLOAT, format=gl.GL_RGB, internalformat=gl.GL_RGB32F),
|
73 |
+
('float32', 4): dnnlib.EasyDict(type=gl.GL_FLOAT, format=gl.GL_RGBA, internalformat=gl.GL_RGBA32F),
|
74 |
+
}
|
75 |
+
|
76 |
+
def get_texture_format(dtype, channels):
|
77 |
+
return _texture_formats[(np.dtype(dtype).name, int(channels))]
|
78 |
+
|
79 |
+
#----------------------------------------------------------------------------
|
80 |
+
|
81 |
+
def prepare_texture_data(image):
|
82 |
+
image = np.asarray(image)
|
83 |
+
if image.ndim == 2:
|
84 |
+
image = image[:, :, np.newaxis]
|
85 |
+
if image.dtype.name == 'float64':
|
86 |
+
image = image.astype('float32')
|
87 |
+
return image
|
88 |
+
|
89 |
+
#----------------------------------------------------------------------------
|
90 |
+
|
91 |
+
def draw_pixels(image, *, pos=0, zoom=1, align=0, rint=True):
|
92 |
+
pos = np.broadcast_to(np.asarray(pos, dtype='float32'), [2])
|
93 |
+
zoom = np.broadcast_to(np.asarray(zoom, dtype='float32'), [2])
|
94 |
+
align = np.broadcast_to(np.asarray(align, dtype='float32'), [2])
|
95 |
+
image = prepare_texture_data(image)
|
96 |
+
height, width, channels = image.shape
|
97 |
+
size = zoom * [width, height]
|
98 |
+
pos = pos - size * align
|
99 |
+
if rint:
|
100 |
+
pos = np.rint(pos)
|
101 |
+
fmt = get_texture_format(image.dtype, channels)
|
102 |
+
|
103 |
+
gl.glPushAttrib(gl.GL_CURRENT_BIT | gl.GL_PIXEL_MODE_BIT)
|
104 |
+
gl.glPushClientAttrib(gl.GL_CLIENT_PIXEL_STORE_BIT)
|
105 |
+
gl.glRasterPos2f(pos[0], pos[1])
|
106 |
+
gl.glPixelZoom(zoom[0], -zoom[1])
|
107 |
+
gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
|
108 |
+
gl.glDrawPixels(width, height, fmt.format, fmt.type, image)
|
109 |
+
gl.glPopClientAttrib()
|
110 |
+
gl.glPopAttrib()
|
111 |
+
|
112 |
+
#----------------------------------------------------------------------------
|
113 |
+
|
114 |
+
def read_pixels(width, height, *, pos=0, dtype='uint8', channels=3):
|
115 |
+
pos = np.broadcast_to(np.asarray(pos, dtype='float32'), [2])
|
116 |
+
dtype = np.dtype(dtype)
|
117 |
+
fmt = get_texture_format(dtype, channels)
|
118 |
+
image = np.empty([height, width, channels], dtype=dtype)
|
119 |
+
|
120 |
+
gl.glPushClientAttrib(gl.GL_CLIENT_PIXEL_STORE_BIT)
|
121 |
+
gl.glPixelStorei(gl.GL_PACK_ALIGNMENT, 1)
|
122 |
+
gl.glReadPixels(int(np.round(pos[0])), int(np.round(pos[1])), width, height, fmt.format, fmt.type, image)
|
123 |
+
gl.glPopClientAttrib()
|
124 |
+
return np.flipud(image)
|
125 |
+
|
126 |
+
#----------------------------------------------------------------------------
|
127 |
+
|
128 |
+
class Texture:
|
129 |
+
def __init__(self, *, image=None, width=None, height=None, channels=None, dtype=None, bilinear=True, mipmap=True):
|
130 |
+
self.gl_id = None
|
131 |
+
self.bilinear = bilinear
|
132 |
+
self.mipmap = mipmap
|
133 |
+
|
134 |
+
# Determine size and dtype.
|
135 |
+
if image is not None:
|
136 |
+
image = prepare_texture_data(image)
|
137 |
+
self.height, self.width, self.channels = image.shape
|
138 |
+
self.dtype = image.dtype
|
139 |
+
else:
|
140 |
+
assert width is not None and height is not None
|
141 |
+
self.width = width
|
142 |
+
self.height = height
|
143 |
+
self.channels = channels if channels is not None else 3
|
144 |
+
self.dtype = np.dtype(dtype) if dtype is not None else np.uint8
|
145 |
+
|
146 |
+
# Validate size and dtype.
|
147 |
+
assert isinstance(self.width, int) and self.width >= 0
|
148 |
+
assert isinstance(self.height, int) and self.height >= 0
|
149 |
+
assert isinstance(self.channels, int) and self.channels >= 1
|
150 |
+
assert self.is_compatible(width=width, height=height, channels=channels, dtype=dtype)
|
151 |
+
|
152 |
+
# Create texture object.
|
153 |
+
self.gl_id = gl.glGenTextures(1)
|
154 |
+
with self.bind():
|
155 |
+
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_EDGE)
|
156 |
+
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_EDGE)
|
157 |
+
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR if self.bilinear else gl.GL_NEAREST)
|
158 |
+
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR_MIPMAP_LINEAR if self.mipmap else gl.GL_NEAREST)
|
159 |
+
self.update(image)
|
160 |
+
|
161 |
+
def delete(self):
|
162 |
+
if self.gl_id is not None:
|
163 |
+
gl.glDeleteTextures([self.gl_id])
|
164 |
+
self.gl_id = None
|
165 |
+
|
166 |
+
def __del__(self):
|
167 |
+
try:
|
168 |
+
self.delete()
|
169 |
+
except:
|
170 |
+
pass
|
171 |
+
|
172 |
+
@contextlib.contextmanager
|
173 |
+
def bind(self):
|
174 |
+
prev_id = gl.glGetInteger(gl.GL_TEXTURE_BINDING_2D)
|
175 |
+
gl.glBindTexture(gl.GL_TEXTURE_2D, self.gl_id)
|
176 |
+
yield
|
177 |
+
gl.glBindTexture(gl.GL_TEXTURE_2D, prev_id)
|
178 |
+
|
179 |
+
def update(self, image):
|
180 |
+
if image is not None:
|
181 |
+
image = prepare_texture_data(image)
|
182 |
+
assert self.is_compatible(image=image)
|
183 |
+
with self.bind():
|
184 |
+
fmt = get_texture_format(self.dtype, self.channels)
|
185 |
+
gl.glPushClientAttrib(gl.GL_CLIENT_PIXEL_STORE_BIT)
|
186 |
+
gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
|
187 |
+
gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, fmt.internalformat, self.width, self.height, 0, fmt.format, fmt.type, image)
|
188 |
+
if self.mipmap:
|
189 |
+
gl.glGenerateMipmap(gl.GL_TEXTURE_2D)
|
190 |
+
gl.glPopClientAttrib()
|
191 |
+
|
192 |
+
def draw(self, *, pos=0, zoom=1, align=0, rint=False, color=1, alpha=1, rounding=0):
|
193 |
+
zoom = np.broadcast_to(np.asarray(zoom, dtype='float32'), [2])
|
194 |
+
size = zoom * [self.width, self.height]
|
195 |
+
with self.bind():
|
196 |
+
gl.glPushAttrib(gl.GL_ENABLE_BIT)
|
197 |
+
gl.glEnable(gl.GL_TEXTURE_2D)
|
198 |
+
draw_rect(pos=pos, size=size, align=align, rint=rint, color=color, alpha=alpha, rounding=rounding)
|
199 |
+
gl.glPopAttrib()
|
200 |
+
|
201 |
+
def is_compatible(self, *, image=None, width=None, height=None, channels=None, dtype=None): # pylint: disable=too-many-return-statements
|
202 |
+
if image is not None:
|
203 |
+
if image.ndim != 3:
|
204 |
+
return False
|
205 |
+
ih, iw, ic = image.shape
|
206 |
+
if not self.is_compatible(width=iw, height=ih, channels=ic, dtype=image.dtype):
|
207 |
+
return False
|
208 |
+
if width is not None and self.width != width:
|
209 |
+
return False
|
210 |
+
if height is not None and self.height != height:
|
211 |
+
return False
|
212 |
+
if channels is not None and self.channels != channels:
|
213 |
+
return False
|
214 |
+
if dtype is not None and self.dtype != dtype:
|
215 |
+
return False
|
216 |
+
return True
|
217 |
+
|
218 |
+
#----------------------------------------------------------------------------
|
219 |
+
|
220 |
+
class Framebuffer:
|
221 |
+
def __init__(self, *, texture=None, width=None, height=None, channels=None, dtype=None, msaa=0):
|
222 |
+
self.texture = texture
|
223 |
+
self.gl_id = None
|
224 |
+
self.gl_color = None
|
225 |
+
self.gl_depth_stencil = None
|
226 |
+
self.msaa = msaa
|
227 |
+
|
228 |
+
# Determine size and dtype.
|
229 |
+
if texture is not None:
|
230 |
+
assert isinstance(self.texture, Texture)
|
231 |
+
self.width = texture.width
|
232 |
+
self.height = texture.height
|
233 |
+
self.channels = texture.channels
|
234 |
+
self.dtype = texture.dtype
|
235 |
+
else:
|
236 |
+
assert width is not None and height is not None
|
237 |
+
self.width = width
|
238 |
+
self.height = height
|
239 |
+
self.channels = channels if channels is not None else 4
|
240 |
+
self.dtype = np.dtype(dtype) if dtype is not None else np.float32
|
241 |
+
|
242 |
+
# Validate size and dtype.
|
243 |
+
assert isinstance(self.width, int) and self.width >= 0
|
244 |
+
assert isinstance(self.height, int) and self.height >= 0
|
245 |
+
assert isinstance(self.channels, int) and self.channels >= 1
|
246 |
+
assert width is None or width == self.width
|
247 |
+
assert height is None or height == self.height
|
248 |
+
assert channels is None or channels == self.channels
|
249 |
+
assert dtype is None or dtype == self.dtype
|
250 |
+
|
251 |
+
# Create framebuffer object.
|
252 |
+
self.gl_id = gl.glGenFramebuffers(1)
|
253 |
+
with self.bind():
|
254 |
+
|
255 |
+
# Setup color buffer.
|
256 |
+
if self.texture is not None:
|
257 |
+
assert self.msaa == 0
|
258 |
+
gl.glFramebufferTexture2D(gl.GL_FRAMEBUFFER, gl.GL_COLOR_ATTACHMENT0, gl.GL_TEXTURE_2D, self.texture.gl_id, 0)
|
259 |
+
else:
|
260 |
+
fmt = get_texture_format(self.dtype, self.channels)
|
261 |
+
self.gl_color = gl.glGenRenderbuffers(1)
|
262 |
+
gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, self.gl_color)
|
263 |
+
gl.glRenderbufferStorageMultisample(gl.GL_RENDERBUFFER, self.msaa, fmt.internalformat, self.width, self.height)
|
264 |
+
gl.glFramebufferRenderbuffer(gl.GL_FRAMEBUFFER, gl.GL_COLOR_ATTACHMENT0, gl.GL_RENDERBUFFER, self.gl_color)
|
265 |
+
|
266 |
+
# Setup depth/stencil buffer.
|
267 |
+
self.gl_depth_stencil = gl.glGenRenderbuffers(1)
|
268 |
+
gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, self.gl_depth_stencil)
|
269 |
+
gl.glRenderbufferStorageMultisample(gl.GL_RENDERBUFFER, self.msaa, gl.GL_DEPTH24_STENCIL8, self.width, self.height)
|
270 |
+
gl.glFramebufferRenderbuffer(gl.GL_FRAMEBUFFER, gl.GL_DEPTH_STENCIL_ATTACHMENT, gl.GL_RENDERBUFFER, self.gl_depth_stencil)
|
271 |
+
|
272 |
+
def delete(self):
|
273 |
+
if self.gl_id is not None:
|
274 |
+
gl.glDeleteFramebuffers([self.gl_id])
|
275 |
+
self.gl_id = None
|
276 |
+
if self.gl_color is not None:
|
277 |
+
gl.glDeleteRenderbuffers(1, [self.gl_color])
|
278 |
+
self.gl_color = None
|
279 |
+
if self.gl_depth_stencil is not None:
|
280 |
+
gl.glDeleteRenderbuffers(1, [self.gl_depth_stencil])
|
281 |
+
self.gl_depth_stencil = None
|
282 |
+
|
283 |
+
def __del__(self):
|
284 |
+
try:
|
285 |
+
self.delete()
|
286 |
+
except:
|
287 |
+
pass
|
288 |
+
|
289 |
+
@contextlib.contextmanager
|
290 |
+
def bind(self):
|
291 |
+
prev_fbo = gl.glGetInteger(gl.GL_FRAMEBUFFER_BINDING)
|
292 |
+
prev_rbo = gl.glGetInteger(gl.GL_RENDERBUFFER_BINDING)
|
293 |
+
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, self.gl_id)
|
294 |
+
if self.width is not None and self.height is not None:
|
295 |
+
gl.glViewport(0, 0, self.width, self.height)
|
296 |
+
yield
|
297 |
+
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, prev_fbo)
|
298 |
+
gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, prev_rbo)
|
299 |
+
|
300 |
+
def blit(self, dst=None):
|
301 |
+
assert dst is None or isinstance(dst, Framebuffer)
|
302 |
+
with self.bind():
|
303 |
+
gl.glBindFramebuffer(gl.GL_DRAW_FRAMEBUFFER, 0 if dst is None else dst.fbo)
|
304 |
+
gl.glBlitFramebuffer(0, 0, self.width, self.height, 0, 0, self.width, self.height, gl.GL_COLOR_BUFFER_BIT, gl.GL_NEAREST)
|
305 |
+
|
306 |
+
#----------------------------------------------------------------------------
|
307 |
+
|
308 |
+
def draw_shape(vertices, *, mode=gl.GL_TRIANGLE_FAN, pos=0, size=1, color=1, alpha=1):
|
309 |
+
assert vertices.ndim == 2 and vertices.shape[1] == 2
|
310 |
+
pos = np.broadcast_to(np.asarray(pos, dtype='float32'), [2])
|
311 |
+
size = np.broadcast_to(np.asarray(size, dtype='float32'), [2])
|
312 |
+
color = np.broadcast_to(np.asarray(color, dtype='float32'), [3])
|
313 |
+
alpha = np.clip(np.broadcast_to(np.asarray(alpha, dtype='float32'), []), 0, 1)
|
314 |
+
|
315 |
+
gl.glPushClientAttrib(gl.GL_CLIENT_VERTEX_ARRAY_BIT)
|
316 |
+
gl.glPushAttrib(gl.GL_CURRENT_BIT | gl.GL_TRANSFORM_BIT)
|
317 |
+
gl.glMatrixMode(gl.GL_MODELVIEW)
|
318 |
+
gl.glPushMatrix()
|
319 |
+
|
320 |
+
gl.glEnableClientState(gl.GL_VERTEX_ARRAY)
|
321 |
+
gl.glEnableClientState(gl.GL_TEXTURE_COORD_ARRAY)
|
322 |
+
gl.glVertexPointer(2, gl.GL_FLOAT, 0, vertices)
|
323 |
+
gl.glTexCoordPointer(2, gl.GL_FLOAT, 0, vertices)
|
324 |
+
gl.glTranslate(pos[0], pos[1], 0)
|
325 |
+
gl.glScale(size[0], size[1], 1)
|
326 |
+
gl.glColor4f(color[0] * alpha, color[1] * alpha, color[2] * alpha, alpha)
|
327 |
+
gl.glDrawArrays(mode, 0, vertices.shape[0])
|
328 |
+
|
329 |
+
gl.glPopMatrix()
|
330 |
+
gl.glPopAttrib()
|
331 |
+
gl.glPopClientAttrib()
|
332 |
+
|
333 |
+
#----------------------------------------------------------------------------
|
334 |
+
|
335 |
+
def draw_rect(*, pos=0, pos2=None, size=None, align=0, rint=False, color=1, alpha=1, rounding=0):
|
336 |
+
assert pos2 is None or size is None
|
337 |
+
pos = np.broadcast_to(np.asarray(pos, dtype='float32'), [2])
|
338 |
+
pos2 = np.broadcast_to(np.asarray(pos2, dtype='float32'), [2]) if pos2 is not None else None
|
339 |
+
size = np.broadcast_to(np.asarray(size, dtype='float32'), [2]) if size is not None else None
|
340 |
+
size = size if size is not None else pos2 - pos if pos2 is not None else np.array([1, 1], dtype='float32')
|
341 |
+
pos = pos - size * align
|
342 |
+
if rint:
|
343 |
+
pos = np.rint(pos)
|
344 |
+
rounding = np.broadcast_to(np.asarray(rounding, dtype='float32'), [2])
|
345 |
+
rounding = np.minimum(np.abs(rounding) / np.maximum(np.abs(size), 1e-8), 0.5)
|
346 |
+
if np.min(rounding) == 0:
|
347 |
+
rounding *= 0
|
348 |
+
vertices = _setup_rect(float(rounding[0]), float(rounding[1]))
|
349 |
+
draw_shape(vertices, mode=gl.GL_TRIANGLE_FAN, pos=pos, size=size, color=color, alpha=alpha)
|
350 |
+
|
351 |
+
@functools.lru_cache(maxsize=10000)
|
352 |
+
def _setup_rect(rx, ry):
|
353 |
+
t = np.linspace(0, np.pi / 2, 1 if max(rx, ry) == 0 else 64)
|
354 |
+
s = 1 - np.sin(t); c = 1 - np.cos(t)
|
355 |
+
x = [c * rx, 1 - s * rx, 1 - c * rx, s * rx]
|
356 |
+
y = [s * ry, c * ry, 1 - s * ry, 1 - c * ry]
|
357 |
+
v = np.stack([x, y], axis=-1).reshape(-1, 2)
|
358 |
+
return v.astype('float32')
|
359 |
+
|
360 |
+
#----------------------------------------------------------------------------
|
361 |
+
|
362 |
+
def draw_circle(*, center=0, radius=100, hole=0, color=1, alpha=1):
|
363 |
+
hole = np.broadcast_to(np.asarray(hole, dtype='float32'), [])
|
364 |
+
vertices = _setup_circle(float(hole))
|
365 |
+
draw_shape(vertices, mode=gl.GL_TRIANGLE_STRIP, pos=center, size=radius, color=color, alpha=alpha)
|
366 |
+
|
367 |
+
@functools.lru_cache(maxsize=10000)
|
368 |
+
def _setup_circle(hole):
|
369 |
+
t = np.linspace(0, np.pi * 2, 128)
|
370 |
+
s = np.sin(t); c = np.cos(t)
|
371 |
+
v = np.stack([c, s, c * hole, s * hole], axis=-1).reshape(-1, 2)
|
372 |
+
return v.astype('float32')
|
373 |
+
|
374 |
+
#----------------------------------------------------------------------------
|
gui_utils/glfw_window.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import time
|
10 |
+
import glfw
|
11 |
+
import OpenGL.GL as gl
|
12 |
+
from . import gl_utils
|
13 |
+
|
14 |
+
#----------------------------------------------------------------------------
|
15 |
+
|
16 |
+
class GlfwWindow: # pylint: disable=too-many-public-methods
|
17 |
+
def __init__(self, *, title='GlfwWindow', window_width=1920, window_height=1080, deferred_show=True, close_on_esc=True):
|
18 |
+
self._glfw_window = None
|
19 |
+
self._drawing_frame = False
|
20 |
+
self._frame_start_time = None
|
21 |
+
self._frame_delta = 0
|
22 |
+
self._fps_limit = None
|
23 |
+
self._vsync = None
|
24 |
+
self._skip_frames = 0
|
25 |
+
self._deferred_show = deferred_show
|
26 |
+
self._close_on_esc = close_on_esc
|
27 |
+
self._esc_pressed = False
|
28 |
+
self._drag_and_drop_paths = None
|
29 |
+
self._capture_next_frame = False
|
30 |
+
self._captured_frame = None
|
31 |
+
|
32 |
+
# Create window.
|
33 |
+
glfw.init()
|
34 |
+
glfw.window_hint(glfw.VISIBLE, False)
|
35 |
+
self._glfw_window = glfw.create_window(width=window_width, height=window_height, title=title, monitor=None, share=None)
|
36 |
+
self._attach_glfw_callbacks()
|
37 |
+
self.make_context_current()
|
38 |
+
|
39 |
+
# Adjust window.
|
40 |
+
self.set_vsync(False)
|
41 |
+
self.set_window_size(window_width, window_height)
|
42 |
+
if not self._deferred_show:
|
43 |
+
glfw.show_window(self._glfw_window)
|
44 |
+
|
45 |
+
def close(self):
|
46 |
+
if self._drawing_frame:
|
47 |
+
self.end_frame()
|
48 |
+
if self._glfw_window is not None:
|
49 |
+
glfw.destroy_window(self._glfw_window)
|
50 |
+
self._glfw_window = None
|
51 |
+
#glfw.terminate() # Commented out to play it nice with other glfw clients.
|
52 |
+
|
53 |
+
def __del__(self):
|
54 |
+
try:
|
55 |
+
self.close()
|
56 |
+
except:
|
57 |
+
pass
|
58 |
+
|
59 |
+
@property
|
60 |
+
def window_width(self):
|
61 |
+
return self.content_width
|
62 |
+
|
63 |
+
@property
|
64 |
+
def window_height(self):
|
65 |
+
return self.content_height + self.title_bar_height
|
66 |
+
|
67 |
+
@property
|
68 |
+
def content_width(self):
|
69 |
+
width, _height = glfw.get_window_size(self._glfw_window)
|
70 |
+
return width
|
71 |
+
|
72 |
+
@property
|
73 |
+
def content_height(self):
|
74 |
+
_width, height = glfw.get_window_size(self._glfw_window)
|
75 |
+
return height
|
76 |
+
|
77 |
+
@property
|
78 |
+
def title_bar_height(self):
|
79 |
+
_left, top, _right, _bottom = glfw.get_window_frame_size(self._glfw_window)
|
80 |
+
return top
|
81 |
+
|
82 |
+
@property
|
83 |
+
def monitor_width(self):
|
84 |
+
_, _, width, _height = glfw.get_monitor_workarea(glfw.get_primary_monitor())
|
85 |
+
return width
|
86 |
+
|
87 |
+
@property
|
88 |
+
def monitor_height(self):
|
89 |
+
_, _, _width, height = glfw.get_monitor_workarea(glfw.get_primary_monitor())
|
90 |
+
return height
|
91 |
+
|
92 |
+
@property
|
93 |
+
def frame_delta(self):
|
94 |
+
return self._frame_delta
|
95 |
+
|
96 |
+
def set_title(self, title):
|
97 |
+
glfw.set_window_title(self._glfw_window, title)
|
98 |
+
|
99 |
+
def set_window_size(self, width, height):
|
100 |
+
width = min(width, self.monitor_width)
|
101 |
+
height = min(height, self.monitor_height)
|
102 |
+
glfw.set_window_size(self._glfw_window, width, max(height - self.title_bar_height, 0))
|
103 |
+
if width == self.monitor_width and height == self.monitor_height:
|
104 |
+
self.maximize()
|
105 |
+
|
106 |
+
def set_content_size(self, width, height):
|
107 |
+
self.set_window_size(width, height + self.title_bar_height)
|
108 |
+
|
109 |
+
def maximize(self):
|
110 |
+
glfw.maximize_window(self._glfw_window)
|
111 |
+
|
112 |
+
def set_position(self, x, y):
|
113 |
+
glfw.set_window_pos(self._glfw_window, x, y + self.title_bar_height)
|
114 |
+
|
115 |
+
def center(self):
|
116 |
+
self.set_position((self.monitor_width - self.window_width) // 2, (self.monitor_height - self.window_height) // 2)
|
117 |
+
|
118 |
+
def set_vsync(self, vsync):
|
119 |
+
vsync = bool(vsync)
|
120 |
+
if vsync != self._vsync:
|
121 |
+
glfw.swap_interval(1 if vsync else 0)
|
122 |
+
self._vsync = vsync
|
123 |
+
|
124 |
+
def set_fps_limit(self, fps_limit):
|
125 |
+
self._fps_limit = int(fps_limit)
|
126 |
+
|
127 |
+
def should_close(self):
|
128 |
+
return glfw.window_should_close(self._glfw_window) or (self._close_on_esc and self._esc_pressed)
|
129 |
+
|
130 |
+
def skip_frame(self):
|
131 |
+
self.skip_frames(1)
|
132 |
+
|
133 |
+
def skip_frames(self, num): # Do not update window for the next N frames.
|
134 |
+
self._skip_frames = max(self._skip_frames, int(num))
|
135 |
+
|
136 |
+
def is_skipping_frames(self):
|
137 |
+
return self._skip_frames > 0
|
138 |
+
|
139 |
+
def capture_next_frame(self):
|
140 |
+
self._capture_next_frame = True
|
141 |
+
|
142 |
+
def pop_captured_frame(self):
|
143 |
+
frame = self._captured_frame
|
144 |
+
self._captured_frame = None
|
145 |
+
return frame
|
146 |
+
|
147 |
+
def pop_drag_and_drop_paths(self):
|
148 |
+
paths = self._drag_and_drop_paths
|
149 |
+
self._drag_and_drop_paths = None
|
150 |
+
return paths
|
151 |
+
|
152 |
+
def draw_frame(self): # To be overridden by subclass.
|
153 |
+
self.begin_frame()
|
154 |
+
# Rendering code goes here.
|
155 |
+
self.end_frame()
|
156 |
+
|
157 |
+
def make_context_current(self):
|
158 |
+
if self._glfw_window is not None:
|
159 |
+
glfw.make_context_current(self._glfw_window)
|
160 |
+
|
161 |
+
def begin_frame(self):
|
162 |
+
# End previous frame.
|
163 |
+
if self._drawing_frame:
|
164 |
+
self.end_frame()
|
165 |
+
|
166 |
+
# Apply FPS limit.
|
167 |
+
if self._frame_start_time is not None and self._fps_limit is not None:
|
168 |
+
delay = self._frame_start_time - time.perf_counter() + 1 / self._fps_limit
|
169 |
+
if delay > 0:
|
170 |
+
time.sleep(delay)
|
171 |
+
cur_time = time.perf_counter()
|
172 |
+
if self._frame_start_time is not None:
|
173 |
+
self._frame_delta = cur_time - self._frame_start_time
|
174 |
+
self._frame_start_time = cur_time
|
175 |
+
|
176 |
+
# Process events.
|
177 |
+
glfw.poll_events()
|
178 |
+
|
179 |
+
# Begin frame.
|
180 |
+
self._drawing_frame = True
|
181 |
+
self.make_context_current()
|
182 |
+
|
183 |
+
# Initialize GL state.
|
184 |
+
gl.glViewport(0, 0, self.content_width, self.content_height)
|
185 |
+
gl.glMatrixMode(gl.GL_PROJECTION)
|
186 |
+
gl.glLoadIdentity()
|
187 |
+
gl.glTranslate(-1, 1, 0)
|
188 |
+
gl.glScale(2 / max(self.content_width, 1), -2 / max(self.content_height, 1), 1)
|
189 |
+
gl.glMatrixMode(gl.GL_MODELVIEW)
|
190 |
+
gl.glLoadIdentity()
|
191 |
+
gl.glEnable(gl.GL_BLEND)
|
192 |
+
gl.glBlendFunc(gl.GL_ONE, gl.GL_ONE_MINUS_SRC_ALPHA) # Pre-multiplied alpha.
|
193 |
+
|
194 |
+
# Clear.
|
195 |
+
gl.glClearColor(0, 0, 0, 1)
|
196 |
+
gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
|
197 |
+
|
198 |
+
def end_frame(self):
|
199 |
+
assert self._drawing_frame
|
200 |
+
self._drawing_frame = False
|
201 |
+
|
202 |
+
# Skip frames if requested.
|
203 |
+
if self._skip_frames > 0:
|
204 |
+
self._skip_frames -= 1
|
205 |
+
return
|
206 |
+
|
207 |
+
# Capture frame if requested.
|
208 |
+
if self._capture_next_frame:
|
209 |
+
self._captured_frame = gl_utils.read_pixels(self.content_width, self.content_height)
|
210 |
+
self._capture_next_frame = False
|
211 |
+
|
212 |
+
# Update window.
|
213 |
+
if self._deferred_show:
|
214 |
+
glfw.show_window(self._glfw_window)
|
215 |
+
self._deferred_show = False
|
216 |
+
glfw.swap_buffers(self._glfw_window)
|
217 |
+
|
218 |
+
def _attach_glfw_callbacks(self):
|
219 |
+
glfw.set_key_callback(self._glfw_window, self._glfw_key_callback)
|
220 |
+
glfw.set_drop_callback(self._glfw_window, self._glfw_drop_callback)
|
221 |
+
|
222 |
+
def _glfw_key_callback(self, _window, key, _scancode, action, _mods):
|
223 |
+
if action == glfw.PRESS and key == glfw.KEY_ESCAPE:
|
224 |
+
self._esc_pressed = True
|
225 |
+
|
226 |
+
def _glfw_drop_callback(self, _window, paths):
|
227 |
+
self._drag_and_drop_paths = paths
|
228 |
+
|
229 |
+
#----------------------------------------------------------------------------
|
gui_utils/imgui_utils.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import contextlib
|
10 |
+
import imgui
|
11 |
+
|
12 |
+
#----------------------------------------------------------------------------
|
13 |
+
|
14 |
+
def set_default_style(color_scheme='dark', spacing=9, indent=23, scrollbar=27):
|
15 |
+
s = imgui.get_style()
|
16 |
+
s.window_padding = [spacing, spacing]
|
17 |
+
s.item_spacing = [spacing, spacing]
|
18 |
+
s.item_inner_spacing = [spacing, spacing]
|
19 |
+
s.columns_min_spacing = spacing
|
20 |
+
s.indent_spacing = indent
|
21 |
+
s.scrollbar_size = scrollbar
|
22 |
+
s.frame_padding = [4, 3]
|
23 |
+
s.window_border_size = 1
|
24 |
+
s.child_border_size = 1
|
25 |
+
s.popup_border_size = 1
|
26 |
+
s.frame_border_size = 1
|
27 |
+
s.window_rounding = 0
|
28 |
+
s.child_rounding = 0
|
29 |
+
s.popup_rounding = 3
|
30 |
+
s.frame_rounding = 3
|
31 |
+
s.scrollbar_rounding = 3
|
32 |
+
s.grab_rounding = 3
|
33 |
+
|
34 |
+
getattr(imgui, f'style_colors_{color_scheme}')(s)
|
35 |
+
c0 = s.colors[imgui.COLOR_MENUBAR_BACKGROUND]
|
36 |
+
c1 = s.colors[imgui.COLOR_FRAME_BACKGROUND]
|
37 |
+
s.colors[imgui.COLOR_POPUP_BACKGROUND] = [x * 0.7 + y * 0.3 for x, y in zip(c0, c1)][:3] + [1]
|
38 |
+
|
39 |
+
#----------------------------------------------------------------------------
|
40 |
+
|
41 |
+
@contextlib.contextmanager
|
42 |
+
def grayed_out(cond=True):
|
43 |
+
if cond:
|
44 |
+
s = imgui.get_style()
|
45 |
+
text = s.colors[imgui.COLOR_TEXT_DISABLED]
|
46 |
+
grab = s.colors[imgui.COLOR_SCROLLBAR_GRAB]
|
47 |
+
back = s.colors[imgui.COLOR_MENUBAR_BACKGROUND]
|
48 |
+
imgui.push_style_color(imgui.COLOR_TEXT, *text)
|
49 |
+
imgui.push_style_color(imgui.COLOR_CHECK_MARK, *grab)
|
50 |
+
imgui.push_style_color(imgui.COLOR_SLIDER_GRAB, *grab)
|
51 |
+
imgui.push_style_color(imgui.COLOR_SLIDER_GRAB_ACTIVE, *grab)
|
52 |
+
imgui.push_style_color(imgui.COLOR_FRAME_BACKGROUND, *back)
|
53 |
+
imgui.push_style_color(imgui.COLOR_FRAME_BACKGROUND_HOVERED, *back)
|
54 |
+
imgui.push_style_color(imgui.COLOR_FRAME_BACKGROUND_ACTIVE, *back)
|
55 |
+
imgui.push_style_color(imgui.COLOR_BUTTON, *back)
|
56 |
+
imgui.push_style_color(imgui.COLOR_BUTTON_HOVERED, *back)
|
57 |
+
imgui.push_style_color(imgui.COLOR_BUTTON_ACTIVE, *back)
|
58 |
+
imgui.push_style_color(imgui.COLOR_HEADER, *back)
|
59 |
+
imgui.push_style_color(imgui.COLOR_HEADER_HOVERED, *back)
|
60 |
+
imgui.push_style_color(imgui.COLOR_HEADER_ACTIVE, *back)
|
61 |
+
imgui.push_style_color(imgui.COLOR_POPUP_BACKGROUND, *back)
|
62 |
+
yield
|
63 |
+
imgui.pop_style_color(14)
|
64 |
+
else:
|
65 |
+
yield
|
66 |
+
|
67 |
+
#----------------------------------------------------------------------------
|
68 |
+
|
69 |
+
@contextlib.contextmanager
|
70 |
+
def item_width(width=None):
|
71 |
+
if width is not None:
|
72 |
+
imgui.push_item_width(width)
|
73 |
+
yield
|
74 |
+
imgui.pop_item_width()
|
75 |
+
else:
|
76 |
+
yield
|
77 |
+
|
78 |
+
#----------------------------------------------------------------------------
|
79 |
+
|
80 |
+
def scoped_by_object_id(method):
|
81 |
+
def decorator(self, *args, **kwargs):
|
82 |
+
imgui.push_id(str(id(self)))
|
83 |
+
res = method(self, *args, **kwargs)
|
84 |
+
imgui.pop_id()
|
85 |
+
return res
|
86 |
+
return decorator
|
87 |
+
|
88 |
+
#----------------------------------------------------------------------------
|
89 |
+
|
90 |
+
def button(label, width=0, enabled=True):
|
91 |
+
with grayed_out(not enabled):
|
92 |
+
clicked = imgui.button(label, width=width)
|
93 |
+
clicked = clicked and enabled
|
94 |
+
return clicked
|
95 |
+
|
96 |
+
#----------------------------------------------------------------------------
|
97 |
+
|
98 |
+
def collapsing_header(text, visible=None, flags=0, default=False, enabled=True, show=True):
|
99 |
+
expanded = False
|
100 |
+
if show:
|
101 |
+
if default:
|
102 |
+
flags |= imgui.TREE_NODE_DEFAULT_OPEN
|
103 |
+
if not enabled:
|
104 |
+
flags |= imgui.TREE_NODE_LEAF
|
105 |
+
with grayed_out(not enabled):
|
106 |
+
expanded, visible = imgui.collapsing_header(text, visible=visible, flags=flags)
|
107 |
+
expanded = expanded and enabled
|
108 |
+
return expanded, visible
|
109 |
+
|
110 |
+
#----------------------------------------------------------------------------
|
111 |
+
|
112 |
+
def popup_button(label, width=0, enabled=True):
|
113 |
+
if button(label, width, enabled):
|
114 |
+
imgui.open_popup(label)
|
115 |
+
opened = imgui.begin_popup(label)
|
116 |
+
return opened
|
117 |
+
|
118 |
+
#----------------------------------------------------------------------------
|
119 |
+
|
120 |
+
def input_text(label, value, buffer_length, flags, width=None, help_text=''):
|
121 |
+
old_value = value
|
122 |
+
color = list(imgui.get_style().colors[imgui.COLOR_TEXT])
|
123 |
+
if value == '':
|
124 |
+
color[-1] *= 0.5
|
125 |
+
with item_width(width):
|
126 |
+
imgui.push_style_color(imgui.COLOR_TEXT, *color)
|
127 |
+
value = value if value != '' else help_text
|
128 |
+
changed, value = imgui.input_text(label, value, buffer_length, flags)
|
129 |
+
value = value if value != help_text else ''
|
130 |
+
imgui.pop_style_color(1)
|
131 |
+
if not flags & imgui.INPUT_TEXT_ENTER_RETURNS_TRUE:
|
132 |
+
changed = (value != old_value)
|
133 |
+
return changed, value
|
134 |
+
|
135 |
+
#----------------------------------------------------------------------------
|
136 |
+
|
137 |
+
def drag_previous_control(enabled=True):
|
138 |
+
dragging = False
|
139 |
+
dx = 0
|
140 |
+
dy = 0
|
141 |
+
if imgui.begin_drag_drop_source(imgui.DRAG_DROP_SOURCE_NO_PREVIEW_TOOLTIP):
|
142 |
+
if enabled:
|
143 |
+
dragging = True
|
144 |
+
dx, dy = imgui.get_mouse_drag_delta()
|
145 |
+
imgui.reset_mouse_drag_delta()
|
146 |
+
imgui.end_drag_drop_source()
|
147 |
+
return dragging, dx, dy
|
148 |
+
|
149 |
+
#----------------------------------------------------------------------------
|
150 |
+
|
151 |
+
def drag_button(label, width=0, enabled=True):
|
152 |
+
clicked = button(label, width=width, enabled=enabled)
|
153 |
+
dragging, dx, dy = drag_previous_control(enabled=enabled)
|
154 |
+
return clicked, dragging, dx, dy
|
155 |
+
|
156 |
+
#----------------------------------------------------------------------------
|
157 |
+
|
158 |
+
def drag_hidden_window(label, x, y, width, height, enabled=True):
|
159 |
+
imgui.push_style_color(imgui.COLOR_WINDOW_BACKGROUND, 0, 0, 0, 0)
|
160 |
+
imgui.push_style_color(imgui.COLOR_BORDER, 0, 0, 0, 0)
|
161 |
+
imgui.set_next_window_position(x, y)
|
162 |
+
imgui.set_next_window_size(width, height)
|
163 |
+
imgui.begin(label, closable=False, flags=(imgui.WINDOW_NO_TITLE_BAR | imgui.WINDOW_NO_RESIZE | imgui.WINDOW_NO_MOVE))
|
164 |
+
dragging, dx, dy = drag_previous_control(enabled=enabled)
|
165 |
+
imgui.end()
|
166 |
+
imgui.pop_style_color(2)
|
167 |
+
return dragging, dx, dy
|
168 |
+
|
169 |
+
#----------------------------------------------------------------------------
|
gui_utils/imgui_window.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import os
|
10 |
+
import imgui
|
11 |
+
import imgui.integrations.glfw
|
12 |
+
|
13 |
+
from . import glfw_window
|
14 |
+
from . import imgui_utils
|
15 |
+
from . import text_utils
|
16 |
+
|
17 |
+
#----------------------------------------------------------------------------
|
18 |
+
|
19 |
+
class ImguiWindow(glfw_window.GlfwWindow):
|
20 |
+
def __init__(self, *, title='ImguiWindow', font=None, font_sizes=range(14,24), **glfw_kwargs):
|
21 |
+
if font is None:
|
22 |
+
font = text_utils.get_default_font()
|
23 |
+
font_sizes = {int(size) for size in font_sizes}
|
24 |
+
super().__init__(title=title, **glfw_kwargs)
|
25 |
+
|
26 |
+
# Init fields.
|
27 |
+
self._imgui_context = None
|
28 |
+
self._imgui_renderer = None
|
29 |
+
self._imgui_fonts = None
|
30 |
+
self._cur_font_size = max(font_sizes)
|
31 |
+
|
32 |
+
# Delete leftover imgui.ini to avoid unexpected behavior.
|
33 |
+
if os.path.isfile('imgui.ini'):
|
34 |
+
os.remove('imgui.ini')
|
35 |
+
|
36 |
+
# Init ImGui.
|
37 |
+
self._imgui_context = imgui.create_context()
|
38 |
+
self._imgui_renderer = _GlfwRenderer(self._glfw_window)
|
39 |
+
self._attach_glfw_callbacks()
|
40 |
+
imgui.get_io().ini_saving_rate = 0 # Disable creating imgui.ini at runtime.
|
41 |
+
imgui.get_io().mouse_drag_threshold = 0 # Improve behavior with imgui_utils.drag_custom().
|
42 |
+
self._imgui_fonts = {size: imgui.get_io().fonts.add_font_from_file_ttf(font, size) for size in font_sizes}
|
43 |
+
self._imgui_renderer.refresh_font_texture()
|
44 |
+
|
45 |
+
def close(self):
|
46 |
+
self.make_context_current()
|
47 |
+
self._imgui_fonts = None
|
48 |
+
if self._imgui_renderer is not None:
|
49 |
+
self._imgui_renderer.shutdown()
|
50 |
+
self._imgui_renderer = None
|
51 |
+
if self._imgui_context is not None:
|
52 |
+
#imgui.destroy_context(self._imgui_context) # Commented out to avoid creating imgui.ini at the end.
|
53 |
+
self._imgui_context = None
|
54 |
+
super().close()
|
55 |
+
|
56 |
+
def _glfw_key_callback(self, *args):
|
57 |
+
super()._glfw_key_callback(*args)
|
58 |
+
self._imgui_renderer.keyboard_callback(*args)
|
59 |
+
|
60 |
+
@property
|
61 |
+
def font_size(self):
|
62 |
+
return self._cur_font_size
|
63 |
+
|
64 |
+
@property
|
65 |
+
def spacing(self):
|
66 |
+
return round(self._cur_font_size * 0.4)
|
67 |
+
|
68 |
+
def set_font_size(self, target): # Applied on next frame.
|
69 |
+
self._cur_font_size = min((abs(key - target), key) for key in self._imgui_fonts.keys())[1]
|
70 |
+
|
71 |
+
def begin_frame(self):
|
72 |
+
# Begin glfw frame.
|
73 |
+
super().begin_frame()
|
74 |
+
|
75 |
+
# Process imgui events.
|
76 |
+
self._imgui_renderer.mouse_wheel_multiplier = self._cur_font_size / 10
|
77 |
+
if self.content_width > 0 and self.content_height > 0:
|
78 |
+
self._imgui_renderer.process_inputs()
|
79 |
+
|
80 |
+
# Begin imgui frame.
|
81 |
+
imgui.new_frame()
|
82 |
+
imgui.push_font(self._imgui_fonts[self._cur_font_size])
|
83 |
+
imgui_utils.set_default_style(spacing=self.spacing, indent=self.font_size, scrollbar=self.font_size+4)
|
84 |
+
|
85 |
+
def end_frame(self):
|
86 |
+
imgui.pop_font()
|
87 |
+
imgui.render()
|
88 |
+
imgui.end_frame()
|
89 |
+
self._imgui_renderer.render(imgui.get_draw_data())
|
90 |
+
super().end_frame()
|
91 |
+
|
92 |
+
#----------------------------------------------------------------------------
|
93 |
+
# Wrapper class for GlfwRenderer to fix a mouse wheel bug on Linux.
|
94 |
+
|
95 |
+
class _GlfwRenderer(imgui.integrations.glfw.GlfwRenderer):
|
96 |
+
def __init__(self, *args, **kwargs):
|
97 |
+
super().__init__(*args, **kwargs)
|
98 |
+
self.mouse_wheel_multiplier = 1
|
99 |
+
|
100 |
+
def scroll_callback(self, window, x_offset, y_offset):
|
101 |
+
self.io.mouse_wheel += y_offset * self.mouse_wheel_multiplier
|
102 |
+
|
103 |
+
#----------------------------------------------------------------------------
|
gui_utils/text_utils.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import functools
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import dnnlib
|
13 |
+
import numpy as np
|
14 |
+
import PIL.Image
|
15 |
+
import PIL.ImageFont
|
16 |
+
import scipy.ndimage
|
17 |
+
|
18 |
+
from . import gl_utils
|
19 |
+
|
20 |
+
#----------------------------------------------------------------------------
|
21 |
+
|
22 |
+
def get_default_font():
|
23 |
+
url = 'http://fonts.gstatic.com/s/opensans/v17/mem8YaGs126MiZpBA-U1UpcaXcl0Aw.ttf' # Open Sans regular
|
24 |
+
return dnnlib.util.open_url(url, return_filename=True)
|
25 |
+
|
26 |
+
#----------------------------------------------------------------------------
|
27 |
+
|
28 |
+
@functools.lru_cache(maxsize=None)
|
29 |
+
def get_pil_font(font=None, size=32):
|
30 |
+
if font is None:
|
31 |
+
font = get_default_font()
|
32 |
+
return PIL.ImageFont.truetype(font=font, size=size)
|
33 |
+
|
34 |
+
#----------------------------------------------------------------------------
|
35 |
+
|
36 |
+
def get_array(string, *, dropshadow_radius: int=None, **kwargs):
|
37 |
+
if dropshadow_radius is not None:
|
38 |
+
offset_x = int(np.ceil(dropshadow_radius*2/3))
|
39 |
+
offset_y = int(np.ceil(dropshadow_radius*2/3))
|
40 |
+
return _get_array_priv(string, dropshadow_radius=dropshadow_radius, offset_x=offset_x, offset_y=offset_y, **kwargs)
|
41 |
+
else:
|
42 |
+
return _get_array_priv(string, **kwargs)
|
43 |
+
|
44 |
+
@functools.lru_cache(maxsize=10000)
|
45 |
+
def _get_array_priv(
|
46 |
+
string: str, *,
|
47 |
+
size: int = 32,
|
48 |
+
max_width: Optional[int]=None,
|
49 |
+
max_height: Optional[int]=None,
|
50 |
+
min_size=10,
|
51 |
+
shrink_coef=0.8,
|
52 |
+
dropshadow_radius: int=None,
|
53 |
+
offset_x: int=None,
|
54 |
+
offset_y: int=None,
|
55 |
+
**kwargs
|
56 |
+
):
|
57 |
+
cur_size = size
|
58 |
+
array = None
|
59 |
+
while True:
|
60 |
+
if dropshadow_radius is not None:
|
61 |
+
# separate implementation for dropshadow text rendering
|
62 |
+
array = _get_array_impl_dropshadow(string, size=cur_size, radius=dropshadow_radius, offset_x=offset_x, offset_y=offset_y, **kwargs)
|
63 |
+
else:
|
64 |
+
array = _get_array_impl(string, size=cur_size, **kwargs)
|
65 |
+
height, width, _ = array.shape
|
66 |
+
if (max_width is None or width <= max_width) and (max_height is None or height <= max_height) or (cur_size <= min_size):
|
67 |
+
break
|
68 |
+
cur_size = max(int(cur_size * shrink_coef), min_size)
|
69 |
+
return array
|
70 |
+
|
71 |
+
#----------------------------------------------------------------------------
|
72 |
+
|
73 |
+
@functools.lru_cache(maxsize=10000)
|
74 |
+
def _get_array_impl(string, *, font=None, size=32, outline=0, outline_pad=3, outline_coef=3, outline_exp=2, line_pad: int=None):
|
75 |
+
pil_font = get_pil_font(font=font, size=size)
|
76 |
+
lines = [pil_font.getmask(line, 'L') for line in string.split('\n')]
|
77 |
+
lines = [np.array(line, dtype=np.uint8).reshape([line.size[1], line.size[0]]) for line in lines]
|
78 |
+
width = max(line.shape[1] for line in lines)
|
79 |
+
lines = [np.pad(line, ((0, 0), (0, width - line.shape[1])), mode='constant') for line in lines]
|
80 |
+
line_spacing = line_pad if line_pad is not None else size // 2
|
81 |
+
lines = [np.pad(line, ((0, line_spacing), (0, 0)), mode='constant') for line in lines[:-1]] + lines[-1:]
|
82 |
+
mask = np.concatenate(lines, axis=0)
|
83 |
+
alpha = mask
|
84 |
+
if outline > 0:
|
85 |
+
mask = np.pad(mask, int(np.ceil(outline * outline_pad)), mode='constant', constant_values=0)
|
86 |
+
alpha = mask.astype(np.float32) / 255
|
87 |
+
alpha = scipy.ndimage.gaussian_filter(alpha, outline)
|
88 |
+
alpha = 1 - np.maximum(1 - alpha * outline_coef, 0) ** outline_exp
|
89 |
+
alpha = (alpha * 255 + 0.5).clip(0, 255).astype(np.uint8)
|
90 |
+
alpha = np.maximum(alpha, mask)
|
91 |
+
return np.stack([mask, alpha], axis=-1)
|
92 |
+
|
93 |
+
#----------------------------------------------------------------------------
|
94 |
+
|
95 |
+
@functools.lru_cache(maxsize=10000)
|
96 |
+
def _get_array_impl_dropshadow(string, *, font=None, size=32, radius: int, offset_x: int, offset_y: int, line_pad: int=None, **kwargs):
|
97 |
+
assert (offset_x > 0) and (offset_y > 0)
|
98 |
+
pil_font = get_pil_font(font=font, size=size)
|
99 |
+
lines = [pil_font.getmask(line, 'L') for line in string.split('\n')]
|
100 |
+
lines = [np.array(line, dtype=np.uint8).reshape([line.size[1], line.size[0]]) for line in lines]
|
101 |
+
width = max(line.shape[1] for line in lines)
|
102 |
+
lines = [np.pad(line, ((0, 0), (0, width - line.shape[1])), mode='constant') for line in lines]
|
103 |
+
line_spacing = line_pad if line_pad is not None else size // 2
|
104 |
+
lines = [np.pad(line, ((0, line_spacing), (0, 0)), mode='constant') for line in lines[:-1]] + lines[-1:]
|
105 |
+
mask = np.concatenate(lines, axis=0)
|
106 |
+
alpha = mask
|
107 |
+
|
108 |
+
mask = np.pad(mask, 2*radius + max(abs(offset_x), abs(offset_y)), mode='constant', constant_values=0)
|
109 |
+
alpha = mask.astype(np.float32) / 255
|
110 |
+
alpha = scipy.ndimage.gaussian_filter(alpha, radius)
|
111 |
+
alpha = 1 - np.maximum(1 - alpha * 1.5, 0) ** 1.4
|
112 |
+
alpha = (alpha * 255 + 0.5).clip(0, 255).astype(np.uint8)
|
113 |
+
alpha = np.pad(alpha, [(offset_y, 0), (offset_x, 0)], mode='constant')[:-offset_y, :-offset_x]
|
114 |
+
alpha = np.maximum(alpha, mask)
|
115 |
+
return np.stack([mask, alpha], axis=-1)
|
116 |
+
|
117 |
+
#----------------------------------------------------------------------------
|
118 |
+
|
119 |
+
@functools.lru_cache(maxsize=10000)
|
120 |
+
def get_texture(string, bilinear=True, mipmap=True, **kwargs):
|
121 |
+
return gl_utils.Texture(image=get_array(string, **kwargs), bilinear=bilinear, mipmap=mipmap)
|
122 |
+
|
123 |
+
#----------------------------------------------------------------------------
|
legacy.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Converting legacy network pickle into the new format."""
|
10 |
+
|
11 |
+
import click
|
12 |
+
import pickle
|
13 |
+
import re
|
14 |
+
import copy
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import dnnlib
|
18 |
+
from torch_utils import misc
|
19 |
+
|
20 |
+
#----------------------------------------------------------------------------
|
21 |
+
|
22 |
+
def load_network_pkl(f, force_fp16=False):
|
23 |
+
data = _LegacyUnpickler(f).load()
|
24 |
+
|
25 |
+
# Legacy TensorFlow pickle => convert.
|
26 |
+
if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
|
27 |
+
tf_G, tf_D, tf_Gs = data
|
28 |
+
G = convert_tf_generator(tf_G)
|
29 |
+
D = convert_tf_discriminator(tf_D)
|
30 |
+
G_ema = convert_tf_generator(tf_Gs)
|
31 |
+
data = dict(G=G, D=D, G_ema=G_ema)
|
32 |
+
|
33 |
+
# Add missing fields.
|
34 |
+
if 'training_set_kwargs' not in data:
|
35 |
+
data['training_set_kwargs'] = None
|
36 |
+
if 'augment_pipe' not in data:
|
37 |
+
data['augment_pipe'] = None
|
38 |
+
|
39 |
+
# Validate contents.
|
40 |
+
assert isinstance(data['G'], torch.nn.Module)
|
41 |
+
assert isinstance(data['D'], torch.nn.Module)
|
42 |
+
assert isinstance(data['G_ema'], torch.nn.Module)
|
43 |
+
assert isinstance(data['training_set_kwargs'], (dict, type(None)))
|
44 |
+
assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None)))
|
45 |
+
|
46 |
+
# Force FP16.
|
47 |
+
if force_fp16:
|
48 |
+
for key in ['G', 'D', 'G_ema']:
|
49 |
+
old = data[key]
|
50 |
+
kwargs = copy.deepcopy(old.init_kwargs)
|
51 |
+
fp16_kwargs = kwargs.get('synthesis_kwargs', kwargs)
|
52 |
+
fp16_kwargs.num_fp16_res = 4
|
53 |
+
fp16_kwargs.conv_clamp = 256
|
54 |
+
if kwargs != old.init_kwargs:
|
55 |
+
new = type(old)(**kwargs).eval().requires_grad_(False)
|
56 |
+
misc.copy_params_and_buffers(old, new, require_all=True)
|
57 |
+
data[key] = new
|
58 |
+
return data
|
59 |
+
|
60 |
+
#----------------------------------------------------------------------------
|
61 |
+
|
62 |
+
class _TFNetworkStub(dnnlib.EasyDict):
|
63 |
+
pass
|
64 |
+
|
65 |
+
class _LegacyUnpickler(pickle.Unpickler):
|
66 |
+
def find_class(self, module, name):
|
67 |
+
if module == 'dnnlib.tflib.network' and name == 'Network':
|
68 |
+
return _TFNetworkStub
|
69 |
+
return super().find_class(module, name)
|
70 |
+
|
71 |
+
#----------------------------------------------------------------------------
|
72 |
+
|
73 |
+
def _collect_tf_params(tf_net):
|
74 |
+
# pylint: disable=protected-access
|
75 |
+
tf_params = dict()
|
76 |
+
def recurse(prefix, tf_net):
|
77 |
+
for name, value in tf_net.variables:
|
78 |
+
tf_params[prefix + name] = value
|
79 |
+
for name, comp in tf_net.components.items():
|
80 |
+
recurse(prefix + name + '/', comp)
|
81 |
+
recurse('', tf_net)
|
82 |
+
return tf_params
|
83 |
+
|
84 |
+
#----------------------------------------------------------------------------
|
85 |
+
|
86 |
+
def _populate_module_params(module, *patterns):
|
87 |
+
for name, tensor in misc.named_params_and_buffers(module):
|
88 |
+
found = False
|
89 |
+
value = None
|
90 |
+
for pattern, value_fn in zip(patterns[0::2], patterns[1::2]):
|
91 |
+
match = re.fullmatch(pattern, name)
|
92 |
+
if match:
|
93 |
+
found = True
|
94 |
+
if value_fn is not None:
|
95 |
+
value = value_fn(*match.groups())
|
96 |
+
break
|
97 |
+
try:
|
98 |
+
assert found
|
99 |
+
if value is not None:
|
100 |
+
tensor.copy_(torch.from_numpy(np.array(value)))
|
101 |
+
except:
|
102 |
+
print(name, list(tensor.shape))
|
103 |
+
raise
|
104 |
+
|
105 |
+
#----------------------------------------------------------------------------
|
106 |
+
|
107 |
+
def convert_tf_generator(tf_G):
|
108 |
+
if tf_G.version < 4:
|
109 |
+
raise ValueError('TensorFlow pickle version too low')
|
110 |
+
|
111 |
+
# Collect kwargs.
|
112 |
+
tf_kwargs = tf_G.static_kwargs
|
113 |
+
known_kwargs = set()
|
114 |
+
def kwarg(tf_name, default=None, none=None):
|
115 |
+
known_kwargs.add(tf_name)
|
116 |
+
val = tf_kwargs.get(tf_name, default)
|
117 |
+
return val if val is not None else none
|
118 |
+
|
119 |
+
# Convert kwargs.
|
120 |
+
from training import networks_stylegan2
|
121 |
+
network_class = networks_stylegan2.Generator
|
122 |
+
kwargs = dnnlib.EasyDict(
|
123 |
+
z_dim = kwarg('latent_size', 512),
|
124 |
+
c_dim = kwarg('label_size', 0),
|
125 |
+
w_dim = kwarg('dlatent_size', 512),
|
126 |
+
img_resolution = kwarg('resolution', 1024),
|
127 |
+
img_channels = kwarg('num_channels', 3),
|
128 |
+
channel_base = kwarg('fmap_base', 16384) * 2,
|
129 |
+
channel_max = kwarg('fmap_max', 512),
|
130 |
+
num_fp16_res = kwarg('num_fp16_res', 0),
|
131 |
+
conv_clamp = kwarg('conv_clamp', None),
|
132 |
+
architecture = kwarg('architecture', 'skip'),
|
133 |
+
resample_filter = kwarg('resample_kernel', [1,3,3,1]),
|
134 |
+
use_noise = kwarg('use_noise', True),
|
135 |
+
activation = kwarg('nonlinearity', 'lrelu'),
|
136 |
+
mapping_kwargs = dnnlib.EasyDict(
|
137 |
+
num_layers = kwarg('mapping_layers', 8),
|
138 |
+
embed_features = kwarg('label_fmaps', None),
|
139 |
+
layer_features = kwarg('mapping_fmaps', None),
|
140 |
+
activation = kwarg('mapping_nonlinearity', 'lrelu'),
|
141 |
+
lr_multiplier = kwarg('mapping_lrmul', 0.01),
|
142 |
+
w_avg_beta = kwarg('w_avg_beta', 0.995, none=1),
|
143 |
+
),
|
144 |
+
)
|
145 |
+
|
146 |
+
# Check for unknown kwargs.
|
147 |
+
kwarg('truncation_psi')
|
148 |
+
kwarg('truncation_cutoff')
|
149 |
+
kwarg('style_mixing_prob')
|
150 |
+
kwarg('structure')
|
151 |
+
kwarg('conditioning')
|
152 |
+
kwarg('fused_modconv')
|
153 |
+
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
|
154 |
+
if len(unknown_kwargs) > 0:
|
155 |
+
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
|
156 |
+
|
157 |
+
# Collect params.
|
158 |
+
tf_params = _collect_tf_params(tf_G)
|
159 |
+
for name, value in list(tf_params.items()):
|
160 |
+
match = re.fullmatch(r'ToRGB_lod(\d+)/(.*)', name)
|
161 |
+
if match:
|
162 |
+
r = kwargs.img_resolution // (2 ** int(match.group(1)))
|
163 |
+
tf_params[f'{r}x{r}/ToRGB/{match.group(2)}'] = value
|
164 |
+
kwargs.synthesis.kwargs.architecture = 'orig'
|
165 |
+
#for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
|
166 |
+
|
167 |
+
# Convert params.
|
168 |
+
G = network_class(**kwargs).eval().requires_grad_(False)
|
169 |
+
# pylint: disable=unnecessary-lambda
|
170 |
+
# pylint: disable=f-string-without-interpolation
|
171 |
+
_populate_module_params(G,
|
172 |
+
r'mapping\.w_avg', lambda: tf_params[f'dlatent_avg'],
|
173 |
+
r'mapping\.embed\.weight', lambda: tf_params[f'mapping/LabelEmbed/weight'].transpose(),
|
174 |
+
r'mapping\.embed\.bias', lambda: tf_params[f'mapping/LabelEmbed/bias'],
|
175 |
+
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'mapping/Dense{i}/weight'].transpose(),
|
176 |
+
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'mapping/Dense{i}/bias'],
|
177 |
+
r'synthesis\.b4\.const', lambda: tf_params[f'synthesis/4x4/Const/const'][0],
|
178 |
+
r'synthesis\.b4\.conv1\.weight', lambda: tf_params[f'synthesis/4x4/Conv/weight'].transpose(3, 2, 0, 1),
|
179 |
+
r'synthesis\.b4\.conv1\.bias', lambda: tf_params[f'synthesis/4x4/Conv/bias'],
|
180 |
+
r'synthesis\.b4\.conv1\.noise_const', lambda: tf_params[f'synthesis/noise0'][0, 0],
|
181 |
+
r'synthesis\.b4\.conv1\.noise_strength', lambda: tf_params[f'synthesis/4x4/Conv/noise_strength'],
|
182 |
+
r'synthesis\.b4\.conv1\.affine\.weight', lambda: tf_params[f'synthesis/4x4/Conv/mod_weight'].transpose(),
|
183 |
+
r'synthesis\.b4\.conv1\.affine\.bias', lambda: tf_params[f'synthesis/4x4/Conv/mod_bias'] + 1,
|
184 |
+
r'synthesis\.b(\d+)\.conv0\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
|
185 |
+
r'synthesis\.b(\d+)\.conv0\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/bias'],
|
186 |
+
r'synthesis\.b(\d+)\.conv0\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-5}'][0, 0],
|
187 |
+
r'synthesis\.b(\d+)\.conv0\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/noise_strength'],
|
188 |
+
r'synthesis\.b(\d+)\.conv0\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_weight'].transpose(),
|
189 |
+
r'synthesis\.b(\d+)\.conv0\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_bias'] + 1,
|
190 |
+
r'synthesis\.b(\d+)\.conv1\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/weight'].transpose(3, 2, 0, 1),
|
191 |
+
r'synthesis\.b(\d+)\.conv1\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/bias'],
|
192 |
+
r'synthesis\.b(\d+)\.conv1\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-4}'][0, 0],
|
193 |
+
r'synthesis\.b(\d+)\.conv1\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/noise_strength'],
|
194 |
+
r'synthesis\.b(\d+)\.conv1\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_weight'].transpose(),
|
195 |
+
r'synthesis\.b(\d+)\.conv1\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_bias'] + 1,
|
196 |
+
r'synthesis\.b(\d+)\.torgb\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/weight'].transpose(3, 2, 0, 1),
|
197 |
+
r'synthesis\.b(\d+)\.torgb\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/bias'],
|
198 |
+
r'synthesis\.b(\d+)\.torgb\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_weight'].transpose(),
|
199 |
+
r'synthesis\.b(\d+)\.torgb\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_bias'] + 1,
|
200 |
+
r'synthesis\.b(\d+)\.skip\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Skip/weight'][::-1, ::-1].transpose(3, 2, 0, 1),
|
201 |
+
r'.*\.resample_filter', None,
|
202 |
+
r'.*\.act_filter', None,
|
203 |
+
)
|
204 |
+
return G
|
205 |
+
|
206 |
+
#----------------------------------------------------------------------------
|
207 |
+
|
208 |
+
def convert_tf_discriminator(tf_D):
|
209 |
+
if tf_D.version < 4:
|
210 |
+
raise ValueError('TensorFlow pickle version too low')
|
211 |
+
|
212 |
+
# Collect kwargs.
|
213 |
+
tf_kwargs = tf_D.static_kwargs
|
214 |
+
known_kwargs = set()
|
215 |
+
def kwarg(tf_name, default=None):
|
216 |
+
known_kwargs.add(tf_name)
|
217 |
+
return tf_kwargs.get(tf_name, default)
|
218 |
+
|
219 |
+
# Convert kwargs.
|
220 |
+
kwargs = dnnlib.EasyDict(
|
221 |
+
c_dim = kwarg('label_size', 0),
|
222 |
+
img_resolution = kwarg('resolution', 1024),
|
223 |
+
img_channels = kwarg('num_channels', 3),
|
224 |
+
architecture = kwarg('architecture', 'resnet'),
|
225 |
+
channel_base = kwarg('fmap_base', 16384) * 2,
|
226 |
+
channel_max = kwarg('fmap_max', 512),
|
227 |
+
num_fp16_res = kwarg('num_fp16_res', 0),
|
228 |
+
conv_clamp = kwarg('conv_clamp', None),
|
229 |
+
cmap_dim = kwarg('mapping_fmaps', None),
|
230 |
+
block_kwargs = dnnlib.EasyDict(
|
231 |
+
activation = kwarg('nonlinearity', 'lrelu'),
|
232 |
+
resample_filter = kwarg('resample_kernel', [1,3,3,1]),
|
233 |
+
freeze_layers = kwarg('freeze_layers', 0),
|
234 |
+
),
|
235 |
+
mapping_kwargs = dnnlib.EasyDict(
|
236 |
+
num_layers = kwarg('mapping_layers', 0),
|
237 |
+
embed_features = kwarg('mapping_fmaps', None),
|
238 |
+
layer_features = kwarg('mapping_fmaps', None),
|
239 |
+
activation = kwarg('nonlinearity', 'lrelu'),
|
240 |
+
lr_multiplier = kwarg('mapping_lrmul', 0.1),
|
241 |
+
),
|
242 |
+
epilogue_kwargs = dnnlib.EasyDict(
|
243 |
+
mbstd_group_size = kwarg('mbstd_group_size', None),
|
244 |
+
mbstd_num_channels = kwarg('mbstd_num_features', 1),
|
245 |
+
activation = kwarg('nonlinearity', 'lrelu'),
|
246 |
+
),
|
247 |
+
)
|
248 |
+
|
249 |
+
# Check for unknown kwargs.
|
250 |
+
kwarg('structure')
|
251 |
+
kwarg('conditioning')
|
252 |
+
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
|
253 |
+
if len(unknown_kwargs) > 0:
|
254 |
+
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0])
|
255 |
+
|
256 |
+
# Collect params.
|
257 |
+
tf_params = _collect_tf_params(tf_D)
|
258 |
+
for name, value in list(tf_params.items()):
|
259 |
+
match = re.fullmatch(r'FromRGB_lod(\d+)/(.*)', name)
|
260 |
+
if match:
|
261 |
+
r = kwargs.img_resolution // (2 ** int(match.group(1)))
|
262 |
+
tf_params[f'{r}x{r}/FromRGB/{match.group(2)}'] = value
|
263 |
+
kwargs.architecture = 'orig'
|
264 |
+
#for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}')
|
265 |
+
|
266 |
+
# Convert params.
|
267 |
+
from training import networks_stylegan2
|
268 |
+
D = networks_stylegan2.Discriminator(**kwargs).eval().requires_grad_(False)
|
269 |
+
# pylint: disable=unnecessary-lambda
|
270 |
+
# pylint: disable=f-string-without-interpolation
|
271 |
+
_populate_module_params(D,
|
272 |
+
r'b(\d+)\.fromrgb\.weight', lambda r: tf_params[f'{r}x{r}/FromRGB/weight'].transpose(3, 2, 0, 1),
|
273 |
+
r'b(\d+)\.fromrgb\.bias', lambda r: tf_params[f'{r}x{r}/FromRGB/bias'],
|
274 |
+
r'b(\d+)\.conv(\d+)\.weight', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'].transpose(3, 2, 0, 1),
|
275 |
+
r'b(\d+)\.conv(\d+)\.bias', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'],
|
276 |
+
r'b(\d+)\.skip\.weight', lambda r: tf_params[f'{r}x{r}/Skip/weight'].transpose(3, 2, 0, 1),
|
277 |
+
r'mapping\.embed\.weight', lambda: tf_params[f'LabelEmbed/weight'].transpose(),
|
278 |
+
r'mapping\.embed\.bias', lambda: tf_params[f'LabelEmbed/bias'],
|
279 |
+
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'Mapping{i}/weight'].transpose(),
|
280 |
+
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'Mapping{i}/bias'],
|
281 |
+
r'b4\.conv\.weight', lambda: tf_params[f'4x4/Conv/weight'].transpose(3, 2, 0, 1),
|
282 |
+
r'b4\.conv\.bias', lambda: tf_params[f'4x4/Conv/bias'],
|
283 |
+
r'b4\.fc\.weight', lambda: tf_params[f'4x4/Dense0/weight'].transpose(),
|
284 |
+
r'b4\.fc\.bias', lambda: tf_params[f'4x4/Dense0/bias'],
|
285 |
+
r'b4\.out\.weight', lambda: tf_params[f'Output/weight'].transpose(),
|
286 |
+
r'b4\.out\.bias', lambda: tf_params[f'Output/bias'],
|
287 |
+
r'.*\.resample_filter', None,
|
288 |
+
)
|
289 |
+
return D
|
290 |
+
|
291 |
+
#----------------------------------------------------------------------------
|
292 |
+
|
293 |
+
@click.command()
|
294 |
+
@click.option('--source', help='Input pickle', required=True, metavar='PATH')
|
295 |
+
@click.option('--dest', help='Output pickle', required=True, metavar='PATH')
|
296 |
+
@click.option('--force-fp16', help='Force the networks to use FP16', type=bool, default=False, metavar='BOOL', show_default=True)
|
297 |
+
def convert_network_pickle(source, dest, force_fp16):
|
298 |
+
"""Convert legacy network pickle into the native PyTorch format.
|
299 |
+
|
300 |
+
The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA.
|
301 |
+
It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks.
|
302 |
+
|
303 |
+
Example:
|
304 |
+
|
305 |
+
\b
|
306 |
+
python legacy.py \\
|
307 |
+
--source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\
|
308 |
+
--dest=stylegan2-cat-config-f.pkl
|
309 |
+
"""
|
310 |
+
print(f'Loading "{source}"...')
|
311 |
+
with dnnlib.util.open_url(source) as f:
|
312 |
+
data = load_network_pkl(f, force_fp16=force_fp16)
|
313 |
+
print(f'Saving "{dest}"...')
|
314 |
+
with open(dest, 'wb') as f:
|
315 |
+
pickle.dump(data, f)
|
316 |
+
print('Done.')
|
317 |
+
|
318 |
+
#----------------------------------------------------------------------------
|
319 |
+
|
320 |
+
if __name__ == "__main__":
|
321 |
+
convert_network_pickle() # pylint: disable=no-value-for-parameter
|
322 |
+
|
323 |
+
#----------------------------------------------------------------------------
|
metrics/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|
metrics/equivariance.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Equivariance metrics (EQ-T, EQ-T_frac, and EQ-R) from the paper
|
10 |
+
"Alias-Free Generative Adversarial Networks"."""
|
11 |
+
|
12 |
+
import copy
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
import torch.fft
|
16 |
+
from torch_utils.ops import upfirdn2d
|
17 |
+
from . import metric_utils
|
18 |
+
|
19 |
+
#----------------------------------------------------------------------------
|
20 |
+
# Utilities.
|
21 |
+
|
22 |
+
def sinc(x):
|
23 |
+
y = (x * np.pi).abs()
|
24 |
+
z = torch.sin(y) / y.clamp(1e-30, float('inf'))
|
25 |
+
return torch.where(y < 1e-30, torch.ones_like(x), z)
|
26 |
+
|
27 |
+
def lanczos_window(x, a):
|
28 |
+
x = x.abs() / a
|
29 |
+
return torch.where(x < 1, sinc(x), torch.zeros_like(x))
|
30 |
+
|
31 |
+
def rotation_matrix(angle):
|
32 |
+
angle = torch.as_tensor(angle).to(torch.float32)
|
33 |
+
mat = torch.eye(3, device=angle.device)
|
34 |
+
mat[0, 0] = angle.cos()
|
35 |
+
mat[0, 1] = angle.sin()
|
36 |
+
mat[1, 0] = -angle.sin()
|
37 |
+
mat[1, 1] = angle.cos()
|
38 |
+
return mat
|
39 |
+
|
40 |
+
#----------------------------------------------------------------------------
|
41 |
+
# Apply integer translation to a batch of 2D images. Corresponds to the
|
42 |
+
# operator T_x in Appendix E.1.
|
43 |
+
|
44 |
+
def apply_integer_translation(x, tx, ty):
|
45 |
+
_N, _C, H, W = x.shape
|
46 |
+
tx = torch.as_tensor(tx * W).to(dtype=torch.float32, device=x.device)
|
47 |
+
ty = torch.as_tensor(ty * H).to(dtype=torch.float32, device=x.device)
|
48 |
+
ix = tx.round().to(torch.int64)
|
49 |
+
iy = ty.round().to(torch.int64)
|
50 |
+
|
51 |
+
z = torch.zeros_like(x)
|
52 |
+
m = torch.zeros_like(x)
|
53 |
+
if abs(ix) < W and abs(iy) < H:
|
54 |
+
y = x[:, :, max(-iy,0) : H+min(-iy,0), max(-ix,0) : W+min(-ix,0)]
|
55 |
+
z[:, :, max(iy,0) : H+min(iy,0), max(ix,0) : W+min(ix,0)] = y
|
56 |
+
m[:, :, max(iy,0) : H+min(iy,0), max(ix,0) : W+min(ix,0)] = 1
|
57 |
+
return z, m
|
58 |
+
|
59 |
+
#----------------------------------------------------------------------------
|
60 |
+
# Apply integer translation to a batch of 2D images. Corresponds to the
|
61 |
+
# operator T_x in Appendix E.2.
|
62 |
+
|
63 |
+
def apply_fractional_translation(x, tx, ty, a=3):
|
64 |
+
_N, _C, H, W = x.shape
|
65 |
+
tx = torch.as_tensor(tx * W).to(dtype=torch.float32, device=x.device)
|
66 |
+
ty = torch.as_tensor(ty * H).to(dtype=torch.float32, device=x.device)
|
67 |
+
ix = tx.floor().to(torch.int64)
|
68 |
+
iy = ty.floor().to(torch.int64)
|
69 |
+
fx = tx - ix
|
70 |
+
fy = ty - iy
|
71 |
+
b = a - 1
|
72 |
+
|
73 |
+
z = torch.zeros_like(x)
|
74 |
+
zx0 = max(ix - b, 0)
|
75 |
+
zy0 = max(iy - b, 0)
|
76 |
+
zx1 = min(ix + a, 0) + W
|
77 |
+
zy1 = min(iy + a, 0) + H
|
78 |
+
if zx0 < zx1 and zy0 < zy1:
|
79 |
+
taps = torch.arange(a * 2, device=x.device) - b
|
80 |
+
filter_x = (sinc(taps - fx) * sinc((taps - fx) / a)).unsqueeze(0)
|
81 |
+
filter_y = (sinc(taps - fy) * sinc((taps - fy) / a)).unsqueeze(1)
|
82 |
+
y = x
|
83 |
+
y = upfirdn2d.filter2d(y, filter_x / filter_x.sum(), padding=[b,a,0,0])
|
84 |
+
y = upfirdn2d.filter2d(y, filter_y / filter_y.sum(), padding=[0,0,b,a])
|
85 |
+
y = y[:, :, max(b-iy,0) : H+b+a+min(-iy-a,0), max(b-ix,0) : W+b+a+min(-ix-a,0)]
|
86 |
+
z[:, :, zy0:zy1, zx0:zx1] = y
|
87 |
+
|
88 |
+
m = torch.zeros_like(x)
|
89 |
+
mx0 = max(ix + a, 0)
|
90 |
+
my0 = max(iy + a, 0)
|
91 |
+
mx1 = min(ix - b, 0) + W
|
92 |
+
my1 = min(iy - b, 0) + H
|
93 |
+
if mx0 < mx1 and my0 < my1:
|
94 |
+
m[:, :, my0:my1, mx0:mx1] = 1
|
95 |
+
return z, m
|
96 |
+
|
97 |
+
#----------------------------------------------------------------------------
|
98 |
+
# Construct an oriented low-pass filter that applies the appropriate
|
99 |
+
# bandlimit with respect to the input and output of the given affine 2D
|
100 |
+
# image transformation.
|
101 |
+
|
102 |
+
def construct_affine_bandlimit_filter(mat, a=3, amax=16, aflt=64, up=4, cutoff_in=1, cutoff_out=1):
|
103 |
+
assert a <= amax < aflt
|
104 |
+
mat = torch.as_tensor(mat).to(torch.float32)
|
105 |
+
|
106 |
+
# Construct 2D filter taps in input & output coordinate spaces.
|
107 |
+
taps = ((torch.arange(aflt * up * 2 - 1, device=mat.device) + 1) / up - aflt).roll(1 - aflt * up)
|
108 |
+
yi, xi = torch.meshgrid(taps, taps)
|
109 |
+
xo, yo = (torch.stack([xi, yi], dim=2) @ mat[:2, :2].t()).unbind(2)
|
110 |
+
|
111 |
+
# Convolution of two oriented 2D sinc filters.
|
112 |
+
fi = sinc(xi * cutoff_in) * sinc(yi * cutoff_in)
|
113 |
+
fo = sinc(xo * cutoff_out) * sinc(yo * cutoff_out)
|
114 |
+
f = torch.fft.ifftn(torch.fft.fftn(fi) * torch.fft.fftn(fo)).real
|
115 |
+
|
116 |
+
# Convolution of two oriented 2D Lanczos windows.
|
117 |
+
wi = lanczos_window(xi, a) * lanczos_window(yi, a)
|
118 |
+
wo = lanczos_window(xo, a) * lanczos_window(yo, a)
|
119 |
+
w = torch.fft.ifftn(torch.fft.fftn(wi) * torch.fft.fftn(wo)).real
|
120 |
+
|
121 |
+
# Construct windowed FIR filter.
|
122 |
+
f = f * w
|
123 |
+
|
124 |
+
# Finalize.
|
125 |
+
c = (aflt - amax) * up
|
126 |
+
f = f.roll([aflt * up - 1] * 2, dims=[0,1])[c:-c, c:-c]
|
127 |
+
f = torch.nn.functional.pad(f, [0, 1, 0, 1]).reshape(amax * 2, up, amax * 2, up)
|
128 |
+
f = f / f.sum([0,2], keepdim=True) / (up ** 2)
|
129 |
+
f = f.reshape(amax * 2 * up, amax * 2 * up)[:-1, :-1]
|
130 |
+
return f
|
131 |
+
|
132 |
+
#----------------------------------------------------------------------------
|
133 |
+
# Apply the given affine transformation to a batch of 2D images.
|
134 |
+
|
135 |
+
def apply_affine_transformation(x, mat, up=4, **filter_kwargs):
|
136 |
+
_N, _C, H, W = x.shape
|
137 |
+
mat = torch.as_tensor(mat).to(dtype=torch.float32, device=x.device)
|
138 |
+
|
139 |
+
# Construct filter.
|
140 |
+
f = construct_affine_bandlimit_filter(mat, up=up, **filter_kwargs)
|
141 |
+
assert f.ndim == 2 and f.shape[0] == f.shape[1] and f.shape[0] % 2 == 1
|
142 |
+
p = f.shape[0] // 2
|
143 |
+
|
144 |
+
# Construct sampling grid.
|
145 |
+
theta = mat.inverse()
|
146 |
+
theta[:2, 2] *= 2
|
147 |
+
theta[0, 2] += 1 / up / W
|
148 |
+
theta[1, 2] += 1 / up / H
|
149 |
+
theta[0, :] *= W / (W + p / up * 2)
|
150 |
+
theta[1, :] *= H / (H + p / up * 2)
|
151 |
+
theta = theta[:2, :3].unsqueeze(0).repeat([x.shape[0], 1, 1])
|
152 |
+
g = torch.nn.functional.affine_grid(theta, x.shape, align_corners=False)
|
153 |
+
|
154 |
+
# Resample image.
|
155 |
+
y = upfirdn2d.upsample2d(x=x, f=f, up=up, padding=p)
|
156 |
+
z = torch.nn.functional.grid_sample(y, g, mode='bilinear', padding_mode='zeros', align_corners=False)
|
157 |
+
|
158 |
+
# Form mask.
|
159 |
+
m = torch.zeros_like(y)
|
160 |
+
c = p * 2 + 1
|
161 |
+
m[:, :, c:-c, c:-c] = 1
|
162 |
+
m = torch.nn.functional.grid_sample(m, g, mode='nearest', padding_mode='zeros', align_corners=False)
|
163 |
+
return z, m
|
164 |
+
|
165 |
+
#----------------------------------------------------------------------------
|
166 |
+
# Apply fractional rotation to a batch of 2D images. Corresponds to the
|
167 |
+
# operator R_\alpha in Appendix E.3.
|
168 |
+
|
169 |
+
def apply_fractional_rotation(x, angle, a=3, **filter_kwargs):
|
170 |
+
angle = torch.as_tensor(angle).to(dtype=torch.float32, device=x.device)
|
171 |
+
mat = rotation_matrix(angle)
|
172 |
+
return apply_affine_transformation(x, mat, a=a, amax=a*2, **filter_kwargs)
|
173 |
+
|
174 |
+
#----------------------------------------------------------------------------
|
175 |
+
# Modify the frequency content of a batch of 2D images as if they had undergo
|
176 |
+
# fractional rotation -- but without actually rotating them. Corresponds to
|
177 |
+
# the operator R^*_\alpha in Appendix E.3.
|
178 |
+
|
179 |
+
def apply_fractional_pseudo_rotation(x, angle, a=3, **filter_kwargs):
|
180 |
+
angle = torch.as_tensor(angle).to(dtype=torch.float32, device=x.device)
|
181 |
+
mat = rotation_matrix(-angle)
|
182 |
+
f = construct_affine_bandlimit_filter(mat, a=a, amax=a*2, up=1, **filter_kwargs)
|
183 |
+
y = upfirdn2d.filter2d(x=x, f=f)
|
184 |
+
m = torch.zeros_like(y)
|
185 |
+
c = f.shape[0] // 2
|
186 |
+
m[:, :, c:-c, c:-c] = 1
|
187 |
+
return y, m
|
188 |
+
|
189 |
+
#----------------------------------------------------------------------------
|
190 |
+
# Compute the selected equivariance metrics for the given generator.
|
191 |
+
|
192 |
+
def compute_equivariance_metrics(opts, num_samples, batch_size, translate_max=0.125, rotate_max=1, compute_eqt_int=False, compute_eqt_frac=False, compute_eqr=False):
|
193 |
+
assert compute_eqt_int or compute_eqt_frac or compute_eqr
|
194 |
+
|
195 |
+
# Setup generator and labels.
|
196 |
+
G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device)
|
197 |
+
I = torch.eye(3, device=opts.device)
|
198 |
+
M = getattr(getattr(getattr(G, 'synthesis', None), 'input', None), 'transform', None)
|
199 |
+
if M is None:
|
200 |
+
raise ValueError('Cannot compute equivariance metrics; the given generator does not support user-specified image transformations')
|
201 |
+
c_iter = metric_utils.iterate_random_labels(opts=opts, batch_size=batch_size)
|
202 |
+
|
203 |
+
# Sampling loop.
|
204 |
+
sums = None
|
205 |
+
progress = opts.progress.sub(tag='eq sampling', num_items=num_samples)
|
206 |
+
for batch_start in range(0, num_samples, batch_size * opts.num_gpus):
|
207 |
+
progress.update(batch_start)
|
208 |
+
s = []
|
209 |
+
|
210 |
+
# Randomize noise buffers, if any.
|
211 |
+
for name, buf in G.named_buffers():
|
212 |
+
if name.endswith('.noise_const'):
|
213 |
+
buf.copy_(torch.randn_like(buf))
|
214 |
+
|
215 |
+
# Run mapping network.
|
216 |
+
z = torch.randn([batch_size, G.z_dim], device=opts.device)
|
217 |
+
c = next(c_iter)
|
218 |
+
ws = G.mapping(z=z, c=c)
|
219 |
+
|
220 |
+
# Generate reference image.
|
221 |
+
M[:] = I
|
222 |
+
orig = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
|
223 |
+
|
224 |
+
# Integer translation (EQ-T).
|
225 |
+
if compute_eqt_int:
|
226 |
+
t = (torch.rand(2, device=opts.device) * 2 - 1) * translate_max
|
227 |
+
t = (t * G.img_resolution).round() / G.img_resolution
|
228 |
+
M[:] = I
|
229 |
+
M[:2, 2] = -t
|
230 |
+
img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
|
231 |
+
ref, mask = apply_integer_translation(orig, t[0], t[1])
|
232 |
+
s += [(ref - img).square() * mask, mask]
|
233 |
+
|
234 |
+
# Fractional translation (EQ-T_frac).
|
235 |
+
if compute_eqt_frac:
|
236 |
+
t = (torch.rand(2, device=opts.device) * 2 - 1) * translate_max
|
237 |
+
M[:] = I
|
238 |
+
M[:2, 2] = -t
|
239 |
+
img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
|
240 |
+
ref, mask = apply_fractional_translation(orig, t[0], t[1])
|
241 |
+
s += [(ref - img).square() * mask, mask]
|
242 |
+
|
243 |
+
# Rotation (EQ-R).
|
244 |
+
if compute_eqr:
|
245 |
+
angle = (torch.rand([], device=opts.device) * 2 - 1) * (rotate_max * np.pi)
|
246 |
+
M[:] = rotation_matrix(-angle)
|
247 |
+
img = G.synthesis(ws=ws, noise_mode='const', **opts.G_kwargs)
|
248 |
+
ref, ref_mask = apply_fractional_rotation(orig, angle)
|
249 |
+
pseudo, pseudo_mask = apply_fractional_pseudo_rotation(img, angle)
|
250 |
+
mask = ref_mask * pseudo_mask
|
251 |
+
s += [(ref - pseudo).square() * mask, mask]
|
252 |
+
|
253 |
+
# Accumulate results.
|
254 |
+
s = torch.stack([x.to(torch.float64).sum() for x in s])
|
255 |
+
sums = sums + s if sums is not None else s
|
256 |
+
progress.update(num_samples)
|
257 |
+
|
258 |
+
# Compute PSNRs.
|
259 |
+
if opts.num_gpus > 1:
|
260 |
+
torch.distributed.all_reduce(sums)
|
261 |
+
sums = sums.cpu()
|
262 |
+
mses = sums[0::2] / sums[1::2]
|
263 |
+
psnrs = np.log10(2) * 20 - mses.log10() * 10
|
264 |
+
psnrs = tuple(psnrs.numpy())
|
265 |
+
return psnrs[0] if len(psnrs) == 1 else psnrs
|
266 |
+
|
267 |
+
#----------------------------------------------------------------------------
|
metrics/frechet_inception_distance.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Frechet Inception Distance (FID) from the paper
|
10 |
+
"GANs trained by a two time-scale update rule converge to a local Nash
|
11 |
+
equilibrium". Matches the original implementation by Heusel et al. at
|
12 |
+
https://github.com/bioinf-jku/TTUR/blob/master/fid.py"""
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import scipy.linalg
|
16 |
+
from . import metric_utils
|
17 |
+
|
18 |
+
#----------------------------------------------------------------------------
|
19 |
+
|
20 |
+
def compute_fid(opts, max_real, num_gen):
|
21 |
+
# Direct TorchScript translation of http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
|
22 |
+
detector_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl'
|
23 |
+
detector_kwargs = dict(return_features=True) # Return raw features before the softmax layer.
|
24 |
+
|
25 |
+
mu_real, sigma_real = metric_utils.compute_feature_stats_for_dataset(
|
26 |
+
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
|
27 |
+
rel_lo=0, rel_hi=0, capture_mean_cov=True, max_items=max_real).get_mean_cov()
|
28 |
+
|
29 |
+
mu_gen, sigma_gen = metric_utils.compute_feature_stats_for_generator(
|
30 |
+
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
|
31 |
+
rel_lo=0, rel_hi=1, capture_mean_cov=True, max_items=num_gen).get_mean_cov()
|
32 |
+
|
33 |
+
if opts.rank != 0:
|
34 |
+
return float('nan')
|
35 |
+
|
36 |
+
m = np.square(mu_gen - mu_real).sum()
|
37 |
+
s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member
|
38 |
+
fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2))
|
39 |
+
return float(fid)
|
40 |
+
|
41 |
+
#----------------------------------------------------------------------------
|
metrics/inception_score.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Inception Score (IS) from the paper "Improved techniques for training
|
10 |
+
GANs". Matches the original implementation by Salimans et al. at
|
11 |
+
https://github.com/openai/improved-gan/blob/master/inception_score/model.py"""
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
from . import metric_utils
|
15 |
+
|
16 |
+
#----------------------------------------------------------------------------
|
17 |
+
|
18 |
+
def compute_is(opts, num_gen, num_splits):
|
19 |
+
# Direct TorchScript translation of http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
|
20 |
+
detector_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl'
|
21 |
+
detector_kwargs = dict(no_output_bias=True) # Match the original implementation by not applying bias in the softmax layer.
|
22 |
+
|
23 |
+
gen_probs = metric_utils.compute_feature_stats_for_generator(
|
24 |
+
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
|
25 |
+
capture_all=True, max_items=num_gen).get_all()
|
26 |
+
|
27 |
+
if opts.rank != 0:
|
28 |
+
return float('nan'), float('nan')
|
29 |
+
|
30 |
+
scores = []
|
31 |
+
for i in range(num_splits):
|
32 |
+
part = gen_probs[i * num_gen // num_splits : (i + 1) * num_gen // num_splits]
|
33 |
+
kl = part * (np.log(part) - np.log(np.mean(part, axis=0, keepdims=True)))
|
34 |
+
kl = np.mean(np.sum(kl, axis=1))
|
35 |
+
scores.append(np.exp(kl))
|
36 |
+
return float(np.mean(scores)), float(np.std(scores))
|
37 |
+
|
38 |
+
#----------------------------------------------------------------------------
|
metrics/kernel_inception_distance.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Kernel Inception Distance (KID) from the paper "Demystifying MMD
|
10 |
+
GANs". Matches the original implementation by Binkowski et al. at
|
11 |
+
https://github.com/mbinkowski/MMD-GAN/blob/master/gan/compute_scores.py"""
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
from . import metric_utils
|
15 |
+
|
16 |
+
#----------------------------------------------------------------------------
|
17 |
+
|
18 |
+
def compute_kid(opts, max_real, num_gen, num_subsets, max_subset_size):
|
19 |
+
# Direct TorchScript translation of http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
|
20 |
+
detector_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl'
|
21 |
+
detector_kwargs = dict(return_features=True) # Return raw features before the softmax layer.
|
22 |
+
|
23 |
+
real_features = metric_utils.compute_feature_stats_for_dataset(
|
24 |
+
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
|
25 |
+
rel_lo=0, rel_hi=0, capture_all=True, max_items=max_real).get_all()
|
26 |
+
|
27 |
+
gen_features = metric_utils.compute_feature_stats_for_generator(
|
28 |
+
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
|
29 |
+
rel_lo=0, rel_hi=1, capture_all=True, max_items=num_gen).get_all()
|
30 |
+
|
31 |
+
if opts.rank != 0:
|
32 |
+
return float('nan')
|
33 |
+
|
34 |
+
n = real_features.shape[1]
|
35 |
+
m = min(min(real_features.shape[0], gen_features.shape[0]), max_subset_size)
|
36 |
+
t = 0
|
37 |
+
for _subset_idx in range(num_subsets):
|
38 |
+
x = gen_features[np.random.choice(gen_features.shape[0], m, replace=False)]
|
39 |
+
y = real_features[np.random.choice(real_features.shape[0], m, replace=False)]
|
40 |
+
a = (x @ x.T / n + 1) ** 3 + (y @ y.T / n + 1) ** 3
|
41 |
+
b = (x @ y.T / n + 1) ** 3
|
42 |
+
t += (a.sum() - np.diag(a).sum()) / (m - 1) - b.sum() * 2 / m
|
43 |
+
kid = t / num_subsets / m
|
44 |
+
return float(kid)
|
45 |
+
|
46 |
+
#----------------------------------------------------------------------------
|
metrics/metric_main.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Main API for computing and reporting quality metrics."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import time
|
13 |
+
import json
|
14 |
+
import torch
|
15 |
+
import dnnlib
|
16 |
+
|
17 |
+
from . import metric_utils
|
18 |
+
from . import frechet_inception_distance
|
19 |
+
from . import kernel_inception_distance
|
20 |
+
from . import precision_recall
|
21 |
+
from . import perceptual_path_length
|
22 |
+
from . import inception_score
|
23 |
+
from . import equivariance
|
24 |
+
|
25 |
+
#----------------------------------------------------------------------------
|
26 |
+
|
27 |
+
_metric_dict = dict() # name => fn
|
28 |
+
|
29 |
+
def register_metric(fn):
|
30 |
+
assert callable(fn)
|
31 |
+
_metric_dict[fn.__name__] = fn
|
32 |
+
return fn
|
33 |
+
|
34 |
+
def is_valid_metric(metric):
|
35 |
+
return metric in _metric_dict
|
36 |
+
|
37 |
+
def list_valid_metrics():
|
38 |
+
return list(_metric_dict.keys())
|
39 |
+
|
40 |
+
#----------------------------------------------------------------------------
|
41 |
+
|
42 |
+
def calc_metric(metric, **kwargs): # See metric_utils.MetricOptions for the full list of arguments.
|
43 |
+
assert is_valid_metric(metric)
|
44 |
+
opts = metric_utils.MetricOptions(**kwargs)
|
45 |
+
|
46 |
+
# Calculate.
|
47 |
+
start_time = time.time()
|
48 |
+
results = _metric_dict[metric](opts)
|
49 |
+
total_time = time.time() - start_time
|
50 |
+
|
51 |
+
# Broadcast results.
|
52 |
+
for key, value in list(results.items()):
|
53 |
+
if opts.num_gpus > 1:
|
54 |
+
value = torch.as_tensor(value, dtype=torch.float64, device=opts.device)
|
55 |
+
torch.distributed.broadcast(tensor=value, src=0)
|
56 |
+
value = float(value.cpu())
|
57 |
+
results[key] = value
|
58 |
+
|
59 |
+
# Decorate with metadata.
|
60 |
+
return dnnlib.EasyDict(
|
61 |
+
results = dnnlib.EasyDict(results),
|
62 |
+
metric = metric,
|
63 |
+
total_time = total_time,
|
64 |
+
total_time_str = dnnlib.util.format_time(total_time),
|
65 |
+
num_gpus = opts.num_gpus,
|
66 |
+
)
|
67 |
+
|
68 |
+
#----------------------------------------------------------------------------
|
69 |
+
|
70 |
+
def report_metric(result_dict, run_dir=None, snapshot_pkl=None):
|
71 |
+
metric = result_dict['metric']
|
72 |
+
assert is_valid_metric(metric)
|
73 |
+
if run_dir is not None and snapshot_pkl is not None:
|
74 |
+
snapshot_pkl = os.path.relpath(snapshot_pkl, run_dir)
|
75 |
+
|
76 |
+
jsonl_line = json.dumps(dict(result_dict, snapshot_pkl=snapshot_pkl, timestamp=time.time()))
|
77 |
+
print(jsonl_line)
|
78 |
+
if run_dir is not None and os.path.isdir(run_dir):
|
79 |
+
with open(os.path.join(run_dir, f'metric-{metric}.jsonl'), 'at') as f:
|
80 |
+
f.write(jsonl_line + '\n')
|
81 |
+
|
82 |
+
#----------------------------------------------------------------------------
|
83 |
+
# Recommended metrics.
|
84 |
+
|
85 |
+
@register_metric
|
86 |
+
def fid50k_full(opts):
|
87 |
+
opts.dataset_kwargs.update(max_size=None, xflip=False)
|
88 |
+
fid = frechet_inception_distance.compute_fid(opts, max_real=None, num_gen=50000)
|
89 |
+
return dict(fid50k_full=fid)
|
90 |
+
|
91 |
+
@register_metric
|
92 |
+
def kid50k_full(opts):
|
93 |
+
opts.dataset_kwargs.update(max_size=None, xflip=False)
|
94 |
+
kid = kernel_inception_distance.compute_kid(opts, max_real=1000000, num_gen=50000, num_subsets=100, max_subset_size=1000)
|
95 |
+
return dict(kid50k_full=kid)
|
96 |
+
|
97 |
+
@register_metric
|
98 |
+
def pr50k3_full(opts):
|
99 |
+
opts.dataset_kwargs.update(max_size=None, xflip=False)
|
100 |
+
precision, recall = precision_recall.compute_pr(opts, max_real=200000, num_gen=50000, nhood_size=3, row_batch_size=10000, col_batch_size=10000)
|
101 |
+
return dict(pr50k3_full_precision=precision, pr50k3_full_recall=recall)
|
102 |
+
|
103 |
+
@register_metric
|
104 |
+
def ppl2_wend(opts):
|
105 |
+
ppl = perceptual_path_length.compute_ppl(opts, num_samples=50000, epsilon=1e-4, space='w', sampling='end', crop=False, batch_size=2)
|
106 |
+
return dict(ppl2_wend=ppl)
|
107 |
+
|
108 |
+
@register_metric
|
109 |
+
def eqt50k_int(opts):
|
110 |
+
opts.G_kwargs.update(force_fp32=True)
|
111 |
+
psnr = equivariance.compute_equivariance_metrics(opts, num_samples=50000, batch_size=4, compute_eqt_int=True)
|
112 |
+
return dict(eqt50k_int=psnr)
|
113 |
+
|
114 |
+
@register_metric
|
115 |
+
def eqt50k_frac(opts):
|
116 |
+
opts.G_kwargs.update(force_fp32=True)
|
117 |
+
psnr = equivariance.compute_equivariance_metrics(opts, num_samples=50000, batch_size=4, compute_eqt_frac=True)
|
118 |
+
return dict(eqt50k_frac=psnr)
|
119 |
+
|
120 |
+
@register_metric
|
121 |
+
def eqr50k(opts):
|
122 |
+
opts.G_kwargs.update(force_fp32=True)
|
123 |
+
psnr = equivariance.compute_equivariance_metrics(opts, num_samples=50000, batch_size=4, compute_eqr=True)
|
124 |
+
return dict(eqr50k=psnr)
|
125 |
+
|
126 |
+
#----------------------------------------------------------------------------
|
127 |
+
# Legacy metrics.
|
128 |
+
|
129 |
+
@register_metric
|
130 |
+
def fid50k(opts):
|
131 |
+
opts.dataset_kwargs.update(max_size=None)
|
132 |
+
fid = frechet_inception_distance.compute_fid(opts, max_real=50000, num_gen=50000)
|
133 |
+
return dict(fid50k=fid)
|
134 |
+
|
135 |
+
@register_metric
|
136 |
+
def kid50k(opts):
|
137 |
+
opts.dataset_kwargs.update(max_size=None)
|
138 |
+
kid = kernel_inception_distance.compute_kid(opts, max_real=50000, num_gen=50000, num_subsets=100, max_subset_size=1000)
|
139 |
+
return dict(kid50k=kid)
|
140 |
+
|
141 |
+
@register_metric
|
142 |
+
def pr50k3(opts):
|
143 |
+
opts.dataset_kwargs.update(max_size=None)
|
144 |
+
precision, recall = precision_recall.compute_pr(opts, max_real=50000, num_gen=50000, nhood_size=3, row_batch_size=10000, col_batch_size=10000)
|
145 |
+
return dict(pr50k3_precision=precision, pr50k3_recall=recall)
|
146 |
+
|
147 |
+
@register_metric
|
148 |
+
def is50k(opts):
|
149 |
+
opts.dataset_kwargs.update(max_size=None, xflip=False)
|
150 |
+
mean, std = inception_score.compute_is(opts, num_gen=50000, num_splits=10)
|
151 |
+
return dict(is50k_mean=mean, is50k_std=std)
|
152 |
+
|
153 |
+
#----------------------------------------------------------------------------
|
metrics/metric_utils.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Miscellaneous utilities used internally by the quality metrics."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import time
|
13 |
+
import hashlib
|
14 |
+
import pickle
|
15 |
+
import copy
|
16 |
+
import uuid
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
import dnnlib
|
20 |
+
|
21 |
+
#----------------------------------------------------------------------------
|
22 |
+
|
23 |
+
class MetricOptions:
|
24 |
+
def __init__(self, G=None, G_kwargs={}, dataset_kwargs={}, num_gpus=1, rank=0, device=None, progress=None, cache=True):
|
25 |
+
assert 0 <= rank < num_gpus
|
26 |
+
self.G = G
|
27 |
+
self.G_kwargs = dnnlib.EasyDict(G_kwargs)
|
28 |
+
self.dataset_kwargs = dnnlib.EasyDict(dataset_kwargs)
|
29 |
+
self.num_gpus = num_gpus
|
30 |
+
self.rank = rank
|
31 |
+
self.device = device if device is not None else torch.device('cuda', rank)
|
32 |
+
self.progress = progress.sub() if progress is not None and rank == 0 else ProgressMonitor()
|
33 |
+
self.cache = cache
|
34 |
+
|
35 |
+
#----------------------------------------------------------------------------
|
36 |
+
|
37 |
+
_feature_detector_cache = dict()
|
38 |
+
|
39 |
+
def get_feature_detector_name(url):
|
40 |
+
return os.path.splitext(url.split('/')[-1])[0]
|
41 |
+
|
42 |
+
def get_feature_detector(url, device=torch.device('cpu'), num_gpus=1, rank=0, verbose=False):
|
43 |
+
assert 0 <= rank < num_gpus
|
44 |
+
key = (url, device)
|
45 |
+
if key not in _feature_detector_cache:
|
46 |
+
is_leader = (rank == 0)
|
47 |
+
if not is_leader and num_gpus > 1:
|
48 |
+
torch.distributed.barrier() # leader goes first
|
49 |
+
with dnnlib.util.open_url(url, verbose=(verbose and is_leader)) as f:
|
50 |
+
_feature_detector_cache[key] = pickle.load(f).to(device)
|
51 |
+
if is_leader and num_gpus > 1:
|
52 |
+
torch.distributed.barrier() # others follow
|
53 |
+
return _feature_detector_cache[key]
|
54 |
+
|
55 |
+
#----------------------------------------------------------------------------
|
56 |
+
|
57 |
+
def iterate_random_labels(opts, batch_size):
|
58 |
+
if opts.G.c_dim == 0:
|
59 |
+
c = torch.zeros([batch_size, opts.G.c_dim], device=opts.device)
|
60 |
+
while True:
|
61 |
+
yield c
|
62 |
+
else:
|
63 |
+
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs)
|
64 |
+
while True:
|
65 |
+
c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(batch_size)]
|
66 |
+
c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device)
|
67 |
+
yield c
|
68 |
+
|
69 |
+
#----------------------------------------------------------------------------
|
70 |
+
|
71 |
+
class FeatureStats:
|
72 |
+
def __init__(self, capture_all=False, capture_mean_cov=False, max_items=None):
|
73 |
+
self.capture_all = capture_all
|
74 |
+
self.capture_mean_cov = capture_mean_cov
|
75 |
+
self.max_items = max_items
|
76 |
+
self.num_items = 0
|
77 |
+
self.num_features = None
|
78 |
+
self.all_features = None
|
79 |
+
self.raw_mean = None
|
80 |
+
self.raw_cov = None
|
81 |
+
|
82 |
+
def set_num_features(self, num_features):
|
83 |
+
if self.num_features is not None:
|
84 |
+
assert num_features == self.num_features
|
85 |
+
else:
|
86 |
+
self.num_features = num_features
|
87 |
+
self.all_features = []
|
88 |
+
self.raw_mean = np.zeros([num_features], dtype=np.float64)
|
89 |
+
self.raw_cov = np.zeros([num_features, num_features], dtype=np.float64)
|
90 |
+
|
91 |
+
def is_full(self):
|
92 |
+
return (self.max_items is not None) and (self.num_items >= self.max_items)
|
93 |
+
|
94 |
+
def append(self, x):
|
95 |
+
x = np.asarray(x, dtype=np.float32)
|
96 |
+
assert x.ndim == 2
|
97 |
+
if (self.max_items is not None) and (self.num_items + x.shape[0] > self.max_items):
|
98 |
+
if self.num_items >= self.max_items:
|
99 |
+
return
|
100 |
+
x = x[:self.max_items - self.num_items]
|
101 |
+
|
102 |
+
self.set_num_features(x.shape[1])
|
103 |
+
self.num_items += x.shape[0]
|
104 |
+
if self.capture_all:
|
105 |
+
self.all_features.append(x)
|
106 |
+
if self.capture_mean_cov:
|
107 |
+
x64 = x.astype(np.float64)
|
108 |
+
self.raw_mean += x64.sum(axis=0)
|
109 |
+
self.raw_cov += x64.T @ x64
|
110 |
+
|
111 |
+
def append_torch(self, x, num_gpus=1, rank=0):
|
112 |
+
assert isinstance(x, torch.Tensor) and x.ndim == 2
|
113 |
+
assert 0 <= rank < num_gpus
|
114 |
+
if num_gpus > 1:
|
115 |
+
ys = []
|
116 |
+
for src in range(num_gpus):
|
117 |
+
y = x.clone()
|
118 |
+
torch.distributed.broadcast(y, src=src)
|
119 |
+
ys.append(y)
|
120 |
+
x = torch.stack(ys, dim=1).flatten(0, 1) # interleave samples
|
121 |
+
self.append(x.cpu().numpy())
|
122 |
+
|
123 |
+
def get_all(self):
|
124 |
+
assert self.capture_all
|
125 |
+
return np.concatenate(self.all_features, axis=0)
|
126 |
+
|
127 |
+
def get_all_torch(self):
|
128 |
+
return torch.from_numpy(self.get_all())
|
129 |
+
|
130 |
+
def get_mean_cov(self):
|
131 |
+
assert self.capture_mean_cov
|
132 |
+
mean = self.raw_mean / self.num_items
|
133 |
+
cov = self.raw_cov / self.num_items
|
134 |
+
cov = cov - np.outer(mean, mean)
|
135 |
+
return mean, cov
|
136 |
+
|
137 |
+
def save(self, pkl_file):
|
138 |
+
with open(pkl_file, 'wb') as f:
|
139 |
+
pickle.dump(self.__dict__, f)
|
140 |
+
|
141 |
+
@staticmethod
|
142 |
+
def load(pkl_file):
|
143 |
+
with open(pkl_file, 'rb') as f:
|
144 |
+
s = dnnlib.EasyDict(pickle.load(f))
|
145 |
+
obj = FeatureStats(capture_all=s.capture_all, max_items=s.max_items)
|
146 |
+
obj.__dict__.update(s)
|
147 |
+
return obj
|
148 |
+
|
149 |
+
#----------------------------------------------------------------------------
|
150 |
+
|
151 |
+
class ProgressMonitor:
|
152 |
+
def __init__(self, tag=None, num_items=None, flush_interval=1000, verbose=False, progress_fn=None, pfn_lo=0, pfn_hi=1000, pfn_total=1000):
|
153 |
+
self.tag = tag
|
154 |
+
self.num_items = num_items
|
155 |
+
self.verbose = verbose
|
156 |
+
self.flush_interval = flush_interval
|
157 |
+
self.progress_fn = progress_fn
|
158 |
+
self.pfn_lo = pfn_lo
|
159 |
+
self.pfn_hi = pfn_hi
|
160 |
+
self.pfn_total = pfn_total
|
161 |
+
self.start_time = time.time()
|
162 |
+
self.batch_time = self.start_time
|
163 |
+
self.batch_items = 0
|
164 |
+
if self.progress_fn is not None:
|
165 |
+
self.progress_fn(self.pfn_lo, self.pfn_total)
|
166 |
+
|
167 |
+
def update(self, cur_items):
|
168 |
+
assert (self.num_items is None) or (cur_items <= self.num_items)
|
169 |
+
if (cur_items < self.batch_items + self.flush_interval) and (self.num_items is None or cur_items < self.num_items):
|
170 |
+
return
|
171 |
+
cur_time = time.time()
|
172 |
+
total_time = cur_time - self.start_time
|
173 |
+
time_per_item = (cur_time - self.batch_time) / max(cur_items - self.batch_items, 1)
|
174 |
+
if (self.verbose) and (self.tag is not None):
|
175 |
+
print(f'{self.tag:<19s} items {cur_items:<7d} time {dnnlib.util.format_time(total_time):<12s} ms/item {time_per_item*1e3:.2f}')
|
176 |
+
self.batch_time = cur_time
|
177 |
+
self.batch_items = cur_items
|
178 |
+
|
179 |
+
if (self.progress_fn is not None) and (self.num_items is not None):
|
180 |
+
self.progress_fn(self.pfn_lo + (self.pfn_hi - self.pfn_lo) * (cur_items / self.num_items), self.pfn_total)
|
181 |
+
|
182 |
+
def sub(self, tag=None, num_items=None, flush_interval=1000, rel_lo=0, rel_hi=1):
|
183 |
+
return ProgressMonitor(
|
184 |
+
tag = tag,
|
185 |
+
num_items = num_items,
|
186 |
+
flush_interval = flush_interval,
|
187 |
+
verbose = self.verbose,
|
188 |
+
progress_fn = self.progress_fn,
|
189 |
+
pfn_lo = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_lo,
|
190 |
+
pfn_hi = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_hi,
|
191 |
+
pfn_total = self.pfn_total,
|
192 |
+
)
|
193 |
+
|
194 |
+
#----------------------------------------------------------------------------
|
195 |
+
|
196 |
+
def compute_feature_stats_for_dataset(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, data_loader_kwargs=None, max_items=None, **stats_kwargs):
|
197 |
+
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs)
|
198 |
+
if data_loader_kwargs is None:
|
199 |
+
data_loader_kwargs = dict(pin_memory=True, num_workers=3, prefetch_factor=2)
|
200 |
+
|
201 |
+
# Try to lookup from cache.
|
202 |
+
cache_file = None
|
203 |
+
if opts.cache:
|
204 |
+
# Choose cache file name.
|
205 |
+
args = dict(dataset_kwargs=opts.dataset_kwargs, detector_url=detector_url, detector_kwargs=detector_kwargs, stats_kwargs=stats_kwargs)
|
206 |
+
md5 = hashlib.md5(repr(sorted(args.items())).encode('utf-8'))
|
207 |
+
cache_tag = f'{dataset.name}-{get_feature_detector_name(detector_url)}-{md5.hexdigest()}'
|
208 |
+
cache_file = dnnlib.make_cache_dir_path('gan-metrics', cache_tag + '.pkl')
|
209 |
+
|
210 |
+
# Check if the file exists (all processes must agree).
|
211 |
+
flag = os.path.isfile(cache_file) if opts.rank == 0 else False
|
212 |
+
if opts.num_gpus > 1:
|
213 |
+
flag = torch.as_tensor(flag, dtype=torch.float32, device=opts.device)
|
214 |
+
torch.distributed.broadcast(tensor=flag, src=0)
|
215 |
+
flag = (float(flag.cpu()) != 0)
|
216 |
+
|
217 |
+
# Load.
|
218 |
+
if flag:
|
219 |
+
return FeatureStats.load(cache_file)
|
220 |
+
|
221 |
+
# Initialize.
|
222 |
+
num_items = len(dataset)
|
223 |
+
if max_items is not None:
|
224 |
+
num_items = min(num_items, max_items)
|
225 |
+
stats = FeatureStats(max_items=num_items, **stats_kwargs)
|
226 |
+
progress = opts.progress.sub(tag='dataset features', num_items=num_items, rel_lo=rel_lo, rel_hi=rel_hi)
|
227 |
+
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose)
|
228 |
+
|
229 |
+
# Main loop.
|
230 |
+
item_subset = [(i * opts.num_gpus + opts.rank) % num_items for i in range((num_items - 1) // opts.num_gpus + 1)]
|
231 |
+
for images, _labels in torch.utils.data.DataLoader(dataset=dataset, sampler=item_subset, batch_size=batch_size, **data_loader_kwargs):
|
232 |
+
if images.shape[1] == 1:
|
233 |
+
images = images.repeat([1, 3, 1, 1])
|
234 |
+
features = detector(images.to(opts.device), **detector_kwargs)
|
235 |
+
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank)
|
236 |
+
progress.update(stats.num_items)
|
237 |
+
|
238 |
+
# Save to cache.
|
239 |
+
if cache_file is not None and opts.rank == 0:
|
240 |
+
os.makedirs(os.path.dirname(cache_file), exist_ok=True)
|
241 |
+
temp_file = cache_file + '.' + uuid.uuid4().hex
|
242 |
+
stats.save(temp_file)
|
243 |
+
os.replace(temp_file, cache_file) # atomic
|
244 |
+
return stats
|
245 |
+
|
246 |
+
#----------------------------------------------------------------------------
|
247 |
+
|
248 |
+
def compute_feature_stats_for_generator(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, batch_gen=None, **stats_kwargs):
|
249 |
+
if batch_gen is None:
|
250 |
+
batch_gen = min(batch_size, 4)
|
251 |
+
assert batch_size % batch_gen == 0
|
252 |
+
|
253 |
+
# Setup generator and labels.
|
254 |
+
G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device)
|
255 |
+
c_iter = iterate_random_labels(opts=opts, batch_size=batch_gen)
|
256 |
+
|
257 |
+
# Initialize.
|
258 |
+
stats = FeatureStats(**stats_kwargs)
|
259 |
+
assert stats.max_items is not None
|
260 |
+
progress = opts.progress.sub(tag='generator features', num_items=stats.max_items, rel_lo=rel_lo, rel_hi=rel_hi)
|
261 |
+
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose)
|
262 |
+
|
263 |
+
# Main loop.
|
264 |
+
while not stats.is_full():
|
265 |
+
images = []
|
266 |
+
for _i in range(batch_size // batch_gen):
|
267 |
+
z = torch.randn([batch_gen, G.z_dim], device=opts.device)
|
268 |
+
img = G(z=z, c=next(c_iter), **opts.G_kwargs)
|
269 |
+
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
270 |
+
images.append(img)
|
271 |
+
images = torch.cat(images)
|
272 |
+
if images.shape[1] == 1:
|
273 |
+
images = images.repeat([1, 3, 1, 1])
|
274 |
+
features = detector(images, **detector_kwargs)
|
275 |
+
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank)
|
276 |
+
progress.update(stats.num_items)
|
277 |
+
return stats
|
278 |
+
|
279 |
+
#----------------------------------------------------------------------------
|
metrics/perceptual_path_length.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Perceptual Path Length (PPL) from the paper "A Style-Based Generator
|
10 |
+
Architecture for Generative Adversarial Networks". Matches the original
|
11 |
+
implementation by Karras et al. at
|
12 |
+
https://github.com/NVlabs/stylegan/blob/master/metrics/perceptual_path_length.py"""
|
13 |
+
|
14 |
+
import copy
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
from . import metric_utils
|
18 |
+
|
19 |
+
#----------------------------------------------------------------------------
|
20 |
+
|
21 |
+
# Spherical interpolation of a batch of vectors.
|
22 |
+
def slerp(a, b, t):
|
23 |
+
a = a / a.norm(dim=-1, keepdim=True)
|
24 |
+
b = b / b.norm(dim=-1, keepdim=True)
|
25 |
+
d = (a * b).sum(dim=-1, keepdim=True)
|
26 |
+
p = t * torch.acos(d)
|
27 |
+
c = b - d * a
|
28 |
+
c = c / c.norm(dim=-1, keepdim=True)
|
29 |
+
d = a * torch.cos(p) + c * torch.sin(p)
|
30 |
+
d = d / d.norm(dim=-1, keepdim=True)
|
31 |
+
return d
|
32 |
+
|
33 |
+
#----------------------------------------------------------------------------
|
34 |
+
|
35 |
+
class PPLSampler(torch.nn.Module):
|
36 |
+
def __init__(self, G, G_kwargs, epsilon, space, sampling, crop, vgg16):
|
37 |
+
assert space in ['z', 'w']
|
38 |
+
assert sampling in ['full', 'end']
|
39 |
+
super().__init__()
|
40 |
+
self.G = copy.deepcopy(G)
|
41 |
+
self.G_kwargs = G_kwargs
|
42 |
+
self.epsilon = epsilon
|
43 |
+
self.space = space
|
44 |
+
self.sampling = sampling
|
45 |
+
self.crop = crop
|
46 |
+
self.vgg16 = copy.deepcopy(vgg16)
|
47 |
+
|
48 |
+
def forward(self, c):
|
49 |
+
# Generate random latents and interpolation t-values.
|
50 |
+
t = torch.rand([c.shape[0]], device=c.device) * (1 if self.sampling == 'full' else 0)
|
51 |
+
z0, z1 = torch.randn([c.shape[0] * 2, self.G.z_dim], device=c.device).chunk(2)
|
52 |
+
|
53 |
+
# Interpolate in W or Z.
|
54 |
+
if self.space == 'w':
|
55 |
+
w0, w1 = self.G.mapping(z=torch.cat([z0,z1]), c=torch.cat([c,c])).chunk(2)
|
56 |
+
wt0 = w0.lerp(w1, t.unsqueeze(1).unsqueeze(2))
|
57 |
+
wt1 = w0.lerp(w1, t.unsqueeze(1).unsqueeze(2) + self.epsilon)
|
58 |
+
else: # space == 'z'
|
59 |
+
zt0 = slerp(z0, z1, t.unsqueeze(1))
|
60 |
+
zt1 = slerp(z0, z1, t.unsqueeze(1) + self.epsilon)
|
61 |
+
wt0, wt1 = self.G.mapping(z=torch.cat([zt0,zt1]), c=torch.cat([c,c])).chunk(2)
|
62 |
+
|
63 |
+
# Randomize noise buffers.
|
64 |
+
for name, buf in self.G.named_buffers():
|
65 |
+
if name.endswith('.noise_const'):
|
66 |
+
buf.copy_(torch.randn_like(buf))
|
67 |
+
|
68 |
+
# Generate images.
|
69 |
+
img = self.G.synthesis(ws=torch.cat([wt0,wt1]), noise_mode='const', force_fp32=True, **self.G_kwargs)
|
70 |
+
|
71 |
+
# Center crop.
|
72 |
+
if self.crop:
|
73 |
+
assert img.shape[2] == img.shape[3]
|
74 |
+
c = img.shape[2] // 8
|
75 |
+
img = img[:, :, c*3 : c*7, c*2 : c*6]
|
76 |
+
|
77 |
+
# Downsample to 256x256.
|
78 |
+
factor = self.G.img_resolution // 256
|
79 |
+
if factor > 1:
|
80 |
+
img = img.reshape([-1, img.shape[1], img.shape[2] // factor, factor, img.shape[3] // factor, factor]).mean([3, 5])
|
81 |
+
|
82 |
+
# Scale dynamic range from [-1,1] to [0,255].
|
83 |
+
img = (img + 1) * (255 / 2)
|
84 |
+
if self.G.img_channels == 1:
|
85 |
+
img = img.repeat([1, 3, 1, 1])
|
86 |
+
|
87 |
+
# Evaluate differential LPIPS.
|
88 |
+
lpips_t0, lpips_t1 = self.vgg16(img, resize_images=False, return_lpips=True).chunk(2)
|
89 |
+
dist = (lpips_t0 - lpips_t1).square().sum(1) / self.epsilon ** 2
|
90 |
+
return dist
|
91 |
+
|
92 |
+
#----------------------------------------------------------------------------
|
93 |
+
|
94 |
+
def compute_ppl(opts, num_samples, epsilon, space, sampling, crop, batch_size):
|
95 |
+
vgg16_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/vgg16.pkl'
|
96 |
+
vgg16 = metric_utils.get_feature_detector(vgg16_url, num_gpus=opts.num_gpus, rank=opts.rank, verbose=opts.progress.verbose)
|
97 |
+
|
98 |
+
# Setup sampler and labels.
|
99 |
+
sampler = PPLSampler(G=opts.G, G_kwargs=opts.G_kwargs, epsilon=epsilon, space=space, sampling=sampling, crop=crop, vgg16=vgg16)
|
100 |
+
sampler.eval().requires_grad_(False).to(opts.device)
|
101 |
+
c_iter = metric_utils.iterate_random_labels(opts=opts, batch_size=batch_size)
|
102 |
+
|
103 |
+
# Sampling loop.
|
104 |
+
dist = []
|
105 |
+
progress = opts.progress.sub(tag='ppl sampling', num_items=num_samples)
|
106 |
+
for batch_start in range(0, num_samples, batch_size * opts.num_gpus):
|
107 |
+
progress.update(batch_start)
|
108 |
+
x = sampler(next(c_iter))
|
109 |
+
for src in range(opts.num_gpus):
|
110 |
+
y = x.clone()
|
111 |
+
if opts.num_gpus > 1:
|
112 |
+
torch.distributed.broadcast(y, src=src)
|
113 |
+
dist.append(y)
|
114 |
+
progress.update(num_samples)
|
115 |
+
|
116 |
+
# Compute PPL.
|
117 |
+
if opts.rank != 0:
|
118 |
+
return float('nan')
|
119 |
+
dist = torch.cat(dist)[:num_samples].cpu().numpy()
|
120 |
+
lo = np.percentile(dist, 1, interpolation='lower')
|
121 |
+
hi = np.percentile(dist, 99, interpolation='higher')
|
122 |
+
ppl = np.extract(np.logical_and(dist >= lo, dist <= hi), dist).mean()
|
123 |
+
return float(ppl)
|
124 |
+
|
125 |
+
#----------------------------------------------------------------------------
|
metrics/precision_recall.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Precision/Recall (PR) from the paper "Improved Precision and Recall
|
10 |
+
Metric for Assessing Generative Models". Matches the original implementation
|
11 |
+
by Kynkaanniemi et al. at
|
12 |
+
https://github.com/kynkaat/improved-precision-and-recall-metric/blob/master/precision_recall.py"""
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from . import metric_utils
|
16 |
+
|
17 |
+
#----------------------------------------------------------------------------
|
18 |
+
|
19 |
+
def compute_distances(row_features, col_features, num_gpus, rank, col_batch_size):
|
20 |
+
assert 0 <= rank < num_gpus
|
21 |
+
num_cols = col_features.shape[0]
|
22 |
+
num_batches = ((num_cols - 1) // col_batch_size // num_gpus + 1) * num_gpus
|
23 |
+
col_batches = torch.nn.functional.pad(col_features, [0, 0, 0, -num_cols % num_batches]).chunk(num_batches)
|
24 |
+
dist_batches = []
|
25 |
+
for col_batch in col_batches[rank :: num_gpus]:
|
26 |
+
dist_batch = torch.cdist(row_features.unsqueeze(0), col_batch.unsqueeze(0))[0]
|
27 |
+
for src in range(num_gpus):
|
28 |
+
dist_broadcast = dist_batch.clone()
|
29 |
+
if num_gpus > 1:
|
30 |
+
torch.distributed.broadcast(dist_broadcast, src=src)
|
31 |
+
dist_batches.append(dist_broadcast.cpu() if rank == 0 else None)
|
32 |
+
return torch.cat(dist_batches, dim=1)[:, :num_cols] if rank == 0 else None
|
33 |
+
|
34 |
+
#----------------------------------------------------------------------------
|
35 |
+
|
36 |
+
def compute_pr(opts, max_real, num_gen, nhood_size, row_batch_size, col_batch_size):
|
37 |
+
detector_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/vgg16.pkl'
|
38 |
+
detector_kwargs = dict(return_features=True)
|
39 |
+
|
40 |
+
real_features = metric_utils.compute_feature_stats_for_dataset(
|
41 |
+
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
|
42 |
+
rel_lo=0, rel_hi=0, capture_all=True, max_items=max_real).get_all_torch().to(torch.float16).to(opts.device)
|
43 |
+
|
44 |
+
gen_features = metric_utils.compute_feature_stats_for_generator(
|
45 |
+
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
|
46 |
+
rel_lo=0, rel_hi=1, capture_all=True, max_items=num_gen).get_all_torch().to(torch.float16).to(opts.device)
|
47 |
+
|
48 |
+
results = dict()
|
49 |
+
for name, manifold, probes in [('precision', real_features, gen_features), ('recall', gen_features, real_features)]:
|
50 |
+
kth = []
|
51 |
+
for manifold_batch in manifold.split(row_batch_size):
|
52 |
+
dist = compute_distances(row_features=manifold_batch, col_features=manifold, num_gpus=opts.num_gpus, rank=opts.rank, col_batch_size=col_batch_size)
|
53 |
+
kth.append(dist.to(torch.float32).kthvalue(nhood_size + 1).values.to(torch.float16) if opts.rank == 0 else None)
|
54 |
+
kth = torch.cat(kth) if opts.rank == 0 else None
|
55 |
+
pred = []
|
56 |
+
for probes_batch in probes.split(row_batch_size):
|
57 |
+
dist = compute_distances(row_features=probes_batch, col_features=manifold, num_gpus=opts.num_gpus, rank=opts.rank, col_batch_size=col_batch_size)
|
58 |
+
pred.append((dist <= kth).any(dim=1) if opts.rank == 0 else None)
|
59 |
+
results[name] = float(torch.cat(pred).to(torch.float32).mean() if opts.rank == 0 else 'nan')
|
60 |
+
return results['precision'], results['recall']
|
61 |
+
|
62 |
+
#----------------------------------------------------------------------------
|
torch_utils/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|
torch_utils/custom_ops.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import glob
|
10 |
+
import hashlib
|
11 |
+
import importlib
|
12 |
+
import os
|
13 |
+
import re
|
14 |
+
import shutil
|
15 |
+
import uuid
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.utils.cpp_extension
|
19 |
+
from torch.utils.file_baton import FileBaton
|
20 |
+
|
21 |
+
#----------------------------------------------------------------------------
|
22 |
+
# Global options.
|
23 |
+
|
24 |
+
verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full'
|
25 |
+
|
26 |
+
#----------------------------------------------------------------------------
|
27 |
+
# Internal helper funcs.
|
28 |
+
|
29 |
+
def _find_compiler_bindir():
|
30 |
+
patterns = [
|
31 |
+
'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64',
|
32 |
+
'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64',
|
33 |
+
'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64',
|
34 |
+
'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin',
|
35 |
+
]
|
36 |
+
for pattern in patterns:
|
37 |
+
matches = sorted(glob.glob(pattern))
|
38 |
+
if len(matches):
|
39 |
+
return matches[-1]
|
40 |
+
return None
|
41 |
+
|
42 |
+
#----------------------------------------------------------------------------
|
43 |
+
|
44 |
+
def _get_mangled_gpu_name():
|
45 |
+
name = torch.cuda.get_device_name().lower()
|
46 |
+
out = []
|
47 |
+
for c in name:
|
48 |
+
if re.match('[a-z0-9_-]+', c):
|
49 |
+
out.append(c)
|
50 |
+
else:
|
51 |
+
out.append('-')
|
52 |
+
return ''.join(out)
|
53 |
+
|
54 |
+
#----------------------------------------------------------------------------
|
55 |
+
# Main entry point for compiling and loading C++/CUDA plugins.
|
56 |
+
|
57 |
+
_cached_plugins = dict()
|
58 |
+
|
59 |
+
def get_plugin(module_name, sources, headers=None, source_dir=None, **build_kwargs):
|
60 |
+
assert verbosity in ['none', 'brief', 'full']
|
61 |
+
if headers is None:
|
62 |
+
headers = []
|
63 |
+
if source_dir is not None:
|
64 |
+
sources = [os.path.join(source_dir, fname) for fname in sources]
|
65 |
+
headers = [os.path.join(source_dir, fname) for fname in headers]
|
66 |
+
|
67 |
+
# Already cached?
|
68 |
+
if module_name in _cached_plugins:
|
69 |
+
return _cached_plugins[module_name]
|
70 |
+
|
71 |
+
# Print status.
|
72 |
+
if verbosity == 'full':
|
73 |
+
print(f'Setting up PyTorch plugin "{module_name}"...')
|
74 |
+
elif verbosity == 'brief':
|
75 |
+
print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True)
|
76 |
+
verbose_build = (verbosity == 'full')
|
77 |
+
|
78 |
+
# Compile and load.
|
79 |
+
try: # pylint: disable=too-many-nested-blocks
|
80 |
+
# Make sure we can find the necessary compiler binaries.
|
81 |
+
if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0:
|
82 |
+
compiler_bindir = _find_compiler_bindir()
|
83 |
+
if compiler_bindir is None:
|
84 |
+
raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".')
|
85 |
+
os.environ['PATH'] += ';' + compiler_bindir
|
86 |
+
|
87 |
+
# Some containers set TORCH_CUDA_ARCH_LIST to a list that can either
|
88 |
+
# break the build or unnecessarily restrict what's available to nvcc.
|
89 |
+
# Unset it to let nvcc decide based on what's available on the
|
90 |
+
# machine.
|
91 |
+
os.environ['TORCH_CUDA_ARCH_LIST'] = ''
|
92 |
+
|
93 |
+
# Incremental build md5sum trickery. Copies all the input source files
|
94 |
+
# into a cached build directory under a combined md5 digest of the input
|
95 |
+
# source files. Copying is done only if the combined digest has changed.
|
96 |
+
# This keeps input file timestamps and filenames the same as in previous
|
97 |
+
# extension builds, allowing for fast incremental rebuilds.
|
98 |
+
#
|
99 |
+
# This optimization is done only in case all the source files reside in
|
100 |
+
# a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR
|
101 |
+
# environment variable is set (we take this as a signal that the user
|
102 |
+
# actually cares about this.)
|
103 |
+
#
|
104 |
+
# EDIT: We now do it regardless of TORCH_EXTENSIOS_DIR, in order to work
|
105 |
+
# around the *.cu dependency bug in ninja config.
|
106 |
+
#
|
107 |
+
all_source_files = sorted(sources + headers)
|
108 |
+
all_source_dirs = set(os.path.dirname(fname) for fname in all_source_files)
|
109 |
+
if len(all_source_dirs) == 1: # and ('TORCH_EXTENSIONS_DIR' in os.environ):
|
110 |
+
|
111 |
+
# Compute combined hash digest for all source files.
|
112 |
+
hash_md5 = hashlib.md5()
|
113 |
+
for src in all_source_files:
|
114 |
+
with open(src, 'rb') as f:
|
115 |
+
hash_md5.update(f.read())
|
116 |
+
|
117 |
+
# Select cached build directory name.
|
118 |
+
source_digest = hash_md5.hexdigest()
|
119 |
+
build_top_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access
|
120 |
+
cached_build_dir = os.path.join(build_top_dir, f'{source_digest}-{_get_mangled_gpu_name()}')
|
121 |
+
|
122 |
+
if not os.path.isdir(cached_build_dir):
|
123 |
+
tmpdir = f'{build_top_dir}/srctmp-{uuid.uuid4().hex}'
|
124 |
+
os.makedirs(tmpdir)
|
125 |
+
for src in all_source_files:
|
126 |
+
shutil.copyfile(src, os.path.join(tmpdir, os.path.basename(src)))
|
127 |
+
try:
|
128 |
+
os.replace(tmpdir, cached_build_dir) # atomic
|
129 |
+
except OSError:
|
130 |
+
# source directory already exists, delete tmpdir and its contents.
|
131 |
+
shutil.rmtree(tmpdir)
|
132 |
+
if not os.path.isdir(cached_build_dir): raise
|
133 |
+
|
134 |
+
# Compile.
|
135 |
+
cached_sources = [os.path.join(cached_build_dir, os.path.basename(fname)) for fname in sources]
|
136 |
+
torch.utils.cpp_extension.load(name=module_name, build_directory=cached_build_dir,
|
137 |
+
verbose=verbose_build, sources=cached_sources, **build_kwargs)
|
138 |
+
else:
|
139 |
+
torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs)
|
140 |
+
|
141 |
+
# Load.
|
142 |
+
module = importlib.import_module(module_name)
|
143 |
+
|
144 |
+
except:
|
145 |
+
if verbosity == 'brief':
|
146 |
+
print('Failed!')
|
147 |
+
raise
|
148 |
+
|
149 |
+
# Print status and add to cache dict.
|
150 |
+
if verbosity == 'full':
|
151 |
+
print(f'Done setting up PyTorch plugin "{module_name}".')
|
152 |
+
elif verbosity == 'brief':
|
153 |
+
print('Done.')
|
154 |
+
_cached_plugins[module_name] = module
|
155 |
+
return module
|
156 |
+
|
157 |
+
#----------------------------------------------------------------------------
|
torch_utils/misc.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import re
|
10 |
+
import contextlib
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import warnings
|
14 |
+
import dnnlib
|
15 |
+
|
16 |
+
#----------------------------------------------------------------------------
|
17 |
+
# Cached construction of constant tensors. Avoids CPU=>GPU copy when the
|
18 |
+
# same constant is used multiple times.
|
19 |
+
|
20 |
+
_constant_cache = dict()
|
21 |
+
|
22 |
+
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
|
23 |
+
value = np.asarray(value)
|
24 |
+
if shape is not None:
|
25 |
+
shape = tuple(shape)
|
26 |
+
if dtype is None:
|
27 |
+
dtype = torch.get_default_dtype()
|
28 |
+
if device is None:
|
29 |
+
device = torch.device('cpu')
|
30 |
+
if memory_format is None:
|
31 |
+
memory_format = torch.contiguous_format
|
32 |
+
|
33 |
+
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
|
34 |
+
tensor = _constant_cache.get(key, None)
|
35 |
+
if tensor is None:
|
36 |
+
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
|
37 |
+
if shape is not None:
|
38 |
+
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
|
39 |
+
tensor = tensor.contiguous(memory_format=memory_format)
|
40 |
+
_constant_cache[key] = tensor
|
41 |
+
return tensor
|
42 |
+
|
43 |
+
#----------------------------------------------------------------------------
|
44 |
+
# Replace NaN/Inf with specified numerical values.
|
45 |
+
|
46 |
+
try:
|
47 |
+
nan_to_num = torch.nan_to_num # 1.8.0a0
|
48 |
+
except AttributeError:
|
49 |
+
def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin
|
50 |
+
assert isinstance(input, torch.Tensor)
|
51 |
+
if posinf is None:
|
52 |
+
posinf = torch.finfo(input.dtype).max
|
53 |
+
if neginf is None:
|
54 |
+
neginf = torch.finfo(input.dtype).min
|
55 |
+
assert nan == 0
|
56 |
+
return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
|
57 |
+
|
58 |
+
#----------------------------------------------------------------------------
|
59 |
+
# Symbolic assert.
|
60 |
+
|
61 |
+
try:
|
62 |
+
symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
|
63 |
+
except AttributeError:
|
64 |
+
symbolic_assert = torch.Assert # 1.7.0
|
65 |
+
|
66 |
+
#----------------------------------------------------------------------------
|
67 |
+
# Context manager to temporarily suppress known warnings in torch.jit.trace().
|
68 |
+
# Note: Cannot use catch_warnings because of https://bugs.python.org/issue29672
|
69 |
+
|
70 |
+
@contextlib.contextmanager
|
71 |
+
def suppress_tracer_warnings():
|
72 |
+
flt = ('ignore', None, torch.jit.TracerWarning, None, 0)
|
73 |
+
warnings.filters.insert(0, flt)
|
74 |
+
yield
|
75 |
+
warnings.filters.remove(flt)
|
76 |
+
|
77 |
+
#----------------------------------------------------------------------------
|
78 |
+
# Assert that the shape of a tensor matches the given list of integers.
|
79 |
+
# None indicates that the size of a dimension is allowed to vary.
|
80 |
+
# Performs symbolic assertion when used in torch.jit.trace().
|
81 |
+
|
82 |
+
def assert_shape(tensor, ref_shape):
|
83 |
+
if tensor.ndim != len(ref_shape):
|
84 |
+
raise AssertionError(f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}')
|
85 |
+
for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
|
86 |
+
if ref_size is None:
|
87 |
+
pass
|
88 |
+
elif isinstance(ref_size, torch.Tensor):
|
89 |
+
with suppress_tracer_warnings(): # as_tensor results are registered as constants
|
90 |
+
symbolic_assert(torch.equal(torch.as_tensor(size), ref_size), f'Wrong size for dimension {idx}')
|
91 |
+
elif isinstance(size, torch.Tensor):
|
92 |
+
with suppress_tracer_warnings(): # as_tensor results are registered as constants
|
93 |
+
symbolic_assert(torch.equal(size, torch.as_tensor(ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}')
|
94 |
+
elif size != ref_size:
|
95 |
+
raise AssertionError(f'Wrong size for dimension {idx}: got {size}, expected {ref_size}')
|
96 |
+
|
97 |
+
#----------------------------------------------------------------------------
|
98 |
+
# Function decorator that calls torch.autograd.profiler.record_function().
|
99 |
+
|
100 |
+
def profiled_function(fn):
|
101 |
+
def decorator(*args, **kwargs):
|
102 |
+
with torch.autograd.profiler.record_function(fn.__name__):
|
103 |
+
return fn(*args, **kwargs)
|
104 |
+
decorator.__name__ = fn.__name__
|
105 |
+
return decorator
|
106 |
+
|
107 |
+
#----------------------------------------------------------------------------
|
108 |
+
# Sampler for torch.utils.data.DataLoader that loops over the dataset
|
109 |
+
# indefinitely, shuffling items as it goes.
|
110 |
+
|
111 |
+
class InfiniteSampler(torch.utils.data.Sampler):
|
112 |
+
def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5):
|
113 |
+
assert len(dataset) > 0
|
114 |
+
assert num_replicas > 0
|
115 |
+
assert 0 <= rank < num_replicas
|
116 |
+
assert 0 <= window_size <= 1
|
117 |
+
super().__init__(dataset)
|
118 |
+
self.dataset = dataset
|
119 |
+
self.rank = rank
|
120 |
+
self.num_replicas = num_replicas
|
121 |
+
self.shuffle = shuffle
|
122 |
+
self.seed = seed
|
123 |
+
self.window_size = window_size
|
124 |
+
|
125 |
+
def __iter__(self):
|
126 |
+
order = np.arange(len(self.dataset))
|
127 |
+
rnd = None
|
128 |
+
window = 0
|
129 |
+
if self.shuffle:
|
130 |
+
rnd = np.random.RandomState(self.seed)
|
131 |
+
rnd.shuffle(order)
|
132 |
+
window = int(np.rint(order.size * self.window_size))
|
133 |
+
|
134 |
+
idx = 0
|
135 |
+
while True:
|
136 |
+
i = idx % order.size
|
137 |
+
if idx % self.num_replicas == self.rank:
|
138 |
+
yield order[i]
|
139 |
+
if window >= 2:
|
140 |
+
j = (i - rnd.randint(window)) % order.size
|
141 |
+
order[i], order[j] = order[j], order[i]
|
142 |
+
idx += 1
|
143 |
+
|
144 |
+
#----------------------------------------------------------------------------
|
145 |
+
# Utilities for operating with torch.nn.Module parameters and buffers.
|
146 |
+
|
147 |
+
def params_and_buffers(module):
|
148 |
+
assert isinstance(module, torch.nn.Module)
|
149 |
+
return list(module.parameters()) + list(module.buffers())
|
150 |
+
|
151 |
+
def named_params_and_buffers(module):
|
152 |
+
assert isinstance(module, torch.nn.Module)
|
153 |
+
return list(module.named_parameters()) + list(module.named_buffers())
|
154 |
+
|
155 |
+
def copy_params_and_buffers(src_module, dst_module, require_all=False):
|
156 |
+
assert isinstance(src_module, torch.nn.Module)
|
157 |
+
assert isinstance(dst_module, torch.nn.Module)
|
158 |
+
src_tensors = dict(named_params_and_buffers(src_module))
|
159 |
+
for name, tensor in named_params_and_buffers(dst_module):
|
160 |
+
assert (name in src_tensors) or (not require_all)
|
161 |
+
if name in src_tensors:
|
162 |
+
tensor.copy_(src_tensors[name].detach()).requires_grad_(tensor.requires_grad)
|
163 |
+
|
164 |
+
#----------------------------------------------------------------------------
|
165 |
+
# Context manager for easily enabling/disabling DistributedDataParallel
|
166 |
+
# synchronization.
|
167 |
+
|
168 |
+
@contextlib.contextmanager
|
169 |
+
def ddp_sync(module, sync):
|
170 |
+
assert isinstance(module, torch.nn.Module)
|
171 |
+
if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
|
172 |
+
yield
|
173 |
+
else:
|
174 |
+
with module.no_sync():
|
175 |
+
yield
|
176 |
+
|
177 |
+
#----------------------------------------------------------------------------
|
178 |
+
# Check DistributedDataParallel consistency across processes.
|
179 |
+
|
180 |
+
def check_ddp_consistency(module, ignore_regex=None):
|
181 |
+
assert isinstance(module, torch.nn.Module)
|
182 |
+
for name, tensor in named_params_and_buffers(module):
|
183 |
+
fullname = type(module).__name__ + '.' + name
|
184 |
+
if ignore_regex is not None and re.fullmatch(ignore_regex, fullname):
|
185 |
+
continue
|
186 |
+
tensor = tensor.detach()
|
187 |
+
if tensor.is_floating_point():
|
188 |
+
tensor = nan_to_num(tensor)
|
189 |
+
other = tensor.clone()
|
190 |
+
torch.distributed.broadcast(tensor=other, src=0)
|
191 |
+
assert (tensor == other).all(), fullname
|
192 |
+
|
193 |
+
#----------------------------------------------------------------------------
|
194 |
+
# Print summary table of module hierarchy.
|
195 |
+
|
196 |
+
def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True):
|
197 |
+
assert isinstance(module, torch.nn.Module)
|
198 |
+
assert not isinstance(module, torch.jit.ScriptModule)
|
199 |
+
assert isinstance(inputs, (tuple, list))
|
200 |
+
|
201 |
+
# Register hooks.
|
202 |
+
entries = []
|
203 |
+
nesting = [0]
|
204 |
+
def pre_hook(_mod, _inputs):
|
205 |
+
nesting[0] += 1
|
206 |
+
def post_hook(mod, _inputs, outputs):
|
207 |
+
nesting[0] -= 1
|
208 |
+
if nesting[0] <= max_nesting:
|
209 |
+
outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
|
210 |
+
outputs = [t for t in outputs if isinstance(t, torch.Tensor)]
|
211 |
+
entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs))
|
212 |
+
hooks = [mod.register_forward_pre_hook(pre_hook) for mod in module.modules()]
|
213 |
+
hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()]
|
214 |
+
|
215 |
+
# Run module.
|
216 |
+
outputs = module(*inputs)
|
217 |
+
for hook in hooks:
|
218 |
+
hook.remove()
|
219 |
+
|
220 |
+
# Identify unique outputs, parameters, and buffers.
|
221 |
+
tensors_seen = set()
|
222 |
+
for e in entries:
|
223 |
+
e.unique_params = [t for t in e.mod.parameters() if id(t) not in tensors_seen]
|
224 |
+
e.unique_buffers = [t for t in e.mod.buffers() if id(t) not in tensors_seen]
|
225 |
+
e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen]
|
226 |
+
tensors_seen |= {id(t) for t in e.unique_params + e.unique_buffers + e.unique_outputs}
|
227 |
+
|
228 |
+
# Filter out redundant entries.
|
229 |
+
if skip_redundant:
|
230 |
+
entries = [e for e in entries if len(e.unique_params) or len(e.unique_buffers) or len(e.unique_outputs)]
|
231 |
+
|
232 |
+
# Construct table.
|
233 |
+
rows = [[type(module).__name__, 'Parameters', 'Buffers', 'Output shape', 'Datatype']]
|
234 |
+
rows += [['---'] * len(rows[0])]
|
235 |
+
param_total = 0
|
236 |
+
buffer_total = 0
|
237 |
+
submodule_names = {mod: name for name, mod in module.named_modules()}
|
238 |
+
for e in entries:
|
239 |
+
name = '<top-level>' if e.mod is module else submodule_names[e.mod]
|
240 |
+
param_size = sum(t.numel() for t in e.unique_params)
|
241 |
+
buffer_size = sum(t.numel() for t in e.unique_buffers)
|
242 |
+
output_shapes = [str(list(t.shape)) for t in e.outputs]
|
243 |
+
output_dtypes = [str(t.dtype).split('.')[-1] for t in e.outputs]
|
244 |
+
rows += [[
|
245 |
+
name + (':0' if len(e.outputs) >= 2 else ''),
|
246 |
+
str(param_size) if param_size else '-',
|
247 |
+
str(buffer_size) if buffer_size else '-',
|
248 |
+
(output_shapes + ['-'])[0],
|
249 |
+
(output_dtypes + ['-'])[0],
|
250 |
+
]]
|
251 |
+
for idx in range(1, len(e.outputs)):
|
252 |
+
rows += [[name + f':{idx}', '-', '-', output_shapes[idx], output_dtypes[idx]]]
|
253 |
+
param_total += param_size
|
254 |
+
buffer_total += buffer_size
|
255 |
+
rows += [['---'] * len(rows[0])]
|
256 |
+
rows += [['Total', str(param_total), str(buffer_total), '-', '-']]
|
257 |
+
|
258 |
+
# Print table.
|
259 |
+
widths = [max(len(cell) for cell in column) for column in zip(*rows)]
|
260 |
+
print()
|
261 |
+
for row in rows:
|
262 |
+
print(' '.join(cell + ' ' * (width - len(cell)) for cell, width in zip(row, widths)))
|
263 |
+
print()
|
264 |
+
return outputs
|
265 |
+
|
266 |
+
#----------------------------------------------------------------------------
|
torch_utils/ops/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|
torch_utils/ops/bias_act.cpp
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include <ATen/cuda/CUDAContext.h>
|
11 |
+
#include <c10/cuda/CUDAGuard.h>
|
12 |
+
#include "bias_act.h"
|
13 |
+
|
14 |
+
//------------------------------------------------------------------------
|
15 |
+
|
16 |
+
static bool has_same_layout(torch::Tensor x, torch::Tensor y)
|
17 |
+
{
|
18 |
+
if (x.dim() != y.dim())
|
19 |
+
return false;
|
20 |
+
for (int64_t i = 0; i < x.dim(); i++)
|
21 |
+
{
|
22 |
+
if (x.size(i) != y.size(i))
|
23 |
+
return false;
|
24 |
+
if (x.size(i) >= 2 && x.stride(i) != y.stride(i))
|
25 |
+
return false;
|
26 |
+
}
|
27 |
+
return true;
|
28 |
+
}
|
29 |
+
|
30 |
+
//------------------------------------------------------------------------
|
31 |
+
|
32 |
+
static torch::Tensor bias_act(torch::Tensor x, torch::Tensor b, torch::Tensor xref, torch::Tensor yref, torch::Tensor dy, int grad, int dim, int act, float alpha, float gain, float clamp)
|
33 |
+
{
|
34 |
+
// Validate arguments.
|
35 |
+
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
|
36 |
+
TORCH_CHECK(b.numel() == 0 || (b.dtype() == x.dtype() && b.device() == x.device()), "b must have the same dtype and device as x");
|
37 |
+
TORCH_CHECK(xref.numel() == 0 || (xref.sizes() == x.sizes() && xref.dtype() == x.dtype() && xref.device() == x.device()), "xref must have the same shape, dtype, and device as x");
|
38 |
+
TORCH_CHECK(yref.numel() == 0 || (yref.sizes() == x.sizes() && yref.dtype() == x.dtype() && yref.device() == x.device()), "yref must have the same shape, dtype, and device as x");
|
39 |
+
TORCH_CHECK(dy.numel() == 0 || (dy.sizes() == x.sizes() && dy.dtype() == x.dtype() && dy.device() == x.device()), "dy must have the same dtype and device as x");
|
40 |
+
TORCH_CHECK(x.numel() <= INT_MAX, "x is too large");
|
41 |
+
TORCH_CHECK(b.dim() == 1, "b must have rank 1");
|
42 |
+
TORCH_CHECK(b.numel() == 0 || (dim >= 0 && dim < x.dim()), "dim is out of bounds");
|
43 |
+
TORCH_CHECK(b.numel() == 0 || b.numel() == x.size(dim), "b has wrong number of elements");
|
44 |
+
TORCH_CHECK(grad >= 0, "grad must be non-negative");
|
45 |
+
|
46 |
+
// Validate layout.
|
47 |
+
TORCH_CHECK(x.is_non_overlapping_and_dense(), "x must be non-overlapping and dense");
|
48 |
+
TORCH_CHECK(b.is_contiguous(), "b must be contiguous");
|
49 |
+
TORCH_CHECK(xref.numel() == 0 || has_same_layout(xref, x), "xref must have the same layout as x");
|
50 |
+
TORCH_CHECK(yref.numel() == 0 || has_same_layout(yref, x), "yref must have the same layout as x");
|
51 |
+
TORCH_CHECK(dy.numel() == 0 || has_same_layout(dy, x), "dy must have the same layout as x");
|
52 |
+
|
53 |
+
// Create output tensor.
|
54 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
55 |
+
torch::Tensor y = torch::empty_like(x);
|
56 |
+
TORCH_CHECK(has_same_layout(y, x), "y must have the same layout as x");
|
57 |
+
|
58 |
+
// Initialize CUDA kernel parameters.
|
59 |
+
bias_act_kernel_params p;
|
60 |
+
p.x = x.data_ptr();
|
61 |
+
p.b = (b.numel()) ? b.data_ptr() : NULL;
|
62 |
+
p.xref = (xref.numel()) ? xref.data_ptr() : NULL;
|
63 |
+
p.yref = (yref.numel()) ? yref.data_ptr() : NULL;
|
64 |
+
p.dy = (dy.numel()) ? dy.data_ptr() : NULL;
|
65 |
+
p.y = y.data_ptr();
|
66 |
+
p.grad = grad;
|
67 |
+
p.act = act;
|
68 |
+
p.alpha = alpha;
|
69 |
+
p.gain = gain;
|
70 |
+
p.clamp = clamp;
|
71 |
+
p.sizeX = (int)x.numel();
|
72 |
+
p.sizeB = (int)b.numel();
|
73 |
+
p.stepB = (b.numel()) ? (int)x.stride(dim) : 1;
|
74 |
+
|
75 |
+
// Choose CUDA kernel.
|
76 |
+
void* kernel;
|
77 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&]
|
78 |
+
{
|
79 |
+
kernel = choose_bias_act_kernel<scalar_t>(p);
|
80 |
+
});
|
81 |
+
TORCH_CHECK(kernel, "no CUDA kernel found for the specified activation func");
|
82 |
+
|
83 |
+
// Launch CUDA kernel.
|
84 |
+
p.loopX = 4;
|
85 |
+
int blockSize = 4 * 32;
|
86 |
+
int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
|
87 |
+
void* args[] = {&p};
|
88 |
+
AT_CUDA_CHECK(cudaLaunchKernel(kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream()));
|
89 |
+
return y;
|
90 |
+
}
|
91 |
+
|
92 |
+
//------------------------------------------------------------------------
|
93 |
+
|
94 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
95 |
+
{
|
96 |
+
m.def("bias_act", &bias_act);
|
97 |
+
}
|
98 |
+
|
99 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/bias_act.cu
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <c10/util/Half.h>
|
10 |
+
#include "bias_act.h"
|
11 |
+
|
12 |
+
//------------------------------------------------------------------------
|
13 |
+
// Helpers.
|
14 |
+
|
15 |
+
template <class T> struct InternalType;
|
16 |
+
template <> struct InternalType<double> { typedef double scalar_t; };
|
17 |
+
template <> struct InternalType<float> { typedef float scalar_t; };
|
18 |
+
template <> struct InternalType<c10::Half> { typedef float scalar_t; };
|
19 |
+
|
20 |
+
//------------------------------------------------------------------------
|
21 |
+
// CUDA kernel.
|
22 |
+
|
23 |
+
template <class T, int A>
|
24 |
+
__global__ void bias_act_kernel(bias_act_kernel_params p)
|
25 |
+
{
|
26 |
+
typedef typename InternalType<T>::scalar_t scalar_t;
|
27 |
+
int G = p.grad;
|
28 |
+
scalar_t alpha = (scalar_t)p.alpha;
|
29 |
+
scalar_t gain = (scalar_t)p.gain;
|
30 |
+
scalar_t clamp = (scalar_t)p.clamp;
|
31 |
+
scalar_t one = (scalar_t)1;
|
32 |
+
scalar_t two = (scalar_t)2;
|
33 |
+
scalar_t expRange = (scalar_t)80;
|
34 |
+
scalar_t halfExpRange = (scalar_t)40;
|
35 |
+
scalar_t seluScale = (scalar_t)1.0507009873554804934193349852946;
|
36 |
+
scalar_t seluAlpha = (scalar_t)1.6732632423543772848170429916717;
|
37 |
+
|
38 |
+
// Loop over elements.
|
39 |
+
int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
|
40 |
+
for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
|
41 |
+
{
|
42 |
+
// Load.
|
43 |
+
scalar_t x = (scalar_t)((const T*)p.x)[xi];
|
44 |
+
scalar_t b = (p.b) ? (scalar_t)((const T*)p.b)[(xi / p.stepB) % p.sizeB] : 0;
|
45 |
+
scalar_t xref = (p.xref) ? (scalar_t)((const T*)p.xref)[xi] : 0;
|
46 |
+
scalar_t yref = (p.yref) ? (scalar_t)((const T*)p.yref)[xi] : 0;
|
47 |
+
scalar_t dy = (p.dy) ? (scalar_t)((const T*)p.dy)[xi] : one;
|
48 |
+
scalar_t yy = (gain != 0) ? yref / gain : 0;
|
49 |
+
scalar_t y = 0;
|
50 |
+
|
51 |
+
// Apply bias.
|
52 |
+
((G == 0) ? x : xref) += b;
|
53 |
+
|
54 |
+
// linear
|
55 |
+
if (A == 1)
|
56 |
+
{
|
57 |
+
if (G == 0) y = x;
|
58 |
+
if (G == 1) y = x;
|
59 |
+
}
|
60 |
+
|
61 |
+
// relu
|
62 |
+
if (A == 2)
|
63 |
+
{
|
64 |
+
if (G == 0) y = (x > 0) ? x : 0;
|
65 |
+
if (G == 1) y = (yy > 0) ? x : 0;
|
66 |
+
}
|
67 |
+
|
68 |
+
// lrelu
|
69 |
+
if (A == 3)
|
70 |
+
{
|
71 |
+
if (G == 0) y = (x > 0) ? x : x * alpha;
|
72 |
+
if (G == 1) y = (yy > 0) ? x : x * alpha;
|
73 |
+
}
|
74 |
+
|
75 |
+
// tanh
|
76 |
+
if (A == 4)
|
77 |
+
{
|
78 |
+
if (G == 0) { scalar_t c = exp(x); scalar_t d = one / c; y = (x < -expRange) ? -one : (x > expRange) ? one : (c - d) / (c + d); }
|
79 |
+
if (G == 1) y = x * (one - yy * yy);
|
80 |
+
if (G == 2) y = x * (one - yy * yy) * (-two * yy);
|
81 |
+
}
|
82 |
+
|
83 |
+
// sigmoid
|
84 |
+
if (A == 5)
|
85 |
+
{
|
86 |
+
if (G == 0) y = (x < -expRange) ? 0 : one / (exp(-x) + one);
|
87 |
+
if (G == 1) y = x * yy * (one - yy);
|
88 |
+
if (G == 2) y = x * yy * (one - yy) * (one - two * yy);
|
89 |
+
}
|
90 |
+
|
91 |
+
// elu
|
92 |
+
if (A == 6)
|
93 |
+
{
|
94 |
+
if (G == 0) y = (x >= 0) ? x : exp(x) - one;
|
95 |
+
if (G == 1) y = (yy >= 0) ? x : x * (yy + one);
|
96 |
+
if (G == 2) y = (yy >= 0) ? 0 : x * (yy + one);
|
97 |
+
}
|
98 |
+
|
99 |
+
// selu
|
100 |
+
if (A == 7)
|
101 |
+
{
|
102 |
+
if (G == 0) y = (x >= 0) ? seluScale * x : (seluScale * seluAlpha) * (exp(x) - one);
|
103 |
+
if (G == 1) y = (yy >= 0) ? x * seluScale : x * (yy + seluScale * seluAlpha);
|
104 |
+
if (G == 2) y = (yy >= 0) ? 0 : x * (yy + seluScale * seluAlpha);
|
105 |
+
}
|
106 |
+
|
107 |
+
// softplus
|
108 |
+
if (A == 8)
|
109 |
+
{
|
110 |
+
if (G == 0) y = (x > expRange) ? x : log(exp(x) + one);
|
111 |
+
if (G == 1) y = x * (one - exp(-yy));
|
112 |
+
if (G == 2) { scalar_t c = exp(-yy); y = x * c * (one - c); }
|
113 |
+
}
|
114 |
+
|
115 |
+
// swish
|
116 |
+
if (A == 9)
|
117 |
+
{
|
118 |
+
if (G == 0)
|
119 |
+
y = (x < -expRange) ? 0 : x / (exp(-x) + one);
|
120 |
+
else
|
121 |
+
{
|
122 |
+
scalar_t c = exp(xref);
|
123 |
+
scalar_t d = c + one;
|
124 |
+
if (G == 1)
|
125 |
+
y = (xref > halfExpRange) ? x : x * c * (xref + d) / (d * d);
|
126 |
+
else
|
127 |
+
y = (xref > halfExpRange) ? 0 : x * c * (xref * (two - d) + two * d) / (d * d * d);
|
128 |
+
yref = (xref < -expRange) ? 0 : xref / (exp(-xref) + one) * gain;
|
129 |
+
}
|
130 |
+
}
|
131 |
+
|
132 |
+
// Apply gain.
|
133 |
+
y *= gain * dy;
|
134 |
+
|
135 |
+
// Clamp.
|
136 |
+
if (clamp >= 0)
|
137 |
+
{
|
138 |
+
if (G == 0)
|
139 |
+
y = (y > -clamp & y < clamp) ? y : (y >= 0) ? clamp : -clamp;
|
140 |
+
else
|
141 |
+
y = (yref > -clamp & yref < clamp) ? y : 0;
|
142 |
+
}
|
143 |
+
|
144 |
+
// Store.
|
145 |
+
((T*)p.y)[xi] = (T)y;
|
146 |
+
}
|
147 |
+
}
|
148 |
+
|
149 |
+
//------------------------------------------------------------------------
|
150 |
+
// CUDA kernel selection.
|
151 |
+
|
152 |
+
template <class T> void* choose_bias_act_kernel(const bias_act_kernel_params& p)
|
153 |
+
{
|
154 |
+
if (p.act == 1) return (void*)bias_act_kernel<T, 1>;
|
155 |
+
if (p.act == 2) return (void*)bias_act_kernel<T, 2>;
|
156 |
+
if (p.act == 3) return (void*)bias_act_kernel<T, 3>;
|
157 |
+
if (p.act == 4) return (void*)bias_act_kernel<T, 4>;
|
158 |
+
if (p.act == 5) return (void*)bias_act_kernel<T, 5>;
|
159 |
+
if (p.act == 6) return (void*)bias_act_kernel<T, 6>;
|
160 |
+
if (p.act == 7) return (void*)bias_act_kernel<T, 7>;
|
161 |
+
if (p.act == 8) return (void*)bias_act_kernel<T, 8>;
|
162 |
+
if (p.act == 9) return (void*)bias_act_kernel<T, 9>;
|
163 |
+
return NULL;
|
164 |
+
}
|
165 |
+
|
166 |
+
//------------------------------------------------------------------------
|
167 |
+
// Template specializations.
|
168 |
+
|
169 |
+
template void* choose_bias_act_kernel<double> (const bias_act_kernel_params& p);
|
170 |
+
template void* choose_bias_act_kernel<float> (const bias_act_kernel_params& p);
|
171 |
+
template void* choose_bias_act_kernel<c10::Half> (const bias_act_kernel_params& p);
|
172 |
+
|
173 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/bias_act.h
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
//------------------------------------------------------------------------
|
10 |
+
// CUDA kernel parameters.
|
11 |
+
|
12 |
+
struct bias_act_kernel_params
|
13 |
+
{
|
14 |
+
const void* x; // [sizeX]
|
15 |
+
const void* b; // [sizeB] or NULL
|
16 |
+
const void* xref; // [sizeX] or NULL
|
17 |
+
const void* yref; // [sizeX] or NULL
|
18 |
+
const void* dy; // [sizeX] or NULL
|
19 |
+
void* y; // [sizeX]
|
20 |
+
|
21 |
+
int grad;
|
22 |
+
int act;
|
23 |
+
float alpha;
|
24 |
+
float gain;
|
25 |
+
float clamp;
|
26 |
+
|
27 |
+
int sizeX;
|
28 |
+
int sizeB;
|
29 |
+
int stepB;
|
30 |
+
int loopX;
|
31 |
+
};
|
32 |
+
|
33 |
+
//------------------------------------------------------------------------
|
34 |
+
// CUDA kernel selection.
|
35 |
+
|
36 |
+
template <class T> void* choose_bias_act_kernel(const bias_act_kernel_params& p);
|
37 |
+
|
38 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/bias_act.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Custom PyTorch ops for efficient bias and activation."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import dnnlib
|
15 |
+
|
16 |
+
from .. import custom_ops
|
17 |
+
from .. import misc
|
18 |
+
|
19 |
+
#----------------------------------------------------------------------------
|
20 |
+
|
21 |
+
activation_funcs = {
|
22 |
+
'linear': dnnlib.EasyDict(func=lambda x, **_: x, def_alpha=0, def_gain=1, cuda_idx=1, ref='', has_2nd_grad=False),
|
23 |
+
'relu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.relu(x), def_alpha=0, def_gain=np.sqrt(2), cuda_idx=2, ref='y', has_2nd_grad=False),
|
24 |
+
'lrelu': dnnlib.EasyDict(func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', has_2nd_grad=False),
|
25 |
+
'tanh': dnnlib.EasyDict(func=lambda x, **_: torch.tanh(x), def_alpha=0, def_gain=1, cuda_idx=4, ref='y', has_2nd_grad=True),
|
26 |
+
'sigmoid': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x), def_alpha=0, def_gain=1, cuda_idx=5, ref='y', has_2nd_grad=True),
|
27 |
+
'elu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.elu(x), def_alpha=0, def_gain=1, cuda_idx=6, ref='y', has_2nd_grad=True),
|
28 |
+
'selu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.selu(x), def_alpha=0, def_gain=1, cuda_idx=7, ref='y', has_2nd_grad=True),
|
29 |
+
'softplus': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x), def_alpha=0, def_gain=1, cuda_idx=8, ref='y', has_2nd_grad=True),
|
30 |
+
'swish': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x) * x, def_alpha=0, def_gain=np.sqrt(2), cuda_idx=9, ref='x', has_2nd_grad=True),
|
31 |
+
}
|
32 |
+
|
33 |
+
#----------------------------------------------------------------------------
|
34 |
+
|
35 |
+
_plugin = None
|
36 |
+
_null_tensor = torch.empty([0])
|
37 |
+
|
38 |
+
def _init():
|
39 |
+
global _plugin
|
40 |
+
if _plugin is None:
|
41 |
+
_plugin = custom_ops.get_plugin(
|
42 |
+
module_name='bias_act_plugin',
|
43 |
+
sources=['bias_act.cpp', 'bias_act.cu'],
|
44 |
+
headers=['bias_act.h'],
|
45 |
+
source_dir=os.path.dirname(__file__),
|
46 |
+
extra_cuda_cflags=['--use_fast_math'],
|
47 |
+
)
|
48 |
+
return True
|
49 |
+
|
50 |
+
#----------------------------------------------------------------------------
|
51 |
+
|
52 |
+
def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'):
|
53 |
+
r"""Fused bias and activation function.
|
54 |
+
|
55 |
+
Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
|
56 |
+
and scales the result by `gain`. Each of the steps is optional. In most cases,
|
57 |
+
the fused op is considerably more efficient than performing the same calculation
|
58 |
+
using standard PyTorch ops. It supports first and second order gradients,
|
59 |
+
but not third order gradients.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
x: Input activation tensor. Can be of any shape.
|
63 |
+
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
|
64 |
+
as `x`. The shape must be known, and it must match the dimension of `x`
|
65 |
+
corresponding to `dim`.
|
66 |
+
dim: The dimension in `x` corresponding to the elements of `b`.
|
67 |
+
The value of `dim` is ignored if `b` is not specified.
|
68 |
+
act: Name of the activation function to evaluate, or `"linear"` to disable.
|
69 |
+
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
|
70 |
+
See `activation_funcs` for a full list. `None` is not allowed.
|
71 |
+
alpha: Shape parameter for the activation function, or `None` to use the default.
|
72 |
+
gain: Scaling factor for the output tensor, or `None` to use default.
|
73 |
+
See `activation_funcs` for the default scaling of each activation function.
|
74 |
+
If unsure, consider specifying 1.
|
75 |
+
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
|
76 |
+
the clamping (default).
|
77 |
+
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
Tensor of the same shape and datatype as `x`.
|
81 |
+
"""
|
82 |
+
assert isinstance(x, torch.Tensor)
|
83 |
+
assert impl in ['ref', 'cuda']
|
84 |
+
if impl == 'cuda' and x.device.type == 'cuda' and _init():
|
85 |
+
return _bias_act_cuda(dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp).apply(x, b)
|
86 |
+
return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp)
|
87 |
+
|
88 |
+
#----------------------------------------------------------------------------
|
89 |
+
|
90 |
+
@misc.profiled_function
|
91 |
+
def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None):
|
92 |
+
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops.
|
93 |
+
"""
|
94 |
+
assert isinstance(x, torch.Tensor)
|
95 |
+
assert clamp is None or clamp >= 0
|
96 |
+
spec = activation_funcs[act]
|
97 |
+
alpha = float(alpha if alpha is not None else spec.def_alpha)
|
98 |
+
gain = float(gain if gain is not None else spec.def_gain)
|
99 |
+
clamp = float(clamp if clamp is not None else -1)
|
100 |
+
|
101 |
+
# Add bias.
|
102 |
+
if b is not None:
|
103 |
+
assert isinstance(b, torch.Tensor) and b.ndim == 1
|
104 |
+
assert 0 <= dim < x.ndim
|
105 |
+
assert b.shape[0] == x.shape[dim]
|
106 |
+
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])
|
107 |
+
|
108 |
+
# Evaluate activation function.
|
109 |
+
alpha = float(alpha)
|
110 |
+
x = spec.func(x, alpha=alpha)
|
111 |
+
|
112 |
+
# Scale by gain.
|
113 |
+
gain = float(gain)
|
114 |
+
if gain != 1:
|
115 |
+
x = x * gain
|
116 |
+
|
117 |
+
# Clamp.
|
118 |
+
if clamp >= 0:
|
119 |
+
x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type
|
120 |
+
return x
|
121 |
+
|
122 |
+
#----------------------------------------------------------------------------
|
123 |
+
|
124 |
+
_bias_act_cuda_cache = dict()
|
125 |
+
|
126 |
+
def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None):
|
127 |
+
"""Fast CUDA implementation of `bias_act()` using custom ops.
|
128 |
+
"""
|
129 |
+
# Parse arguments.
|
130 |
+
assert clamp is None or clamp >= 0
|
131 |
+
spec = activation_funcs[act]
|
132 |
+
alpha = float(alpha if alpha is not None else spec.def_alpha)
|
133 |
+
gain = float(gain if gain is not None else spec.def_gain)
|
134 |
+
clamp = float(clamp if clamp is not None else -1)
|
135 |
+
|
136 |
+
# Lookup from cache.
|
137 |
+
key = (dim, act, alpha, gain, clamp)
|
138 |
+
if key in _bias_act_cuda_cache:
|
139 |
+
return _bias_act_cuda_cache[key]
|
140 |
+
|
141 |
+
# Forward op.
|
142 |
+
class BiasActCuda(torch.autograd.Function):
|
143 |
+
@staticmethod
|
144 |
+
def forward(ctx, x, b): # pylint: disable=arguments-differ
|
145 |
+
ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride(1) == 1 else torch.contiguous_format
|
146 |
+
x = x.contiguous(memory_format=ctx.memory_format)
|
147 |
+
b = b.contiguous() if b is not None else _null_tensor
|
148 |
+
y = x
|
149 |
+
if act != 'linear' or gain != 1 or clamp >= 0 or b is not _null_tensor:
|
150 |
+
y = _plugin.bias_act(x, b, _null_tensor, _null_tensor, _null_tensor, 0, dim, spec.cuda_idx, alpha, gain, clamp)
|
151 |
+
ctx.save_for_backward(
|
152 |
+
x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
|
153 |
+
b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
|
154 |
+
y if 'y' in spec.ref else _null_tensor)
|
155 |
+
return y
|
156 |
+
|
157 |
+
@staticmethod
|
158 |
+
def backward(ctx, dy): # pylint: disable=arguments-differ
|
159 |
+
dy = dy.contiguous(memory_format=ctx.memory_format)
|
160 |
+
x, b, y = ctx.saved_tensors
|
161 |
+
dx = None
|
162 |
+
db = None
|
163 |
+
|
164 |
+
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
|
165 |
+
dx = dy
|
166 |
+
if act != 'linear' or gain != 1 or clamp >= 0:
|
167 |
+
dx = BiasActCudaGrad.apply(dy, x, b, y)
|
168 |
+
|
169 |
+
if ctx.needs_input_grad[1]:
|
170 |
+
db = dx.sum([i for i in range(dx.ndim) if i != dim])
|
171 |
+
|
172 |
+
return dx, db
|
173 |
+
|
174 |
+
# Backward op.
|
175 |
+
class BiasActCudaGrad(torch.autograd.Function):
|
176 |
+
@staticmethod
|
177 |
+
def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ
|
178 |
+
ctx.memory_format = torch.channels_last if dy.ndim > 2 and dy.stride(1) == 1 else torch.contiguous_format
|
179 |
+
dx = _plugin.bias_act(dy, b, x, y, _null_tensor, 1, dim, spec.cuda_idx, alpha, gain, clamp)
|
180 |
+
ctx.save_for_backward(
|
181 |
+
dy if spec.has_2nd_grad else _null_tensor,
|
182 |
+
x, b, y)
|
183 |
+
return dx
|
184 |
+
|
185 |
+
@staticmethod
|
186 |
+
def backward(ctx, d_dx): # pylint: disable=arguments-differ
|
187 |
+
d_dx = d_dx.contiguous(memory_format=ctx.memory_format)
|
188 |
+
dy, x, b, y = ctx.saved_tensors
|
189 |
+
d_dy = None
|
190 |
+
d_x = None
|
191 |
+
d_b = None
|
192 |
+
d_y = None
|
193 |
+
|
194 |
+
if ctx.needs_input_grad[0]:
|
195 |
+
d_dy = BiasActCudaGrad.apply(d_dx, x, b, y)
|
196 |
+
|
197 |
+
if spec.has_2nd_grad and (ctx.needs_input_grad[1] or ctx.needs_input_grad[2]):
|
198 |
+
d_x = _plugin.bias_act(d_dx, b, x, y, dy, 2, dim, spec.cuda_idx, alpha, gain, clamp)
|
199 |
+
|
200 |
+
if spec.has_2nd_grad and ctx.needs_input_grad[2]:
|
201 |
+
d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim])
|
202 |
+
|
203 |
+
return d_dy, d_x, d_b, d_y
|
204 |
+
|
205 |
+
# Add to cache.
|
206 |
+
_bias_act_cuda_cache[key] = BiasActCuda
|
207 |
+
return BiasActCuda
|
208 |
+
|
209 |
+
#----------------------------------------------------------------------------
|
torch_utils/ops/conv2d_gradfix.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Custom replacement for `torch.nn.functional.conv2d` that supports
|
10 |
+
arbitrarily high order gradients with zero performance penalty."""
|
11 |
+
|
12 |
+
import contextlib
|
13 |
+
import torch
|
14 |
+
|
15 |
+
# pylint: disable=redefined-builtin
|
16 |
+
# pylint: disable=arguments-differ
|
17 |
+
# pylint: disable=protected-access
|
18 |
+
|
19 |
+
#----------------------------------------------------------------------------
|
20 |
+
|
21 |
+
enabled = False # Enable the custom op by setting this to true.
|
22 |
+
weight_gradients_disabled = False # Forcefully disable computation of gradients with respect to the weights.
|
23 |
+
|
24 |
+
@contextlib.contextmanager
|
25 |
+
def no_weight_gradients(disable=True):
|
26 |
+
global weight_gradients_disabled
|
27 |
+
old = weight_gradients_disabled
|
28 |
+
if disable:
|
29 |
+
weight_gradients_disabled = True
|
30 |
+
yield
|
31 |
+
weight_gradients_disabled = old
|
32 |
+
|
33 |
+
#----------------------------------------------------------------------------
|
34 |
+
|
35 |
+
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
36 |
+
if _should_use_custom_op(input):
|
37 |
+
return _conv2d_gradfix(transpose=False, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=0, dilation=dilation, groups=groups).apply(input, weight, bias)
|
38 |
+
return torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
|
39 |
+
|
40 |
+
def conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1):
|
41 |
+
if _should_use_custom_op(input):
|
42 |
+
return _conv2d_gradfix(transpose=True, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation).apply(input, weight, bias)
|
43 |
+
return torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation)
|
44 |
+
|
45 |
+
#----------------------------------------------------------------------------
|
46 |
+
|
47 |
+
def _should_use_custom_op(input):
|
48 |
+
assert isinstance(input, torch.Tensor)
|
49 |
+
if (not enabled) or (not torch.backends.cudnn.enabled):
|
50 |
+
return False
|
51 |
+
if input.device.type != 'cuda':
|
52 |
+
return False
|
53 |
+
return True
|
54 |
+
|
55 |
+
def _tuple_of_ints(xs, ndim):
|
56 |
+
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
|
57 |
+
assert len(xs) == ndim
|
58 |
+
assert all(isinstance(x, int) for x in xs)
|
59 |
+
return xs
|
60 |
+
|
61 |
+
#----------------------------------------------------------------------------
|
62 |
+
|
63 |
+
_conv2d_gradfix_cache = dict()
|
64 |
+
_null_tensor = torch.empty([0])
|
65 |
+
|
66 |
+
def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, dilation, groups):
|
67 |
+
# Parse arguments.
|
68 |
+
ndim = 2
|
69 |
+
weight_shape = tuple(weight_shape)
|
70 |
+
stride = _tuple_of_ints(stride, ndim)
|
71 |
+
padding = _tuple_of_ints(padding, ndim)
|
72 |
+
output_padding = _tuple_of_ints(output_padding, ndim)
|
73 |
+
dilation = _tuple_of_ints(dilation, ndim)
|
74 |
+
|
75 |
+
# Lookup from cache.
|
76 |
+
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
|
77 |
+
if key in _conv2d_gradfix_cache:
|
78 |
+
return _conv2d_gradfix_cache[key]
|
79 |
+
|
80 |
+
# Validate arguments.
|
81 |
+
assert groups >= 1
|
82 |
+
assert len(weight_shape) == ndim + 2
|
83 |
+
assert all(stride[i] >= 1 for i in range(ndim))
|
84 |
+
assert all(padding[i] >= 0 for i in range(ndim))
|
85 |
+
assert all(dilation[i] >= 0 for i in range(ndim))
|
86 |
+
if not transpose:
|
87 |
+
assert all(output_padding[i] == 0 for i in range(ndim))
|
88 |
+
else: # transpose
|
89 |
+
assert all(0 <= output_padding[i] < max(stride[i], dilation[i]) for i in range(ndim))
|
90 |
+
|
91 |
+
# Helpers.
|
92 |
+
common_kwargs = dict(stride=stride, padding=padding, dilation=dilation, groups=groups)
|
93 |
+
def calc_output_padding(input_shape, output_shape):
|
94 |
+
if transpose:
|
95 |
+
return [0, 0]
|
96 |
+
return [
|
97 |
+
input_shape[i + 2]
|
98 |
+
- (output_shape[i + 2] - 1) * stride[i]
|
99 |
+
- (1 - 2 * padding[i])
|
100 |
+
- dilation[i] * (weight_shape[i + 2] - 1)
|
101 |
+
for i in range(ndim)
|
102 |
+
]
|
103 |
+
|
104 |
+
# Forward & backward.
|
105 |
+
class Conv2d(torch.autograd.Function):
|
106 |
+
@staticmethod
|
107 |
+
def forward(ctx, input, weight, bias):
|
108 |
+
assert weight.shape == weight_shape
|
109 |
+
ctx.save_for_backward(
|
110 |
+
input if weight.requires_grad else _null_tensor,
|
111 |
+
weight if input.requires_grad else _null_tensor,
|
112 |
+
)
|
113 |
+
ctx.input_shape = input.shape
|
114 |
+
|
115 |
+
# Simple 1x1 convolution => cuBLAS (only on Volta, not on Ampere).
|
116 |
+
if weight_shape[2:] == stride == dilation == (1, 1) and padding == (0, 0) and torch.cuda.get_device_capability(input.device) < (8, 0):
|
117 |
+
a = weight.reshape(groups, weight_shape[0] // groups, weight_shape[1])
|
118 |
+
b = input.reshape(input.shape[0], groups, input.shape[1] // groups, -1)
|
119 |
+
c = (a.transpose(1, 2) if transpose else a) @ b.permute(1, 2, 0, 3).flatten(2)
|
120 |
+
c = c.reshape(-1, input.shape[0], *input.shape[2:]).transpose(0, 1)
|
121 |
+
c = c if bias is None else c + bias.unsqueeze(0).unsqueeze(2).unsqueeze(3)
|
122 |
+
return c.contiguous(memory_format=(torch.channels_last if input.stride(1) == 1 else torch.contiguous_format))
|
123 |
+
|
124 |
+
# General case => cuDNN.
|
125 |
+
if transpose:
|
126 |
+
return torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, output_padding=output_padding, **common_kwargs)
|
127 |
+
return torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
|
128 |
+
|
129 |
+
@staticmethod
|
130 |
+
def backward(ctx, grad_output):
|
131 |
+
input, weight = ctx.saved_tensors
|
132 |
+
input_shape = ctx.input_shape
|
133 |
+
grad_input = None
|
134 |
+
grad_weight = None
|
135 |
+
grad_bias = None
|
136 |
+
|
137 |
+
if ctx.needs_input_grad[0]:
|
138 |
+
p = calc_output_padding(input_shape=input_shape, output_shape=grad_output.shape)
|
139 |
+
op = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs)
|
140 |
+
grad_input = op.apply(grad_output, weight, None)
|
141 |
+
assert grad_input.shape == input_shape
|
142 |
+
|
143 |
+
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
|
144 |
+
grad_weight = Conv2dGradWeight.apply(grad_output, input)
|
145 |
+
assert grad_weight.shape == weight_shape
|
146 |
+
|
147 |
+
if ctx.needs_input_grad[2]:
|
148 |
+
grad_bias = grad_output.sum([0, 2, 3])
|
149 |
+
|
150 |
+
return grad_input, grad_weight, grad_bias
|
151 |
+
|
152 |
+
# Gradient with respect to the weights.
|
153 |
+
class Conv2dGradWeight(torch.autograd.Function):
|
154 |
+
@staticmethod
|
155 |
+
def forward(ctx, grad_output, input):
|
156 |
+
ctx.save_for_backward(
|
157 |
+
grad_output if input.requires_grad else _null_tensor,
|
158 |
+
input if grad_output.requires_grad else _null_tensor,
|
159 |
+
)
|
160 |
+
ctx.grad_output_shape = grad_output.shape
|
161 |
+
ctx.input_shape = input.shape
|
162 |
+
|
163 |
+
# Simple 1x1 convolution => cuBLAS (on both Volta and Ampere).
|
164 |
+
if weight_shape[2:] == stride == dilation == (1, 1) and padding == (0, 0):
|
165 |
+
a = grad_output.reshape(grad_output.shape[0], groups, grad_output.shape[1] // groups, -1).permute(1, 2, 0, 3).flatten(2)
|
166 |
+
b = input.reshape(input.shape[0], groups, input.shape[1] // groups, -1).permute(1, 2, 0, 3).flatten(2)
|
167 |
+
c = (b @ a.transpose(1, 2) if transpose else a @ b.transpose(1, 2)).reshape(weight_shape)
|
168 |
+
return c.contiguous(memory_format=(torch.channels_last if input.stride(1) == 1 else torch.contiguous_format))
|
169 |
+
|
170 |
+
# General case => cuDNN.
|
171 |
+
name = 'aten::cudnn_convolution_transpose_backward_weight' if transpose else 'aten::cudnn_convolution_backward_weight'
|
172 |
+
flags = [torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic, torch.backends.cudnn.allow_tf32]
|
173 |
+
return torch._C._jit_get_operation(name)(weight_shape, grad_output, input, padding, stride, dilation, groups, *flags)
|
174 |
+
|
175 |
+
@staticmethod
|
176 |
+
def backward(ctx, grad2_grad_weight):
|
177 |
+
grad_output, input = ctx.saved_tensors
|
178 |
+
grad_output_shape = ctx.grad_output_shape
|
179 |
+
input_shape = ctx.input_shape
|
180 |
+
grad2_grad_output = None
|
181 |
+
grad2_input = None
|
182 |
+
|
183 |
+
if ctx.needs_input_grad[0]:
|
184 |
+
grad2_grad_output = Conv2d.apply(input, grad2_grad_weight, None)
|
185 |
+
assert grad2_grad_output.shape == grad_output_shape
|
186 |
+
|
187 |
+
if ctx.needs_input_grad[1]:
|
188 |
+
p = calc_output_padding(input_shape=input_shape, output_shape=grad_output_shape)
|
189 |
+
op = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs)
|
190 |
+
grad2_input = op.apply(grad_output, grad2_grad_weight, None)
|
191 |
+
assert grad2_input.shape == input_shape
|
192 |
+
|
193 |
+
return grad2_grad_output, grad2_input
|
194 |
+
|
195 |
+
_conv2d_gradfix_cache[key] = Conv2d
|
196 |
+
return Conv2d
|
197 |
+
|
198 |
+
#----------------------------------------------------------------------------
|
torch_utils/ops/conv2d_resample.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""2D convolution with optional up/downsampling."""
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from .. import misc
|
14 |
+
from . import conv2d_gradfix
|
15 |
+
from . import upfirdn2d
|
16 |
+
from .upfirdn2d import _parse_padding
|
17 |
+
from .upfirdn2d import _get_filter_size
|
18 |
+
|
19 |
+
#----------------------------------------------------------------------------
|
20 |
+
|
21 |
+
def _get_weight_shape(w):
|
22 |
+
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
|
23 |
+
shape = [int(sz) for sz in w.shape]
|
24 |
+
misc.assert_shape(w, shape)
|
25 |
+
return shape
|
26 |
+
|
27 |
+
#----------------------------------------------------------------------------
|
28 |
+
|
29 |
+
def _conv2d_wrapper(x, w, stride=1, padding=0, groups=1, transpose=False, flip_weight=True):
|
30 |
+
"""Wrapper for the underlying `conv2d()` and `conv_transpose2d()` implementations.
|
31 |
+
"""
|
32 |
+
_out_channels, _in_channels_per_group, kh, kw = _get_weight_shape(w)
|
33 |
+
|
34 |
+
# Flip weight if requested.
|
35 |
+
# Note: conv2d() actually performs correlation (flip_weight=True) not convolution (flip_weight=False).
|
36 |
+
if not flip_weight and (kw > 1 or kh > 1):
|
37 |
+
w = w.flip([2, 3])
|
38 |
+
|
39 |
+
# Execute using conv2d_gradfix.
|
40 |
+
op = conv2d_gradfix.conv_transpose2d if transpose else conv2d_gradfix.conv2d
|
41 |
+
return op(x, w, stride=stride, padding=padding, groups=groups)
|
42 |
+
|
43 |
+
#----------------------------------------------------------------------------
|
44 |
+
|
45 |
+
@misc.profiled_function
|
46 |
+
def conv2d_resample(x, w, f=None, up=1, down=1, padding=0, groups=1, flip_weight=True, flip_filter=False):
|
47 |
+
r"""2D convolution with optional up/downsampling.
|
48 |
+
|
49 |
+
Padding is performed only once at the beginning, not between the operations.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
x: Input tensor of shape
|
53 |
+
`[batch_size, in_channels, in_height, in_width]`.
|
54 |
+
w: Weight tensor of shape
|
55 |
+
`[out_channels, in_channels//groups, kernel_height, kernel_width]`.
|
56 |
+
f: Low-pass filter for up/downsampling. Must be prepared beforehand by
|
57 |
+
calling upfirdn2d.setup_filter(). None = identity (default).
|
58 |
+
up: Integer upsampling factor (default: 1).
|
59 |
+
down: Integer downsampling factor (default: 1).
|
60 |
+
padding: Padding with respect to the upsampled image. Can be a single number
|
61 |
+
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
62 |
+
(default: 0).
|
63 |
+
groups: Split input channels into N groups (default: 1).
|
64 |
+
flip_weight: False = convolution, True = correlation (default: True).
|
65 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
69 |
+
"""
|
70 |
+
# Validate arguments.
|
71 |
+
assert isinstance(x, torch.Tensor) and (x.ndim == 4)
|
72 |
+
assert isinstance(w, torch.Tensor) and (w.ndim == 4) and (w.dtype == x.dtype)
|
73 |
+
assert f is None or (isinstance(f, torch.Tensor) and f.ndim in [1, 2] and f.dtype == torch.float32)
|
74 |
+
assert isinstance(up, int) and (up >= 1)
|
75 |
+
assert isinstance(down, int) and (down >= 1)
|
76 |
+
assert isinstance(groups, int) and (groups >= 1)
|
77 |
+
out_channels, in_channels_per_group, kh, kw = _get_weight_shape(w)
|
78 |
+
fw, fh = _get_filter_size(f)
|
79 |
+
px0, px1, py0, py1 = _parse_padding(padding)
|
80 |
+
|
81 |
+
# Adjust padding to account for up/downsampling.
|
82 |
+
if up > 1:
|
83 |
+
px0 += (fw + up - 1) // 2
|
84 |
+
px1 += (fw - up) // 2
|
85 |
+
py0 += (fh + up - 1) // 2
|
86 |
+
py1 += (fh - up) // 2
|
87 |
+
if down > 1:
|
88 |
+
px0 += (fw - down + 1) // 2
|
89 |
+
px1 += (fw - down) // 2
|
90 |
+
py0 += (fh - down + 1) // 2
|
91 |
+
py1 += (fh - down) // 2
|
92 |
+
|
93 |
+
# Fast path: 1x1 convolution with downsampling only => downsample first, then convolve.
|
94 |
+
if kw == 1 and kh == 1 and (down > 1 and up == 1):
|
95 |
+
x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, padding=[px0,px1,py0,py1], flip_filter=flip_filter)
|
96 |
+
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
|
97 |
+
return x
|
98 |
+
|
99 |
+
# Fast path: 1x1 convolution with upsampling only => convolve first, then upsample.
|
100 |
+
if kw == 1 and kh == 1 and (up > 1 and down == 1):
|
101 |
+
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
|
102 |
+
x = upfirdn2d.upfirdn2d(x=x, f=f, up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter)
|
103 |
+
return x
|
104 |
+
|
105 |
+
# Fast path: downsampling only => use strided convolution.
|
106 |
+
if down > 1 and up == 1:
|
107 |
+
x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0,px1,py0,py1], flip_filter=flip_filter)
|
108 |
+
x = _conv2d_wrapper(x=x, w=w, stride=down, groups=groups, flip_weight=flip_weight)
|
109 |
+
return x
|
110 |
+
|
111 |
+
# Fast path: upsampling with optional downsampling => use transpose strided convolution.
|
112 |
+
if up > 1:
|
113 |
+
if groups == 1:
|
114 |
+
w = w.transpose(0, 1)
|
115 |
+
else:
|
116 |
+
w = w.reshape(groups, out_channels // groups, in_channels_per_group, kh, kw)
|
117 |
+
w = w.transpose(1, 2)
|
118 |
+
w = w.reshape(groups * in_channels_per_group, out_channels // groups, kh, kw)
|
119 |
+
px0 -= kw - 1
|
120 |
+
px1 -= kw - up
|
121 |
+
py0 -= kh - 1
|
122 |
+
py1 -= kh - up
|
123 |
+
pxt = max(min(-px0, -px1), 0)
|
124 |
+
pyt = max(min(-py0, -py1), 0)
|
125 |
+
x = _conv2d_wrapper(x=x, w=w, stride=up, padding=[pyt,pxt], groups=groups, transpose=True, flip_weight=(not flip_weight))
|
126 |
+
x = upfirdn2d.upfirdn2d(x=x, f=f, padding=[px0+pxt,px1+pxt,py0+pyt,py1+pyt], gain=up**2, flip_filter=flip_filter)
|
127 |
+
if down > 1:
|
128 |
+
x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
|
129 |
+
return x
|
130 |
+
|
131 |
+
# Fast path: no up/downsampling, padding supported by the underlying implementation => use plain conv2d.
|
132 |
+
if up == 1 and down == 1:
|
133 |
+
if px0 == px1 and py0 == py1 and px0 >= 0 and py0 >= 0:
|
134 |
+
return _conv2d_wrapper(x=x, w=w, padding=[py0,px0], groups=groups, flip_weight=flip_weight)
|
135 |
+
|
136 |
+
# Fallback: Generic reference implementation.
|
137 |
+
x = upfirdn2d.upfirdn2d(x=x, f=(f if up > 1 else None), up=up, padding=[px0,px1,py0,py1], gain=up**2, flip_filter=flip_filter)
|
138 |
+
x = _conv2d_wrapper(x=x, w=w, groups=groups, flip_weight=flip_weight)
|
139 |
+
if down > 1:
|
140 |
+
x = upfirdn2d.upfirdn2d(x=x, f=f, down=down, flip_filter=flip_filter)
|
141 |
+
return x
|
142 |
+
|
143 |
+
#----------------------------------------------------------------------------
|
torch_utils/ops/filtered_lrelu.cpp
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include <ATen/cuda/CUDAContext.h>
|
11 |
+
#include <c10/cuda/CUDAGuard.h>
|
12 |
+
#include "filtered_lrelu.h"
|
13 |
+
|
14 |
+
//------------------------------------------------------------------------
|
15 |
+
|
16 |
+
static std::tuple<torch::Tensor, torch::Tensor, int> filtered_lrelu(
|
17 |
+
torch::Tensor x, torch::Tensor fu, torch::Tensor fd, torch::Tensor b, torch::Tensor si,
|
18 |
+
int up, int down, int px0, int px1, int py0, int py1, int sx, int sy, float gain, float slope, float clamp, bool flip_filters, bool writeSigns)
|
19 |
+
{
|
20 |
+
// Set CUDA device.
|
21 |
+
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
|
22 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
23 |
+
|
24 |
+
// Validate arguments.
|
25 |
+
TORCH_CHECK(fu.device() == x.device() && fd.device() == x.device() && b.device() == x.device(), "all input tensors must reside on the same device");
|
26 |
+
TORCH_CHECK(fu.dtype() == torch::kFloat && fd.dtype() == torch::kFloat, "fu and fd must be float32");
|
27 |
+
TORCH_CHECK(b.dtype() == x.dtype(), "x and b must have the same dtype");
|
28 |
+
TORCH_CHECK(x.dtype() == torch::kHalf || x.dtype() == torch::kFloat, "x and b must be float16 or float32");
|
29 |
+
TORCH_CHECK(x.dim() == 4, "x must be rank 4");
|
30 |
+
TORCH_CHECK(x.size(0) * x.size(1) <= INT_MAX && x.size(2) <= INT_MAX && x.size(3) <= INT_MAX, "x is too large");
|
31 |
+
TORCH_CHECK(x.numel() > 0, "x is empty");
|
32 |
+
TORCH_CHECK((fu.dim() == 1 || fu.dim() == 2) && (fd.dim() == 1 || fd.dim() == 2), "fu and fd must be rank 1 or 2");
|
33 |
+
TORCH_CHECK(fu.size(0) <= INT_MAX && fu.size(-1) <= INT_MAX, "fu is too large");
|
34 |
+
TORCH_CHECK(fd.size(0) <= INT_MAX && fd.size(-1) <= INT_MAX, "fd is too large");
|
35 |
+
TORCH_CHECK(fu.numel() > 0, "fu is empty");
|
36 |
+
TORCH_CHECK(fd.numel() > 0, "fd is empty");
|
37 |
+
TORCH_CHECK(b.dim() == 1 && b.size(0) == x.size(1), "b must be a vector with the same number of channels as x");
|
38 |
+
TORCH_CHECK(up >= 1 && down >= 1, "up and down must be at least 1");
|
39 |
+
|
40 |
+
// Figure out how much shared memory is available on the device.
|
41 |
+
int maxSharedBytes = 0;
|
42 |
+
AT_CUDA_CHECK(cudaDeviceGetAttribute(&maxSharedBytes, cudaDevAttrMaxSharedMemoryPerBlockOptin, x.device().index()));
|
43 |
+
int sharedKB = maxSharedBytes >> 10;
|
44 |
+
|
45 |
+
// Populate enough launch parameters to check if a CUDA kernel exists.
|
46 |
+
filtered_lrelu_kernel_params p;
|
47 |
+
p.up = up;
|
48 |
+
p.down = down;
|
49 |
+
p.fuShape = make_int2((int)fu.size(-1), fu.dim() == 2 ? (int)fu.size(0) : 0); // shape [n, 0] indicates separable filter.
|
50 |
+
p.fdShape = make_int2((int)fd.size(-1), fd.dim() == 2 ? (int)fd.size(0) : 0);
|
51 |
+
filtered_lrelu_kernel_spec test_spec = choose_filtered_lrelu_kernel<float, int32_t, false, false>(p, sharedKB);
|
52 |
+
if (!test_spec.exec)
|
53 |
+
{
|
54 |
+
// No kernel found - return empty tensors and indicate missing kernel with return code of -1.
|
55 |
+
return std::make_tuple(torch::Tensor(), torch::Tensor(), -1);
|
56 |
+
}
|
57 |
+
|
58 |
+
// Input/output element size.
|
59 |
+
int64_t sz = (x.dtype() == torch::kHalf) ? 2 : 4;
|
60 |
+
|
61 |
+
// Input sizes.
|
62 |
+
int64_t xw = (int)x.size(3);
|
63 |
+
int64_t xh = (int)x.size(2);
|
64 |
+
int64_t fut_w = (int)fu.size(-1) - 1;
|
65 |
+
int64_t fut_h = (int)fu.size(0) - 1;
|
66 |
+
int64_t fdt_w = (int)fd.size(-1) - 1;
|
67 |
+
int64_t fdt_h = (int)fd.size(0) - 1;
|
68 |
+
|
69 |
+
// Logical size of upsampled buffer.
|
70 |
+
int64_t cw = xw * up + (px0 + px1) - fut_w;
|
71 |
+
int64_t ch = xh * up + (py0 + py1) - fut_h;
|
72 |
+
TORCH_CHECK(cw > fdt_w && ch > fdt_h, "upsampled buffer must be at least the size of downsampling filter");
|
73 |
+
TORCH_CHECK(cw <= INT_MAX && ch <= INT_MAX, "upsampled buffer is too large");
|
74 |
+
|
75 |
+
// Compute output size and allocate.
|
76 |
+
int64_t yw = (cw - fdt_w + (down - 1)) / down;
|
77 |
+
int64_t yh = (ch - fdt_h + (down - 1)) / down;
|
78 |
+
TORCH_CHECK(yw > 0 && yh > 0, "output must be at least 1x1");
|
79 |
+
TORCH_CHECK(yw <= INT_MAX && yh <= INT_MAX, "output is too large");
|
80 |
+
torch::Tensor y = torch::empty({x.size(0), x.size(1), yh, yw}, x.options(), x.suggest_memory_format());
|
81 |
+
|
82 |
+
// Allocate sign tensor.
|
83 |
+
torch::Tensor so;
|
84 |
+
torch::Tensor s = si;
|
85 |
+
bool readSigns = !!s.numel();
|
86 |
+
int64_t sw_active = 0; // Active width of sign tensor.
|
87 |
+
if (writeSigns)
|
88 |
+
{
|
89 |
+
sw_active = yw * down - (down - 1) + fdt_w; // Active width in elements.
|
90 |
+
int64_t sh = yh * down - (down - 1) + fdt_h; // Height = active height.
|
91 |
+
int64_t sw = (sw_active + 15) & ~15; // Width = active width in elements, rounded up to multiple of 16.
|
92 |
+
TORCH_CHECK(sh <= INT_MAX && (sw >> 2) <= INT_MAX, "signs is too large");
|
93 |
+
s = so = torch::empty({x.size(0), x.size(1), sh, sw >> 2}, x.options().dtype(torch::kUInt8), at::MemoryFormat::Contiguous);
|
94 |
+
}
|
95 |
+
else if (readSigns)
|
96 |
+
sw_active = s.size(3) << 2;
|
97 |
+
|
98 |
+
// Validate sign tensor if in use.
|
99 |
+
if (readSigns || writeSigns)
|
100 |
+
{
|
101 |
+
TORCH_CHECK(s.is_contiguous(), "signs must be contiguous");
|
102 |
+
TORCH_CHECK(s.dtype() == torch::kUInt8, "signs must be uint8");
|
103 |
+
TORCH_CHECK(s.device() == x.device(), "signs must reside on the same device as x");
|
104 |
+
TORCH_CHECK(s.dim() == 4, "signs must be rank 4");
|
105 |
+
TORCH_CHECK(s.size(0) == x.size(0) && s.size(1) == x.size(1), "signs must have same batch & channels as x");
|
106 |
+
TORCH_CHECK(s.size(2) <= INT_MAX && s.size(3) <= INT_MAX, "signs is too large");
|
107 |
+
}
|
108 |
+
|
109 |
+
// Populate rest of CUDA kernel parameters.
|
110 |
+
p.x = x.data_ptr();
|
111 |
+
p.y = y.data_ptr();
|
112 |
+
p.b = b.data_ptr();
|
113 |
+
p.s = (readSigns || writeSigns) ? s.data_ptr<unsigned char>() : 0;
|
114 |
+
p.fu = fu.data_ptr<float>();
|
115 |
+
p.fd = fd.data_ptr<float>();
|
116 |
+
p.pad0 = make_int2(px0, py0);
|
117 |
+
p.gain = gain;
|
118 |
+
p.slope = slope;
|
119 |
+
p.clamp = clamp;
|
120 |
+
p.flip = (flip_filters) ? 1 : 0;
|
121 |
+
p.xShape = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0));
|
122 |
+
p.yShape = make_int4((int)y.size(3), (int)y.size(2), (int)y.size(1), (int)y.size(0));
|
123 |
+
p.sShape = (readSigns || writeSigns) ? make_int2((int)s.size(3), (int)s.size(2)) : make_int2(0, 0); // Width is in bytes. Contiguous.
|
124 |
+
p.sOfs = make_int2(sx, sy);
|
125 |
+
p.swLimit = (sw_active + 3) >> 2; // Rounded up to bytes.
|
126 |
+
|
127 |
+
// x, y, b strides are in bytes.
|
128 |
+
p.xStride = make_longlong4(sz * x.stride(3), sz * x.stride(2), sz * x.stride(1), sz * x.stride(0));
|
129 |
+
p.yStride = make_longlong4(sz * y.stride(3), sz * y.stride(2), sz * y.stride(1), sz * y.stride(0));
|
130 |
+
p.bStride = sz * b.stride(0);
|
131 |
+
|
132 |
+
// fu, fd strides are in elements.
|
133 |
+
p.fuStride = make_longlong3(fu.stride(-1), fu.dim() == 2 ? fu.stride(0) : 0, 0);
|
134 |
+
p.fdStride = make_longlong3(fd.stride(-1), fd.dim() == 2 ? fd.stride(0) : 0, 0);
|
135 |
+
|
136 |
+
// Determine if indices don't fit in int32. Support negative strides although Torch currently never produces those.
|
137 |
+
bool index64b = false;
|
138 |
+
if (std::abs(p.bStride * x.size(1)) > INT_MAX) index64b = true;
|
139 |
+
if (std::min(x.size(0) * p.xStride.w, 0ll) + std::min(x.size(1) * p.xStride.z, 0ll) + std::min(x.size(2) * p.xStride.y, 0ll) + std::min(x.size(3) * p.xStride.x, 0ll) < -INT_MAX) index64b = true;
|
140 |
+
if (std::max(x.size(0) * p.xStride.w, 0ll) + std::max(x.size(1) * p.xStride.z, 0ll) + std::max(x.size(2) * p.xStride.y, 0ll) + std::max(x.size(3) * p.xStride.x, 0ll) > INT_MAX) index64b = true;
|
141 |
+
if (std::min(y.size(0) * p.yStride.w, 0ll) + std::min(y.size(1) * p.yStride.z, 0ll) + std::min(y.size(2) * p.yStride.y, 0ll) + std::min(y.size(3) * p.yStride.x, 0ll) < -INT_MAX) index64b = true;
|
142 |
+
if (std::max(y.size(0) * p.yStride.w, 0ll) + std::max(y.size(1) * p.yStride.z, 0ll) + std::max(y.size(2) * p.yStride.y, 0ll) + std::max(y.size(3) * p.yStride.x, 0ll) > INT_MAX) index64b = true;
|
143 |
+
if (s.numel() > INT_MAX) index64b = true;
|
144 |
+
|
145 |
+
// Choose CUDA kernel.
|
146 |
+
filtered_lrelu_kernel_spec spec = { 0 };
|
147 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "filtered_lrelu_cuda", [&]
|
148 |
+
{
|
149 |
+
if constexpr (sizeof(scalar_t) <= 4) // Exclude doubles. constexpr prevents template instantiation.
|
150 |
+
{
|
151 |
+
// Choose kernel based on index type, datatype and sign read/write modes.
|
152 |
+
if (!index64b && writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int32_t, true, false>(p, sharedKB);
|
153 |
+
else if (!index64b && !writeSigns && readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int32_t, false, true >(p, sharedKB);
|
154 |
+
else if (!index64b && !writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int32_t, false, false>(p, sharedKB);
|
155 |
+
else if ( index64b && writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int64_t, true, false>(p, sharedKB);
|
156 |
+
else if ( index64b && !writeSigns && readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int64_t, false, true >(p, sharedKB);
|
157 |
+
else if ( index64b && !writeSigns && !readSigns) spec = choose_filtered_lrelu_kernel<scalar_t, int64_t, false, false>(p, sharedKB);
|
158 |
+
}
|
159 |
+
});
|
160 |
+
TORCH_CHECK(spec.exec, "internal error - CUDA kernel not found") // This should not happen because we tested earlier that kernel exists.
|
161 |
+
|
162 |
+
// Launch CUDA kernel.
|
163 |
+
void* args[] = {&p};
|
164 |
+
int bx = spec.numWarps * 32;
|
165 |
+
int gx = (p.yShape.x - 1) / spec.tileOut.x + 1;
|
166 |
+
int gy = (p.yShape.y - 1) / spec.tileOut.y + 1;
|
167 |
+
int gz = p.yShape.z * p.yShape.w;
|
168 |
+
|
169 |
+
// Repeat multiple horizontal tiles in a CTA?
|
170 |
+
if (spec.xrep)
|
171 |
+
{
|
172 |
+
p.tilesXrep = spec.xrep;
|
173 |
+
p.tilesXdim = gx;
|
174 |
+
|
175 |
+
gx = (gx + p.tilesXrep - 1) / p.tilesXrep;
|
176 |
+
std::swap(gx, gy);
|
177 |
+
}
|
178 |
+
else
|
179 |
+
{
|
180 |
+
p.tilesXrep = 0;
|
181 |
+
p.tilesXdim = 0;
|
182 |
+
}
|
183 |
+
|
184 |
+
// Launch filter setup kernel.
|
185 |
+
AT_CUDA_CHECK(cudaLaunchKernel(spec.setup, 1, 1024, args, 0, at::cuda::getCurrentCUDAStream()));
|
186 |
+
|
187 |
+
// Copy kernels to constant memory.
|
188 |
+
if ( writeSigns && !readSigns) AT_CUDA_CHECK((copy_filters<true, false>(at::cuda::getCurrentCUDAStream())));
|
189 |
+
else if (!writeSigns && readSigns) AT_CUDA_CHECK((copy_filters<false, true >(at::cuda::getCurrentCUDAStream())));
|
190 |
+
else if (!writeSigns && !readSigns) AT_CUDA_CHECK((copy_filters<false, false>(at::cuda::getCurrentCUDAStream())));
|
191 |
+
|
192 |
+
// Set cache and shared memory configurations for main kernel.
|
193 |
+
AT_CUDA_CHECK(cudaFuncSetCacheConfig(spec.exec, cudaFuncCachePreferShared));
|
194 |
+
if (spec.dynamicSharedKB) // Need dynamically allocated shared memory?
|
195 |
+
AT_CUDA_CHECK(cudaFuncSetAttribute(spec.exec, cudaFuncAttributeMaxDynamicSharedMemorySize, spec.dynamicSharedKB << 10));
|
196 |
+
AT_CUDA_CHECK(cudaFuncSetSharedMemConfig(spec.exec, cudaSharedMemBankSizeFourByte));
|
197 |
+
|
198 |
+
// Launch main kernel.
|
199 |
+
const int maxSubGz = 65535; // CUDA maximum for block z dimension.
|
200 |
+
for (int zofs=0; zofs < gz; zofs += maxSubGz) // Do multiple launches if gz is too big.
|
201 |
+
{
|
202 |
+
p.blockZofs = zofs;
|
203 |
+
int subGz = std::min(maxSubGz, gz - zofs);
|
204 |
+
AT_CUDA_CHECK(cudaLaunchKernel(spec.exec, dim3(gx, gy, subGz), bx, args, spec.dynamicSharedKB << 10, at::cuda::getCurrentCUDAStream()));
|
205 |
+
}
|
206 |
+
|
207 |
+
// Done.
|
208 |
+
return std::make_tuple(y, so, 0);
|
209 |
+
}
|
210 |
+
|
211 |
+
//------------------------------------------------------------------------
|
212 |
+
|
213 |
+
static torch::Tensor filtered_lrelu_act(torch::Tensor x, torch::Tensor si, int sx, int sy, float gain, float slope, float clamp, bool writeSigns)
|
214 |
+
{
|
215 |
+
// Set CUDA device.
|
216 |
+
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
|
217 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
218 |
+
|
219 |
+
// Validate arguments.
|
220 |
+
TORCH_CHECK(x.dim() == 4, "x must be rank 4");
|
221 |
+
TORCH_CHECK(x.size(0) * x.size(1) <= INT_MAX && x.size(2) <= INT_MAX && x.size(3) <= INT_MAX, "x is too large");
|
222 |
+
TORCH_CHECK(x.numel() > 0, "x is empty");
|
223 |
+
TORCH_CHECK(x.dtype() == torch::kHalf || x.dtype() == torch::kFloat || x.dtype() == torch::kDouble, "x must be float16, float32 or float64");
|
224 |
+
|
225 |
+
// Output signs if we don't have sign input.
|
226 |
+
torch::Tensor so;
|
227 |
+
torch::Tensor s = si;
|
228 |
+
bool readSigns = !!s.numel();
|
229 |
+
if (writeSigns)
|
230 |
+
{
|
231 |
+
int64_t sw = x.size(3);
|
232 |
+
sw = (sw + 15) & ~15; // Round to a multiple of 16 for coalescing.
|
233 |
+
s = so = torch::empty({x.size(0), x.size(1), x.size(2), sw >> 2}, x.options().dtype(torch::kUInt8), at::MemoryFormat::Contiguous);
|
234 |
+
}
|
235 |
+
|
236 |
+
// Validate sign tensor if in use.
|
237 |
+
if (readSigns || writeSigns)
|
238 |
+
{
|
239 |
+
TORCH_CHECK(s.is_contiguous(), "signs must be contiguous");
|
240 |
+
TORCH_CHECK(s.dtype() == torch::kUInt8, "signs must be uint8");
|
241 |
+
TORCH_CHECK(s.device() == x.device(), "signs must reside on the same device as x");
|
242 |
+
TORCH_CHECK(s.dim() == 4, "signs must be rank 4");
|
243 |
+
TORCH_CHECK(s.size(0) == x.size(0) && s.size(1) == x.size(1), "signs must have same batch & channels as x");
|
244 |
+
TORCH_CHECK(s.size(2) <= INT_MAX && (s.size(3) << 2) <= INT_MAX, "signs tensor is too large");
|
245 |
+
}
|
246 |
+
|
247 |
+
// Initialize CUDA kernel parameters.
|
248 |
+
filtered_lrelu_act_kernel_params p;
|
249 |
+
p.x = x.data_ptr();
|
250 |
+
p.s = (readSigns || writeSigns) ? s.data_ptr<unsigned char>() : 0;
|
251 |
+
p.gain = gain;
|
252 |
+
p.slope = slope;
|
253 |
+
p.clamp = clamp;
|
254 |
+
p.xShape = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0));
|
255 |
+
p.xStride = make_longlong4(x.stride(3), x.stride(2), x.stride(1), x.stride(0));
|
256 |
+
p.sShape = (readSigns || writeSigns) ? make_int2((int)s.size(3) << 2, (int)s.size(2)) : make_int2(0, 0); // Width is in elements. Contiguous.
|
257 |
+
p.sOfs = make_int2(sx, sy);
|
258 |
+
|
259 |
+
// Choose CUDA kernel.
|
260 |
+
void* func = 0;
|
261 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "filtered_lrelu_act_cuda", [&]
|
262 |
+
{
|
263 |
+
if (writeSigns)
|
264 |
+
func = choose_filtered_lrelu_act_kernel<scalar_t, true, false>();
|
265 |
+
else if (readSigns)
|
266 |
+
func = choose_filtered_lrelu_act_kernel<scalar_t, false, true>();
|
267 |
+
else
|
268 |
+
func = choose_filtered_lrelu_act_kernel<scalar_t, false, false>();
|
269 |
+
});
|
270 |
+
TORCH_CHECK(func, "internal error - CUDA kernel not found");
|
271 |
+
|
272 |
+
// Launch CUDA kernel.
|
273 |
+
void* args[] = {&p};
|
274 |
+
int bx = 128; // 4 warps per block.
|
275 |
+
|
276 |
+
// Logical size of launch = writeSigns ? p.s : p.x
|
277 |
+
uint32_t gx = writeSigns ? p.sShape.x : p.xShape.x;
|
278 |
+
uint32_t gy = writeSigns ? p.sShape.y : p.xShape.y;
|
279 |
+
uint32_t gz = p.xShape.z * p.xShape.w; // Same as in p.sShape if signs are in use.
|
280 |
+
gx = (gx - 1) / bx + 1;
|
281 |
+
|
282 |
+
// Make sure grid y and z dimensions are within CUDA launch limits. Kernel loops internally to do the rest.
|
283 |
+
const uint32_t gmax = 65535;
|
284 |
+
gy = std::min(gy, gmax);
|
285 |
+
gz = std::min(gz, gmax);
|
286 |
+
|
287 |
+
// Launch.
|
288 |
+
AT_CUDA_CHECK(cudaLaunchKernel(func, dim3(gx, gy, gz), bx, args, 0, at::cuda::getCurrentCUDAStream()));
|
289 |
+
return so;
|
290 |
+
}
|
291 |
+
|
292 |
+
//------------------------------------------------------------------------
|
293 |
+
|
294 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
295 |
+
{
|
296 |
+
m.def("filtered_lrelu", &filtered_lrelu); // The whole thing.
|
297 |
+
m.def("filtered_lrelu_act_", &filtered_lrelu_act); // Activation and sign tensor handling only. Modifies data tensor in-place.
|
298 |
+
}
|
299 |
+
|
300 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/filtered_lrelu.cu
ADDED
@@ -0,0 +1,1284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <c10/util/Half.h>
|
10 |
+
#include "filtered_lrelu.h"
|
11 |
+
#include <cstdint>
|
12 |
+
|
13 |
+
//------------------------------------------------------------------------
|
14 |
+
// Helpers.
|
15 |
+
|
16 |
+
enum // Filter modes.
|
17 |
+
{
|
18 |
+
MODE_SUSD = 0, // Separable upsampling, separable downsampling.
|
19 |
+
MODE_FUSD = 1, // Full upsampling, separable downsampling.
|
20 |
+
MODE_SUFD = 2, // Separable upsampling, full downsampling.
|
21 |
+
MODE_FUFD = 3, // Full upsampling, full downsampling.
|
22 |
+
};
|
23 |
+
|
24 |
+
template <class T> struct InternalType;
|
25 |
+
template <> struct InternalType<double>
|
26 |
+
{
|
27 |
+
typedef double scalar_t; typedef double2 vec2_t; typedef double4 vec4_t;
|
28 |
+
__device__ __forceinline__ static vec2_t zero_vec2(void) { return make_double2(0, 0); }
|
29 |
+
__device__ __forceinline__ static vec4_t zero_vec4(void) { return make_double4(0, 0, 0, 0); }
|
30 |
+
__device__ __forceinline__ static double clamp(double x, double c) { return fmin(fmax(x, -c), c); }
|
31 |
+
};
|
32 |
+
template <> struct InternalType<float>
|
33 |
+
{
|
34 |
+
typedef float scalar_t; typedef float2 vec2_t; typedef float4 vec4_t;
|
35 |
+
__device__ __forceinline__ static vec2_t zero_vec2(void) { return make_float2(0, 0); }
|
36 |
+
__device__ __forceinline__ static vec4_t zero_vec4(void) { return make_float4(0, 0, 0, 0); }
|
37 |
+
__device__ __forceinline__ static float clamp(float x, float c) { return fminf(fmaxf(x, -c), c); }
|
38 |
+
};
|
39 |
+
template <> struct InternalType<c10::Half>
|
40 |
+
{
|
41 |
+
typedef float scalar_t; typedef float2 vec2_t; typedef float4 vec4_t;
|
42 |
+
__device__ __forceinline__ static vec2_t zero_vec2(void) { return make_float2(0, 0); }
|
43 |
+
__device__ __forceinline__ static vec4_t zero_vec4(void) { return make_float4(0, 0, 0, 0); }
|
44 |
+
__device__ __forceinline__ static float clamp(float x, float c) { return fminf(fmaxf(x, -c), c); }
|
45 |
+
};
|
46 |
+
|
47 |
+
#define MIN(A, B) ((A) < (B) ? (A) : (B))
|
48 |
+
#define MAX(A, B) ((A) > (B) ? (A) : (B))
|
49 |
+
#define CEIL_DIV(A, B) (((B)==1) ? (A) : \
|
50 |
+
((B)==2) ? ((int)((A)+1) >> 1) : \
|
51 |
+
((B)==4) ? ((int)((A)+3) >> 2) : \
|
52 |
+
(((A) + ((A) > 0 ? (B) - 1 : 0)) / (B)))
|
53 |
+
|
54 |
+
// This works only up to blocks of size 256 x 256 and for all N that are powers of two.
|
55 |
+
template <int N> __device__ __forceinline__ void fast_div_mod(int& x, int& y, unsigned int i)
|
56 |
+
{
|
57 |
+
if ((N & (N-1)) && N <= 256)
|
58 |
+
y = (i * ((1<<24)/N + 1)) >> 24; // Assumes N <= 256, i < N*256.
|
59 |
+
else
|
60 |
+
y = i/N;
|
61 |
+
|
62 |
+
x = i - y*N;
|
63 |
+
}
|
64 |
+
|
65 |
+
// Type cast stride before reading it.
|
66 |
+
template <class T> __device__ __forceinline__ T get_stride(const int64_t& x)
|
67 |
+
{
|
68 |
+
return *reinterpret_cast<const T*>(&x);
|
69 |
+
}
|
70 |
+
|
71 |
+
//------------------------------------------------------------------------
|
72 |
+
// Filters, setup kernel, copying function.
|
73 |
+
|
74 |
+
#define MAX_FILTER_SIZE 32
|
75 |
+
|
76 |
+
// Combined up/down filter buffers so that transfer can be done with one copy.
|
77 |
+
__device__ float g_fbuf[2 * MAX_FILTER_SIZE * MAX_FILTER_SIZE]; // Filters in global memory, written by setup kernel.
|
78 |
+
__device__ __constant__ float c_fbuf[2 * MAX_FILTER_SIZE * MAX_FILTER_SIZE]; // Filters in constant memory, read by main kernel.
|
79 |
+
|
80 |
+
// Accessors to combined buffers to index up/down filters individually.
|
81 |
+
#define c_fu (c_fbuf)
|
82 |
+
#define c_fd (c_fbuf + MAX_FILTER_SIZE * MAX_FILTER_SIZE)
|
83 |
+
#define g_fu (g_fbuf)
|
84 |
+
#define g_fd (g_fbuf + MAX_FILTER_SIZE * MAX_FILTER_SIZE)
|
85 |
+
|
86 |
+
// Set up filters into global memory buffer.
|
87 |
+
static __global__ void setup_filters_kernel(filtered_lrelu_kernel_params p)
|
88 |
+
{
|
89 |
+
for (int idx = threadIdx.x; idx < MAX_FILTER_SIZE * MAX_FILTER_SIZE; idx += blockDim.x)
|
90 |
+
{
|
91 |
+
int x, y;
|
92 |
+
fast_div_mod<MAX_FILTER_SIZE>(x, y, idx);
|
93 |
+
|
94 |
+
int fu_x = p.flip ? x : (p.fuShape.x - 1 - x);
|
95 |
+
int fu_y = p.flip ? y : (p.fuShape.y - 1 - y);
|
96 |
+
if (p.fuShape.y > 0)
|
97 |
+
g_fu[idx] = (x >= p.fuShape.x || y >= p.fuShape.y) ? 0.0f : p.fu[fu_x * p.fuStride.x + fu_y * p.fuStride.y];
|
98 |
+
else
|
99 |
+
g_fu[idx] = (x >= p.fuShape.x || y > 0) ? 0.0f : p.fu[fu_x * p.fuStride.x];
|
100 |
+
|
101 |
+
int fd_x = p.flip ? x : (p.fdShape.x - 1 - x);
|
102 |
+
int fd_y = p.flip ? y : (p.fdShape.y - 1 - y);
|
103 |
+
if (p.fdShape.y > 0)
|
104 |
+
g_fd[idx] = (x >= p.fdShape.x || y >= p.fdShape.y) ? 0.0f : p.fd[fd_x * p.fdStride.x + fd_y * p.fdStride.y];
|
105 |
+
else
|
106 |
+
g_fd[idx] = (x >= p.fdShape.x || y > 0) ? 0.0f : p.fd[fd_x * p.fdStride.x];
|
107 |
+
}
|
108 |
+
}
|
109 |
+
|
110 |
+
// Host function to copy filters written by setup kernel into constant buffer for main kernel.
|
111 |
+
template <bool, bool> static cudaError_t copy_filters(cudaStream_t stream)
|
112 |
+
{
|
113 |
+
void* src = 0;
|
114 |
+
cudaError_t err = cudaGetSymbolAddress(&src, g_fbuf);
|
115 |
+
if (err) return err;
|
116 |
+
return cudaMemcpyToSymbolAsync(c_fbuf, src, 2 * MAX_FILTER_SIZE * MAX_FILTER_SIZE * sizeof(float), 0, cudaMemcpyDeviceToDevice, stream);
|
117 |
+
}
|
118 |
+
|
119 |
+
//------------------------------------------------------------------------
|
120 |
+
// Coordinate spaces:
|
121 |
+
// - Relative to input tensor: inX, inY, tileInX, tileInY
|
122 |
+
// - Relative to input tile: relInX, relInY, tileInW, tileInH
|
123 |
+
// - Relative to upsampled tile: relUpX, relUpY, tileUpW, tileUpH
|
124 |
+
// - Relative to output tile: relOutX, relOutY, tileOutW, tileOutH
|
125 |
+
// - Relative to output tensor: outX, outY, tileOutX, tileOutY
|
126 |
+
//
|
127 |
+
// Relationships between coordinate spaces:
|
128 |
+
// - inX = tileInX + relInX
|
129 |
+
// - inY = tileInY + relInY
|
130 |
+
// - relUpX = relInX * up + phaseInX
|
131 |
+
// - relUpY = relInY * up + phaseInY
|
132 |
+
// - relUpX = relOutX * down
|
133 |
+
// - relUpY = relOutY * down
|
134 |
+
// - outX = tileOutX + relOutX
|
135 |
+
// - outY = tileOutY + relOutY
|
136 |
+
|
137 |
+
extern __shared__ char s_buf_raw[]; // When sharedKB <= 48, allocate shared memory statically inside the kernel, otherwise use the externally allocated shared memory buffer.
|
138 |
+
|
139 |
+
template <class T, class index_t, int sharedKB, bool signWrite, bool signRead, int filterMode, int up, int fuSize, int down, int fdSize, int tileOutW, int tileOutH, int threadsPerBlock, bool enableXrep, bool enableWriteSkip>
|
140 |
+
static __global__ void filtered_lrelu_kernel(filtered_lrelu_kernel_params p)
|
141 |
+
{
|
142 |
+
// Check that we don't try to support non-existing filter modes.
|
143 |
+
static_assert(up == 1 || up == 2 || up == 4, "only up=1, up=2, up=4 scales supported");
|
144 |
+
static_assert(down == 1 || down == 2 || down == 4, "only down=1, down=2, down=4 scales supported");
|
145 |
+
static_assert(fuSize >= up, "upsampling filter size must be at least upsampling factor");
|
146 |
+
static_assert(fdSize >= down, "downsampling filter size must be at least downsampling factor");
|
147 |
+
static_assert(fuSize % up == 0, "upsampling filter size must be divisible with upsampling factor");
|
148 |
+
static_assert(fdSize % down == 0, "downsampling filter size must be divisible with downsampling factor");
|
149 |
+
static_assert(fuSize <= MAX_FILTER_SIZE && fdSize <= MAX_FILTER_SIZE, "filter size greater than MAX_FILTER_SIZE");
|
150 |
+
static_assert(up != 1 || (fuSize == 1 && (filterMode == MODE_FUFD || filterMode == MODE_FUSD)), "up=1 supported only for 1x1 full filters");
|
151 |
+
static_assert(down != 1 || (fdSize == 1 && (filterMode == MODE_FUFD || filterMode == MODE_SUFD)), "down=1 supported only for 1x1 full filters");
|
152 |
+
static_assert(!(up == 4 && (filterMode == MODE_FUFD || filterMode == MODE_FUSD)), "full filters not supported for up=4");
|
153 |
+
static_assert(!(down == 4 && (filterMode == MODE_FUFD || filterMode == MODE_SUFD)), "full filters not supported for down=4");
|
154 |
+
|
155 |
+
// Static definitions.
|
156 |
+
typedef typename InternalType<T>::scalar_t scalar_t;
|
157 |
+
typedef typename InternalType<T>::vec2_t vec2_t;
|
158 |
+
typedef typename InternalType<T>::vec4_t vec4_t;
|
159 |
+
const int tileUpW = (tileOutW * down + (fdSize - 1) - (down - 1) + 3) & ~3; // Upsampled tile width, rounded up to multiple of 4.
|
160 |
+
const int tileUpH = tileOutH * down + (fdSize - 1) - (down - 1); // Upsampled tile height.
|
161 |
+
const int tileInW = CEIL_DIV(tileUpW + (fuSize - 1), up); // Input tile width.
|
162 |
+
const int tileInH = CEIL_DIV(tileUpH + (fuSize - 1), up); // Input tile height.
|
163 |
+
const int tileUpH_up = CEIL_DIV(tileUpH, up) * up; // Upsampled tile height rounded up to a multiple of up.
|
164 |
+
const int tileInH_up = CEIL_DIV(tileUpH_up + (fuSize - 1), up); // For allocations only, to avoid shared memory read overruns with up=2 and up=4.
|
165 |
+
|
166 |
+
// Merge 1x1 downsampling into last upsampling step for upf1 and ups2.
|
167 |
+
const bool downInline = (down == 1) && ((up == 1 && filterMode == MODE_FUFD) || (up == 2 && filterMode == MODE_SUFD));
|
168 |
+
|
169 |
+
// Sizes of logical buffers.
|
170 |
+
const int szIn = tileInH_up * tileInW;
|
171 |
+
const int szUpX = tileInH_up * tileUpW;
|
172 |
+
const int szUpXY = downInline ? 0 : (tileUpH * tileUpW);
|
173 |
+
const int szDownX = tileUpH * tileOutW;
|
174 |
+
|
175 |
+
// Sizes for shared memory arrays.
|
176 |
+
const int s_buf0_size_base =
|
177 |
+
(filterMode == MODE_SUSD) ? MAX(szIn, szUpXY) :
|
178 |
+
(filterMode == MODE_FUSD) ? MAX(szIn, szDownX) :
|
179 |
+
(filterMode == MODE_SUFD) ? MAX(szIn, szUpXY) :
|
180 |
+
(filterMode == MODE_FUFD) ? szIn :
|
181 |
+
-1;
|
182 |
+
const int s_buf1_size_base =
|
183 |
+
(filterMode == MODE_SUSD) ? MAX(szUpX, szDownX) :
|
184 |
+
(filterMode == MODE_FUSD) ? szUpXY :
|
185 |
+
(filterMode == MODE_SUFD) ? szUpX :
|
186 |
+
(filterMode == MODE_FUFD) ? szUpXY :
|
187 |
+
-1;
|
188 |
+
|
189 |
+
// Ensure U128 alignment.
|
190 |
+
const int s_buf0_size = (s_buf0_size_base + 3) & ~3;
|
191 |
+
const int s_buf1_size = (s_buf1_size_base + 3) & ~3;
|
192 |
+
|
193 |
+
// Check at compile time that we don't use too much shared memory.
|
194 |
+
static_assert((s_buf0_size + s_buf1_size) * sizeof(scalar_t) <= (sharedKB << 10), "shared memory overflow");
|
195 |
+
|
196 |
+
// Declare shared memory arrays.
|
197 |
+
scalar_t* s_buf0;
|
198 |
+
scalar_t* s_buf1;
|
199 |
+
if (sharedKB <= 48)
|
200 |
+
{
|
201 |
+
// Allocate shared memory arrays here.
|
202 |
+
__shared__ scalar_t s_buf0_st[(sharedKB > 48) ? (1<<24) : (s_buf0_size + s_buf1_size)]; // Prevent launching if this isn't optimized away when unused.
|
203 |
+
s_buf0 = s_buf0_st;
|
204 |
+
s_buf1 = s_buf0 + s_buf0_size;
|
205 |
+
}
|
206 |
+
else
|
207 |
+
{
|
208 |
+
// Use the dynamically allocated shared memory array.
|
209 |
+
s_buf0 = (scalar_t*)s_buf_raw;
|
210 |
+
s_buf1 = s_buf0 + s_buf0_size;
|
211 |
+
}
|
212 |
+
|
213 |
+
// Pointers to the buffers.
|
214 |
+
scalar_t* s_tileIn; // Input tile: [relInX * tileInH + relInY]
|
215 |
+
scalar_t* s_tileUpX; // After horizontal upsampling: [relInY * tileUpW + relUpX]
|
216 |
+
scalar_t* s_tileUpXY; // After upsampling: [relUpY * tileUpW + relUpX]
|
217 |
+
scalar_t* s_tileDownX; // After horizontal downsampling: [relUpY * tileOutW + relOutX]
|
218 |
+
if (filterMode == MODE_SUSD)
|
219 |
+
{
|
220 |
+
s_tileIn = s_buf0;
|
221 |
+
s_tileUpX = s_buf1;
|
222 |
+
s_tileUpXY = s_buf0;
|
223 |
+
s_tileDownX = s_buf1;
|
224 |
+
}
|
225 |
+
else if (filterMode == MODE_FUSD)
|
226 |
+
{
|
227 |
+
s_tileIn = s_buf0;
|
228 |
+
s_tileUpXY = s_buf1;
|
229 |
+
s_tileDownX = s_buf0;
|
230 |
+
}
|
231 |
+
else if (filterMode == MODE_SUFD)
|
232 |
+
{
|
233 |
+
s_tileIn = s_buf0;
|
234 |
+
s_tileUpX = s_buf1;
|
235 |
+
s_tileUpXY = s_buf0;
|
236 |
+
}
|
237 |
+
else if (filterMode == MODE_FUFD)
|
238 |
+
{
|
239 |
+
s_tileIn = s_buf0;
|
240 |
+
s_tileUpXY = s_buf1;
|
241 |
+
}
|
242 |
+
|
243 |
+
// Allow large grids in z direction via per-launch offset.
|
244 |
+
int channelIdx = blockIdx.z + p.blockZofs;
|
245 |
+
int batchIdx = channelIdx / p.yShape.z;
|
246 |
+
channelIdx -= batchIdx * p.yShape.z;
|
247 |
+
|
248 |
+
// Offset to output feature map. In bytes.
|
249 |
+
index_t mapOfsOut = channelIdx * get_stride<index_t>(p.yStride.z) + batchIdx * get_stride<index_t>(p.yStride.w);
|
250 |
+
|
251 |
+
// Sign shift amount.
|
252 |
+
uint32_t signXo = ((threadIdx.x + p.sOfs.x) << 1) & 6;
|
253 |
+
|
254 |
+
// Inner tile loop.
|
255 |
+
#pragma unroll 1
|
256 |
+
for (int tileIdx = 0; !enableXrep || (tileIdx < MIN(p.tilesXrep, p.tilesXdim - p.tilesXrep * blockIdx.y)); tileIdx++)
|
257 |
+
{
|
258 |
+
// Locate output tile.
|
259 |
+
int tileX = enableXrep ? blockIdx.y * p.tilesXrep + tileIdx : blockIdx.x;
|
260 |
+
int tileOutX = tileX * tileOutW;
|
261 |
+
int tileOutY = (enableXrep ? blockIdx.x : blockIdx.y) * tileOutH;
|
262 |
+
|
263 |
+
// Locate input tile.
|
264 |
+
int tmpX = tileOutX * down - p.pad0.x;
|
265 |
+
int tmpY = tileOutY * down - p.pad0.y;
|
266 |
+
int tileInX = CEIL_DIV(tmpX, up);
|
267 |
+
int tileInY = CEIL_DIV(tmpY, up);
|
268 |
+
const int phaseInX = tileInX * up - tmpX;
|
269 |
+
const int phaseInY = tileInY * up - tmpY;
|
270 |
+
|
271 |
+
// Extra sync if input and output buffers are the same and we are not on first tile.
|
272 |
+
if (enableXrep && tileIdx > 0 && (filterMode == MODE_FUSD || (filterMode == MODE_SUFD && !downInline) || (filterMode == MODE_FUFD && downInline)))
|
273 |
+
__syncthreads();
|
274 |
+
|
275 |
+
// Load input tile & apply bias. Unrolled.
|
276 |
+
scalar_t b = (scalar_t)*(const T*)((const char*)p.b + (channelIdx * get_stride<index_t>(p.bStride)));
|
277 |
+
index_t mapOfsIn = channelIdx * get_stride<index_t>(p.xStride.z) + batchIdx * get_stride<index_t>(p.xStride.w);
|
278 |
+
int idx = threadIdx.x;
|
279 |
+
const int loopCountIN = CEIL_DIV(tileInW * tileInH, threadsPerBlock);
|
280 |
+
#pragma unroll
|
281 |
+
for (int loop = 0; loop < loopCountIN; loop++)
|
282 |
+
{
|
283 |
+
int relInX, relInY;
|
284 |
+
fast_div_mod<tileInW>(relInX, relInY, idx);
|
285 |
+
int inX = tileInX + relInX;
|
286 |
+
int inY = tileInY + relInY;
|
287 |
+
scalar_t v = 0;
|
288 |
+
|
289 |
+
if ((uint32_t)inX < p.xShape.x && (uint32_t)inY < p.xShape.y)
|
290 |
+
v = (scalar_t)*((const T*)((const char*)p.x + (inX * get_stride<index_t>(p.xStride.x) + inY * get_stride<index_t>(p.xStride.y) + mapOfsIn))) + b;
|
291 |
+
|
292 |
+
bool skip = (loop == loopCountIN-1) && (idx >= tileInW * tileInH);
|
293 |
+
if (!skip)
|
294 |
+
s_tileIn[idx] = v;
|
295 |
+
|
296 |
+
idx += threadsPerBlock;
|
297 |
+
}
|
298 |
+
|
299 |
+
if (filterMode == MODE_SUSD || filterMode == MODE_SUFD) // Separable upsampling filter.
|
300 |
+
{
|
301 |
+
// Horizontal upsampling.
|
302 |
+
__syncthreads();
|
303 |
+
if (up == 4)
|
304 |
+
{
|
305 |
+
for (int idx = threadIdx.x*up; idx < tileUpW * tileInH; idx += blockDim.x*up)
|
306 |
+
{
|
307 |
+
int relUpX0, relInY;
|
308 |
+
fast_div_mod<tileUpW>(relUpX0, relInY, idx);
|
309 |
+
int relInX0 = relUpX0 / up;
|
310 |
+
int src0 = relInX0 + tileInW * relInY;
|
311 |
+
int dst = relInY * tileUpW + relUpX0;
|
312 |
+
vec4_t v = InternalType<T>::zero_vec4();
|
313 |
+
scalar_t a = s_tileIn[src0];
|
314 |
+
if (phaseInX == 0)
|
315 |
+
{
|
316 |
+
#pragma unroll
|
317 |
+
for (int step = 0; step < fuSize / up; step++)
|
318 |
+
{
|
319 |
+
v.x += a * (scalar_t)c_fu[step * up + 0];
|
320 |
+
a = s_tileIn[src0 + step + 1];
|
321 |
+
v.y += a * (scalar_t)c_fu[step * up + 3];
|
322 |
+
v.z += a * (scalar_t)c_fu[step * up + 2];
|
323 |
+
v.w += a * (scalar_t)c_fu[step * up + 1];
|
324 |
+
}
|
325 |
+
}
|
326 |
+
else if (phaseInX == 1)
|
327 |
+
{
|
328 |
+
#pragma unroll
|
329 |
+
for (int step = 0; step < fuSize / up; step++)
|
330 |
+
{
|
331 |
+
v.x += a * (scalar_t)c_fu[step * up + 1];
|
332 |
+
v.y += a * (scalar_t)c_fu[step * up + 0];
|
333 |
+
a = s_tileIn[src0 + step + 1];
|
334 |
+
v.z += a * (scalar_t)c_fu[step * up + 3];
|
335 |
+
v.w += a * (scalar_t)c_fu[step * up + 2];
|
336 |
+
}
|
337 |
+
}
|
338 |
+
else if (phaseInX == 2)
|
339 |
+
{
|
340 |
+
#pragma unroll
|
341 |
+
for (int step = 0; step < fuSize / up; step++)
|
342 |
+
{
|
343 |
+
v.x += a * (scalar_t)c_fu[step * up + 2];
|
344 |
+
v.y += a * (scalar_t)c_fu[step * up + 1];
|
345 |
+
v.z += a * (scalar_t)c_fu[step * up + 0];
|
346 |
+
a = s_tileIn[src0 + step + 1];
|
347 |
+
v.w += a * (scalar_t)c_fu[step * up + 3];
|
348 |
+
}
|
349 |
+
}
|
350 |
+
else // (phaseInX == 3)
|
351 |
+
{
|
352 |
+
#pragma unroll
|
353 |
+
for (int step = 0; step < fuSize / up; step++)
|
354 |
+
{
|
355 |
+
v.x += a * (scalar_t)c_fu[step * up + 3];
|
356 |
+
v.y += a * (scalar_t)c_fu[step * up + 2];
|
357 |
+
v.z += a * (scalar_t)c_fu[step * up + 1];
|
358 |
+
v.w += a * (scalar_t)c_fu[step * up + 0];
|
359 |
+
a = s_tileIn[src0 + step + 1];
|
360 |
+
}
|
361 |
+
}
|
362 |
+
s_tileUpX[dst+0] = v.x;
|
363 |
+
s_tileUpX[dst+1] = v.y;
|
364 |
+
s_tileUpX[dst+2] = v.z;
|
365 |
+
s_tileUpX[dst+3] = v.w;
|
366 |
+
}
|
367 |
+
}
|
368 |
+
else if (up == 2)
|
369 |
+
{
|
370 |
+
bool p0 = (phaseInX == 0);
|
371 |
+
for (int idx = threadIdx.x*up; idx < tileUpW * tileInH; idx += blockDim.x*up)
|
372 |
+
{
|
373 |
+
int relUpX0, relInY;
|
374 |
+
fast_div_mod<tileUpW>(relUpX0, relInY, idx);
|
375 |
+
int relInX0 = relUpX0 / up;
|
376 |
+
int src0 = relInX0 + tileInW * relInY;
|
377 |
+
int dst = relInY * tileUpW + relUpX0;
|
378 |
+
vec2_t v = InternalType<T>::zero_vec2();
|
379 |
+
scalar_t a = s_tileIn[src0];
|
380 |
+
if (p0) // (phaseInX == 0)
|
381 |
+
{
|
382 |
+
#pragma unroll
|
383 |
+
for (int step = 0; step < fuSize / up; step++)
|
384 |
+
{
|
385 |
+
v.x += a * (scalar_t)c_fu[step * up + 0];
|
386 |
+
a = s_tileIn[src0 + step + 1];
|
387 |
+
v.y += a * (scalar_t)c_fu[step * up + 1];
|
388 |
+
}
|
389 |
+
}
|
390 |
+
else // (phaseInX == 1)
|
391 |
+
{
|
392 |
+
#pragma unroll
|
393 |
+
for (int step = 0; step < fuSize / up; step++)
|
394 |
+
{
|
395 |
+
v.x += a * (scalar_t)c_fu[step * up + 1];
|
396 |
+
v.y += a * (scalar_t)c_fu[step * up + 0];
|
397 |
+
a = s_tileIn[src0 + step + 1];
|
398 |
+
}
|
399 |
+
}
|
400 |
+
s_tileUpX[dst+0] = v.x;
|
401 |
+
s_tileUpX[dst+1] = v.y;
|
402 |
+
}
|
403 |
+
}
|
404 |
+
|
405 |
+
// Vertical upsampling & nonlinearity.
|
406 |
+
|
407 |
+
__syncthreads();
|
408 |
+
int groupMask = 15 << ((threadIdx.x & 31) & ~3);
|
409 |
+
int minY = tileOutY ? (tileOutY - tileOutH) * down + tileUpH : 0; // Skip already written signs.
|
410 |
+
int sShapeMaxY = MIN(p.sShape.y, tileOutY * down + tileUpH); // Avoid out-of-tile sign writes.
|
411 |
+
if (up == 4)
|
412 |
+
{
|
413 |
+
minY -= 3; // Adjust according to block height.
|
414 |
+
for (int idx = threadIdx.x; idx < tileUpW * tileUpH_up / up; idx += blockDim.x)
|
415 |
+
{
|
416 |
+
int relUpX, relInY0;
|
417 |
+
fast_div_mod<tileUpW>(relUpX, relInY0, idx);
|
418 |
+
int relUpY0 = relInY0 * up;
|
419 |
+
int src0 = relInY0 * tileUpW + relUpX;
|
420 |
+
int dst = relUpY0 * tileUpW + relUpX;
|
421 |
+
vec4_t v = InternalType<T>::zero_vec4();
|
422 |
+
|
423 |
+
scalar_t a = s_tileUpX[src0];
|
424 |
+
if (phaseInY == 0)
|
425 |
+
{
|
426 |
+
#pragma unroll
|
427 |
+
for (int step = 0; step < fuSize / up; step++)
|
428 |
+
{
|
429 |
+
v.x += a * (scalar_t)c_fu[step * up + 0];
|
430 |
+
a = s_tileUpX[src0 + (step + 1) * tileUpW];
|
431 |
+
v.y += a * (scalar_t)c_fu[step * up + 3];
|
432 |
+
v.z += a * (scalar_t)c_fu[step * up + 2];
|
433 |
+
v.w += a * (scalar_t)c_fu[step * up + 1];
|
434 |
+
}
|
435 |
+
}
|
436 |
+
else if (phaseInY == 1)
|
437 |
+
{
|
438 |
+
#pragma unroll
|
439 |
+
for (int step = 0; step < fuSize / up; step++)
|
440 |
+
{
|
441 |
+
v.x += a * (scalar_t)c_fu[step * up + 1];
|
442 |
+
v.y += a * (scalar_t)c_fu[step * up + 0];
|
443 |
+
a = s_tileUpX[src0 + (step + 1) * tileUpW];
|
444 |
+
v.z += a * (scalar_t)c_fu[step * up + 3];
|
445 |
+
v.w += a * (scalar_t)c_fu[step * up + 2];
|
446 |
+
}
|
447 |
+
}
|
448 |
+
else if (phaseInY == 2)
|
449 |
+
{
|
450 |
+
#pragma unroll
|
451 |
+
for (int step = 0; step < fuSize / up; step++)
|
452 |
+
{
|
453 |
+
v.x += a * (scalar_t)c_fu[step * up + 2];
|
454 |
+
v.y += a * (scalar_t)c_fu[step * up + 1];
|
455 |
+
v.z += a * (scalar_t)c_fu[step * up + 0];
|
456 |
+
a = s_tileUpX[src0 + (step + 1) * tileUpW];
|
457 |
+
v.w += a * (scalar_t)c_fu[step * up + 3];
|
458 |
+
}
|
459 |
+
}
|
460 |
+
else // (phaseInY == 3)
|
461 |
+
{
|
462 |
+
#pragma unroll
|
463 |
+
for (int step = 0; step < fuSize / up; step++)
|
464 |
+
{
|
465 |
+
v.x += a * (scalar_t)c_fu[step * up + 3];
|
466 |
+
v.y += a * (scalar_t)c_fu[step * up + 2];
|
467 |
+
v.z += a * (scalar_t)c_fu[step * up + 1];
|
468 |
+
v.w += a * (scalar_t)c_fu[step * up + 0];
|
469 |
+
a = s_tileUpX[src0 + (step + 1) * tileUpW];
|
470 |
+
}
|
471 |
+
}
|
472 |
+
|
473 |
+
int x = tileOutX * down + relUpX;
|
474 |
+
int y = tileOutY * down + relUpY0;
|
475 |
+
int signX = x + p.sOfs.x;
|
476 |
+
int signY = y + p.sOfs.y;
|
477 |
+
int signZ = blockIdx.z + p.blockZofs;
|
478 |
+
int signXb = signX >> 2;
|
479 |
+
index_t si0 = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
|
480 |
+
index_t si1 = si0 + p.sShape.x;
|
481 |
+
index_t si2 = si0 + p.sShape.x * 2;
|
482 |
+
index_t si3 = si0 + p.sShape.x * 3;
|
483 |
+
|
484 |
+
v.x *= (scalar_t)((float)up * (float)up * p.gain);
|
485 |
+
v.y *= (scalar_t)((float)up * (float)up * p.gain);
|
486 |
+
v.z *= (scalar_t)((float)up * (float)up * p.gain);
|
487 |
+
v.w *= (scalar_t)((float)up * (float)up * p.gain);
|
488 |
+
|
489 |
+
if (signWrite)
|
490 |
+
{
|
491 |
+
if (!enableWriteSkip)
|
492 |
+
{
|
493 |
+
// Determine and write signs.
|
494 |
+
int sx = __float_as_uint(v.x) >> 31 << 0;
|
495 |
+
int sy = __float_as_uint(v.y) >> 31 << 8;
|
496 |
+
int sz = __float_as_uint(v.z) >> 31 << 16;
|
497 |
+
int sw = __float_as_uint(v.w) >> 31 << 24;
|
498 |
+
if (sx) v.x *= p.slope;
|
499 |
+
if (sy) v.y *= p.slope;
|
500 |
+
if (sz) v.z *= p.slope;
|
501 |
+
if (sw) v.w *= p.slope;
|
502 |
+
if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType<T>::clamp(v.x, p.clamp); }
|
503 |
+
if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType<T>::clamp(v.y, p.clamp); }
|
504 |
+
if (fabsf(v.z) > p.clamp) { sz = 2 << 16; v.z = InternalType<T>::clamp(v.z, p.clamp); }
|
505 |
+
if (fabsf(v.w) > p.clamp) { sw = 2 << 24; v.w = InternalType<T>::clamp(v.w, p.clamp); }
|
506 |
+
|
507 |
+
if ((uint32_t)signXb < p.swLimit && signY >= minY)
|
508 |
+
{
|
509 |
+
// Combine signs.
|
510 |
+
uint32_t s = sx + sy + sw + sz;
|
511 |
+
s <<= (signX & 3) << 1;
|
512 |
+
s |= __shfl_xor_sync(groupMask, s, 1);
|
513 |
+
s |= __shfl_xor_sync(groupMask, s, 2);
|
514 |
+
|
515 |
+
// Write signs.
|
516 |
+
if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
|
517 |
+
if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
|
518 |
+
if ((uint32_t)(signY + 2) < sShapeMaxY) { p.s[si2] = (unsigned char)(s >> 16); }
|
519 |
+
if ((uint32_t)(signY + 3) < sShapeMaxY) { p.s[si3] = (unsigned char)(s >> 24); }
|
520 |
+
}
|
521 |
+
}
|
522 |
+
else
|
523 |
+
{
|
524 |
+
// Determine and write signs.
|
525 |
+
if ((uint32_t)signXb < p.swLimit && signY >= minY)
|
526 |
+
{
|
527 |
+
int sx = __float_as_uint(v.x) >> 31 << 0;
|
528 |
+
int sy = __float_as_uint(v.y) >> 31 << 8;
|
529 |
+
int sz = __float_as_uint(v.z) >> 31 << 16;
|
530 |
+
int sw = __float_as_uint(v.w) >> 31 << 24;
|
531 |
+
if (sx) v.x *= p.slope;
|
532 |
+
if (sy) v.y *= p.slope;
|
533 |
+
if (sz) v.z *= p.slope;
|
534 |
+
if (sw) v.w *= p.slope;
|
535 |
+
if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType<T>::clamp(v.x, p.clamp); }
|
536 |
+
if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType<T>::clamp(v.y, p.clamp); }
|
537 |
+
if (fabsf(v.z) > p.clamp) { sz = 2 << 16; v.z = InternalType<T>::clamp(v.z, p.clamp); }
|
538 |
+
if (fabsf(v.w) > p.clamp) { sw = 2 << 24; v.w = InternalType<T>::clamp(v.w, p.clamp); }
|
539 |
+
|
540 |
+
// Combine signs.
|
541 |
+
uint32_t s = sx + sy + sw + sz;
|
542 |
+
s <<= (signX & 3) << 1;
|
543 |
+
s |= __shfl_xor_sync(groupMask, s, 1);
|
544 |
+
s |= __shfl_xor_sync(groupMask, s, 2);
|
545 |
+
|
546 |
+
// Write signs.
|
547 |
+
if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
|
548 |
+
if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
|
549 |
+
if ((uint32_t)(signY + 2) < sShapeMaxY) { p.s[si2] = (unsigned char)(s >> 16); }
|
550 |
+
if ((uint32_t)(signY + 3) < sShapeMaxY) { p.s[si3] = (unsigned char)(s >> 24); }
|
551 |
+
}
|
552 |
+
else
|
553 |
+
{
|
554 |
+
// Just compute the values.
|
555 |
+
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
|
556 |
+
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
|
557 |
+
if (v.z < 0.f) v.z *= p.slope; v.z = InternalType<T>::clamp(v.z, p.clamp);
|
558 |
+
if (v.w < 0.f) v.w *= p.slope; v.w = InternalType<T>::clamp(v.w, p.clamp);
|
559 |
+
}
|
560 |
+
}
|
561 |
+
}
|
562 |
+
else if (signRead) // Read signs and apply.
|
563 |
+
{
|
564 |
+
if ((uint32_t)signXb < p.swLimit)
|
565 |
+
{
|
566 |
+
int ss = (signX & 3) << 1;
|
567 |
+
if ((uint32_t)(signY + 0) < p.sShape.y) { int s = p.s[si0] >> ss; if (s & 1) v.x *= p.slope; if (s & 2) v.x = 0.f; }
|
568 |
+
if ((uint32_t)(signY + 1) < p.sShape.y) { int s = p.s[si1] >> ss; if (s & 1) v.y *= p.slope; if (s & 2) v.y = 0.f; }
|
569 |
+
if ((uint32_t)(signY + 2) < p.sShape.y) { int s = p.s[si2] >> ss; if (s & 1) v.z *= p.slope; if (s & 2) v.z = 0.f; }
|
570 |
+
if ((uint32_t)(signY + 3) < p.sShape.y) { int s = p.s[si3] >> ss; if (s & 1) v.w *= p.slope; if (s & 2) v.w = 0.f; }
|
571 |
+
}
|
572 |
+
}
|
573 |
+
else // Forward pass with no sign write.
|
574 |
+
{
|
575 |
+
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
|
576 |
+
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
|
577 |
+
if (v.z < 0.f) v.z *= p.slope; v.z = InternalType<T>::clamp(v.z, p.clamp);
|
578 |
+
if (v.w < 0.f) v.w *= p.slope; v.w = InternalType<T>::clamp(v.w, p.clamp);
|
579 |
+
}
|
580 |
+
|
581 |
+
s_tileUpXY[dst + 0 * tileUpW] = v.x;
|
582 |
+
if (relUpY0 + 1 < tileUpH) s_tileUpXY[dst + 1 * tileUpW] = v.y;
|
583 |
+
if (relUpY0 + 2 < tileUpH) s_tileUpXY[dst + 2 * tileUpW] = v.z;
|
584 |
+
if (relUpY0 + 3 < tileUpH) s_tileUpXY[dst + 3 * tileUpW] = v.w;
|
585 |
+
}
|
586 |
+
}
|
587 |
+
else if (up == 2)
|
588 |
+
{
|
589 |
+
minY -= 1; // Adjust according to block height.
|
590 |
+
for (int idx = threadIdx.x; idx < tileUpW * tileUpH_up / up; idx += blockDim.x)
|
591 |
+
{
|
592 |
+
int relUpX, relInY0;
|
593 |
+
fast_div_mod<tileUpW>(relUpX, relInY0, idx);
|
594 |
+
int relUpY0 = relInY0 * up;
|
595 |
+
int src0 = relInY0 * tileUpW + relUpX;
|
596 |
+
int dst = relUpY0 * tileUpW + relUpX;
|
597 |
+
vec2_t v = InternalType<T>::zero_vec2();
|
598 |
+
|
599 |
+
scalar_t a = s_tileUpX[src0];
|
600 |
+
if (phaseInY == 0)
|
601 |
+
{
|
602 |
+
#pragma unroll
|
603 |
+
for (int step = 0; step < fuSize / up; step++)
|
604 |
+
{
|
605 |
+
v.x += a * (scalar_t)c_fu[step * up + 0];
|
606 |
+
a = s_tileUpX[src0 + (step + 1) * tileUpW];
|
607 |
+
v.y += a * (scalar_t)c_fu[step * up + 1];
|
608 |
+
}
|
609 |
+
}
|
610 |
+
else // (phaseInY == 1)
|
611 |
+
{
|
612 |
+
#pragma unroll
|
613 |
+
for (int step = 0; step < fuSize / up; step++)
|
614 |
+
{
|
615 |
+
v.x += a * (scalar_t)c_fu[step * up + 1];
|
616 |
+
v.y += a * (scalar_t)c_fu[step * up + 0];
|
617 |
+
a = s_tileUpX[src0 + (step + 1) * tileUpW];
|
618 |
+
}
|
619 |
+
}
|
620 |
+
|
621 |
+
int x = tileOutX * down + relUpX;
|
622 |
+
int y = tileOutY * down + relUpY0;
|
623 |
+
int signX = x + p.sOfs.x;
|
624 |
+
int signY = y + p.sOfs.y;
|
625 |
+
int signZ = blockIdx.z + p.blockZofs;
|
626 |
+
int signXb = signX >> 2;
|
627 |
+
index_t si0 = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
|
628 |
+
index_t si1 = si0 + p.sShape.x;
|
629 |
+
|
630 |
+
v.x *= (scalar_t)((float)up * (float)up * p.gain);
|
631 |
+
v.y *= (scalar_t)((float)up * (float)up * p.gain);
|
632 |
+
|
633 |
+
if (signWrite)
|
634 |
+
{
|
635 |
+
if (!enableWriteSkip)
|
636 |
+
{
|
637 |
+
// Determine and write signs.
|
638 |
+
int sx = __float_as_uint(v.x) >> 31 << 0;
|
639 |
+
int sy = __float_as_uint(v.y) >> 31 << 8;
|
640 |
+
if (sx) v.x *= p.slope;
|
641 |
+
if (sy) v.y *= p.slope;
|
642 |
+
if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType<T>::clamp(v.x, p.clamp); }
|
643 |
+
if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType<T>::clamp(v.y, p.clamp); }
|
644 |
+
|
645 |
+
if ((uint32_t)signXb < p.swLimit && signY >= minY)
|
646 |
+
{
|
647 |
+
// Combine signs.
|
648 |
+
int s = sx + sy;
|
649 |
+
s <<= signXo;
|
650 |
+
s |= __shfl_xor_sync(groupMask, s, 1);
|
651 |
+
s |= __shfl_xor_sync(groupMask, s, 2);
|
652 |
+
|
653 |
+
// Write signs.
|
654 |
+
if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
|
655 |
+
if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
|
656 |
+
}
|
657 |
+
}
|
658 |
+
else
|
659 |
+
{
|
660 |
+
// Determine and write signs.
|
661 |
+
if ((uint32_t)signXb < p.swLimit && signY >= minY)
|
662 |
+
{
|
663 |
+
int sx = __float_as_uint(v.x) >> 31 << 0;
|
664 |
+
int sy = __float_as_uint(v.y) >> 31 << 8;
|
665 |
+
if (sx) v.x *= p.slope;
|
666 |
+
if (sy) v.y *= p.slope;
|
667 |
+
if (fabsf(v.x) > p.clamp) { sx = 2 << 0; v.x = InternalType<T>::clamp(v.x, p.clamp); }
|
668 |
+
if (fabsf(v.y) > p.clamp) { sy = 2 << 8; v.y = InternalType<T>::clamp(v.y, p.clamp); }
|
669 |
+
|
670 |
+
// Combine signs.
|
671 |
+
int s = sx + sy;
|
672 |
+
s <<= signXo;
|
673 |
+
s |= __shfl_xor_sync(groupMask, s, 1);
|
674 |
+
s |= __shfl_xor_sync(groupMask, s, 2);
|
675 |
+
|
676 |
+
// Write signs.
|
677 |
+
if ((uint32_t)(signY + 0) < sShapeMaxY) { p.s[si0] = (unsigned char)(s >> 0); }
|
678 |
+
if ((uint32_t)(signY + 1) < sShapeMaxY) { p.s[si1] = (unsigned char)(s >> 8); }
|
679 |
+
}
|
680 |
+
else
|
681 |
+
{
|
682 |
+
// Just compute the values.
|
683 |
+
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
|
684 |
+
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
|
685 |
+
}
|
686 |
+
}
|
687 |
+
}
|
688 |
+
else if (signRead) // Read signs and apply.
|
689 |
+
{
|
690 |
+
if ((uint32_t)signXb < p.swLimit)
|
691 |
+
{
|
692 |
+
if ((uint32_t)(signY + 0) < p.sShape.y) { int s = p.s[si0] >> signXo; if (s & 1) v.x *= p.slope; if (s & 2) v.x = 0.f; }
|
693 |
+
if ((uint32_t)(signY + 1) < p.sShape.y) { int s = p.s[si1] >> signXo; if (s & 1) v.y *= p.slope; if (s & 2) v.y = 0.f; }
|
694 |
+
}
|
695 |
+
}
|
696 |
+
else // Forward pass with no sign write.
|
697 |
+
{
|
698 |
+
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
|
699 |
+
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
|
700 |
+
}
|
701 |
+
|
702 |
+
if (!downInline)
|
703 |
+
{
|
704 |
+
// Write into temporary buffer.
|
705 |
+
s_tileUpXY[dst] = v.x;
|
706 |
+
if (relUpY0 < tileUpH - 1)
|
707 |
+
s_tileUpXY[dst + tileUpW] = v.y;
|
708 |
+
}
|
709 |
+
else
|
710 |
+
{
|
711 |
+
// Write directly into output buffer.
|
712 |
+
if ((uint32_t)x < p.yShape.x)
|
713 |
+
{
|
714 |
+
int ymax = MIN(p.yShape.y, tileUpH + tileOutY * down);
|
715 |
+
index_t ofs = x * get_stride<index_t>(p.yStride.x) + y * get_stride<index_t>(p.yStride.y) + mapOfsOut;
|
716 |
+
if ((uint32_t)y + 0 < p.yShape.y) *((T*)((char*)p.y + ofs)) = (T)(v.x * (scalar_t)c_fd[0]);
|
717 |
+
if ((uint32_t)y + 1 < ymax) *((T*)((char*)p.y + ofs + get_stride<index_t>(p.yStride.y))) = (T)(v.y * (scalar_t)c_fd[0]);
|
718 |
+
}
|
719 |
+
}
|
720 |
+
}
|
721 |
+
}
|
722 |
+
}
|
723 |
+
else if (filterMode == MODE_FUSD || filterMode == MODE_FUFD)
|
724 |
+
{
|
725 |
+
// Full upsampling filter.
|
726 |
+
|
727 |
+
if (up == 2)
|
728 |
+
{
|
729 |
+
// 2 x 2-wide.
|
730 |
+
__syncthreads();
|
731 |
+
int minY = tileOutY ? (tileOutY - tileOutH) * down + tileUpH + p.sOfs.y : 0; // Skip already written signs.
|
732 |
+
for (int idx = threadIdx.x * 4; idx < tileUpW * tileUpH; idx += blockDim.x * 4)
|
733 |
+
{
|
734 |
+
int relUpX0, relUpY0;
|
735 |
+
fast_div_mod<tileUpW>(relUpX0, relUpY0, idx);
|
736 |
+
int relInX0 = CEIL_DIV(relUpX0 - phaseInX, up);
|
737 |
+
int relInY0 = CEIL_DIV(relUpY0 - phaseInY, up);
|
738 |
+
int src0 = relInX0 + tileInW * relInY0;
|
739 |
+
int tap0y = (relInY0 * up + phaseInY - relUpY0);
|
740 |
+
|
741 |
+
#define X_LOOP(TAPY, PX) \
|
742 |
+
for (int sx = 0; sx < fuSize / up; sx++) \
|
743 |
+
{ \
|
744 |
+
v.x += a * (scalar_t)c_fu[(sx * up + (((PX) - 0) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; \
|
745 |
+
v.z += b * (scalar_t)c_fu[(sx * up + (((PX) - 0) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; if ((PX) == 0) { a = b; b = s_tileIn[src0 + 2 + sx + sy * tileInW]; } \
|
746 |
+
v.y += a * (scalar_t)c_fu[(sx * up + (((PX) - 1) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; \
|
747 |
+
v.w += b * (scalar_t)c_fu[(sx * up + (((PX) - 1) & (up - 1))) + (sy * up + (TAPY)) * MAX_FILTER_SIZE]; if ((PX) == 1) { a = b; b = s_tileIn[src0 + 2 + sx + sy * tileInW]; } \
|
748 |
+
}
|
749 |
+
|
750 |
+
vec4_t v = InternalType<T>::zero_vec4();
|
751 |
+
if (tap0y == 0 && phaseInX == 0)
|
752 |
+
#pragma unroll
|
753 |
+
for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
|
754 |
+
#pragma unroll
|
755 |
+
X_LOOP(0, 0) }
|
756 |
+
if (tap0y == 0 && phaseInX == 1)
|
757 |
+
#pragma unroll
|
758 |
+
for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
|
759 |
+
#pragma unroll
|
760 |
+
X_LOOP(0, 1) }
|
761 |
+
if (tap0y == 1 && phaseInX == 0)
|
762 |
+
#pragma unroll
|
763 |
+
for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
|
764 |
+
#pragma unroll
|
765 |
+
X_LOOP(1, 0) }
|
766 |
+
if (tap0y == 1 && phaseInX == 1)
|
767 |
+
#pragma unroll
|
768 |
+
for (int sy = 0; sy < fuSize / up; sy++) { scalar_t a = s_tileIn[src0 + sy * tileInW]; scalar_t b = s_tileIn[src0 + sy * tileInW + 1];
|
769 |
+
#pragma unroll
|
770 |
+
X_LOOP(1, 1) }
|
771 |
+
|
772 |
+
#undef X_LOOP
|
773 |
+
|
774 |
+
int x = tileOutX * down + relUpX0;
|
775 |
+
int y = tileOutY * down + relUpY0;
|
776 |
+
int signX = x + p.sOfs.x;
|
777 |
+
int signY = y + p.sOfs.y;
|
778 |
+
int signZ = blockIdx.z + p.blockZofs;
|
779 |
+
int signXb = signX >> 2;
|
780 |
+
index_t si = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
|
781 |
+
|
782 |
+
v.x *= (scalar_t)((float)up * (float)up * p.gain);
|
783 |
+
v.y *= (scalar_t)((float)up * (float)up * p.gain);
|
784 |
+
v.z *= (scalar_t)((float)up * (float)up * p.gain);
|
785 |
+
v.w *= (scalar_t)((float)up * (float)up * p.gain);
|
786 |
+
|
787 |
+
if (signWrite)
|
788 |
+
{
|
789 |
+
if (!enableWriteSkip)
|
790 |
+
{
|
791 |
+
// Determine and write signs.
|
792 |
+
int sx = __float_as_uint(v.x) >> 31;
|
793 |
+
int sy = __float_as_uint(v.y) >> 31;
|
794 |
+
int sz = __float_as_uint(v.z) >> 31;
|
795 |
+
int sw = __float_as_uint(v.w) >> 31;
|
796 |
+
if (sx) v.x *= p.slope; if (fabsf(v.x) > p.clamp) { sx = 2; v.x = InternalType<T>::clamp(v.x, p.clamp); }
|
797 |
+
if (sy) v.y *= p.slope; if (fabsf(v.y) > p.clamp) { sy = 2; v.y = InternalType<T>::clamp(v.y, p.clamp); }
|
798 |
+
if (sz) v.z *= p.slope; if (fabsf(v.z) > p.clamp) { sz = 2; v.z = InternalType<T>::clamp(v.z, p.clamp); }
|
799 |
+
if (sw) v.w *= p.slope; if (fabsf(v.w) > p.clamp) { sw = 2; v.w = InternalType<T>::clamp(v.w, p.clamp); }
|
800 |
+
|
801 |
+
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
|
802 |
+
{
|
803 |
+
p.s[si] = sx + (sy << 2) + (sz << 4) + (sw << 6);
|
804 |
+
}
|
805 |
+
}
|
806 |
+
else
|
807 |
+
{
|
808 |
+
// Determine and write signs.
|
809 |
+
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
|
810 |
+
{
|
811 |
+
int sx = __float_as_uint(v.x) >> 31;
|
812 |
+
int sy = __float_as_uint(v.y) >> 31;
|
813 |
+
int sz = __float_as_uint(v.z) >> 31;
|
814 |
+
int sw = __float_as_uint(v.w) >> 31;
|
815 |
+
if (sx) v.x *= p.slope; if (fabsf(v.x) > p.clamp) { sx = 2; v.x = InternalType<T>::clamp(v.x, p.clamp); }
|
816 |
+
if (sy) v.y *= p.slope; if (fabsf(v.y) > p.clamp) { sy = 2; v.y = InternalType<T>::clamp(v.y, p.clamp); }
|
817 |
+
if (sz) v.z *= p.slope; if (fabsf(v.z) > p.clamp) { sz = 2; v.z = InternalType<T>::clamp(v.z, p.clamp); }
|
818 |
+
if (sw) v.w *= p.slope; if (fabsf(v.w) > p.clamp) { sw = 2; v.w = InternalType<T>::clamp(v.w, p.clamp); }
|
819 |
+
|
820 |
+
p.s[si] = sx + (sy << 2) + (sz << 4) + (sw << 6);
|
821 |
+
}
|
822 |
+
else
|
823 |
+
{
|
824 |
+
// Just compute the values.
|
825 |
+
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
|
826 |
+
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
|
827 |
+
if (v.z < 0.f) v.z *= p.slope; v.z = InternalType<T>::clamp(v.z, p.clamp);
|
828 |
+
if (v.w < 0.f) v.w *= p.slope; v.w = InternalType<T>::clamp(v.w, p.clamp);
|
829 |
+
}
|
830 |
+
}
|
831 |
+
}
|
832 |
+
else if (signRead) // Read sign and apply.
|
833 |
+
{
|
834 |
+
if ((uint32_t)signY < p.sShape.y)
|
835 |
+
{
|
836 |
+
int s = 0;
|
837 |
+
if ((uint32_t)signXb < p.swLimit) s = p.s[si];
|
838 |
+
if ((uint32_t)signXb + 1 < p.swLimit) s |= p.s[si + 1] << 8;
|
839 |
+
s >>= (signX & 3) << 1;
|
840 |
+
if (s & 0x01) v.x *= p.slope; if (s & 0x02) v.x = 0.f;
|
841 |
+
if (s & 0x04) v.y *= p.slope; if (s & 0x08) v.y = 0.f;
|
842 |
+
if (s & 0x10) v.z *= p.slope; if (s & 0x20) v.z = 0.f;
|
843 |
+
if (s & 0x40) v.w *= p.slope; if (s & 0x80) v.w = 0.f;
|
844 |
+
}
|
845 |
+
}
|
846 |
+
else // Forward pass with no sign write.
|
847 |
+
{
|
848 |
+
if (v.x < 0.f) v.x *= p.slope; v.x = InternalType<T>::clamp(v.x, p.clamp);
|
849 |
+
if (v.y < 0.f) v.y *= p.slope; v.y = InternalType<T>::clamp(v.y, p.clamp);
|
850 |
+
if (v.z < 0.f) v.z *= p.slope; v.z = InternalType<T>::clamp(v.z, p.clamp);
|
851 |
+
if (v.w < 0.f) v.w *= p.slope; v.w = InternalType<T>::clamp(v.w, p.clamp);
|
852 |
+
}
|
853 |
+
|
854 |
+
s_tileUpXY[idx + 0] = v.x;
|
855 |
+
s_tileUpXY[idx + 1] = v.y;
|
856 |
+
s_tileUpXY[idx + 2] = v.z;
|
857 |
+
s_tileUpXY[idx + 3] = v.w;
|
858 |
+
}
|
859 |
+
}
|
860 |
+
else if (up == 1)
|
861 |
+
{
|
862 |
+
__syncthreads();
|
863 |
+
uint32_t groupMask = 15 << ((threadIdx.x & 31) & ~3);
|
864 |
+
int minY = tileOutY ? (tileOutY - tileOutH) * down + tileUpH : 0; // Skip already written signs.
|
865 |
+
for (int idx = threadIdx.x; idx < tileUpW * tileUpH; idx += blockDim.x)
|
866 |
+
{
|
867 |
+
int relUpX0, relUpY0;
|
868 |
+
fast_div_mod<tileUpW>(relUpX0, relUpY0, idx);
|
869 |
+
scalar_t v = s_tileIn[idx] * (scalar_t)c_fu[0]; // 1x1 filter.
|
870 |
+
|
871 |
+
int x = tileOutX * down + relUpX0;
|
872 |
+
int y = tileOutY * down + relUpY0;
|
873 |
+
int signX = x + p.sOfs.x;
|
874 |
+
int signY = y + p.sOfs.y;
|
875 |
+
int signZ = blockIdx.z + p.blockZofs;
|
876 |
+
int signXb = signX >> 2;
|
877 |
+
index_t si = signXb + p.sShape.x * (signY + (index_t)p.sShape.y * signZ);
|
878 |
+
v *= (scalar_t)((float)up * (float)up * p.gain);
|
879 |
+
|
880 |
+
if (signWrite)
|
881 |
+
{
|
882 |
+
if (!enableWriteSkip)
|
883 |
+
{
|
884 |
+
// Determine and write sign.
|
885 |
+
uint32_t s = 0;
|
886 |
+
uint32_t signXbit = (1u << signXo);
|
887 |
+
if (v < 0.f)
|
888 |
+
{
|
889 |
+
s = signXbit;
|
890 |
+
v *= p.slope;
|
891 |
+
}
|
892 |
+
if (fabsf(v) > p.clamp)
|
893 |
+
{
|
894 |
+
s = signXbit * 2;
|
895 |
+
v = InternalType<T>::clamp(v, p.clamp);
|
896 |
+
}
|
897 |
+
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
|
898 |
+
{
|
899 |
+
s += __shfl_xor_sync(groupMask, s, 1); // Coalesce.
|
900 |
+
s += __shfl_xor_sync(groupMask, s, 2); // Coalesce.
|
901 |
+
p.s[si] = s; // Write.
|
902 |
+
}
|
903 |
+
}
|
904 |
+
else
|
905 |
+
{
|
906 |
+
// Determine and write sign.
|
907 |
+
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y && signY >= minY)
|
908 |
+
{
|
909 |
+
uint32_t s = 0;
|
910 |
+
uint32_t signXbit = (1u << signXo);
|
911 |
+
if (v < 0.f)
|
912 |
+
{
|
913 |
+
s = signXbit;
|
914 |
+
v *= p.slope;
|
915 |
+
}
|
916 |
+
if (fabsf(v) > p.clamp)
|
917 |
+
{
|
918 |
+
s = signXbit * 2;
|
919 |
+
v = InternalType<T>::clamp(v, p.clamp);
|
920 |
+
}
|
921 |
+
s += __shfl_xor_sync(groupMask, s, 1); // Coalesce.
|
922 |
+
s += __shfl_xor_sync(groupMask, s, 2); // Coalesce.
|
923 |
+
p.s[si] = s; // Write.
|
924 |
+
}
|
925 |
+
else
|
926 |
+
{
|
927 |
+
// Just compute the value.
|
928 |
+
if (v < 0.f) v *= p.slope;
|
929 |
+
v = InternalType<T>::clamp(v, p.clamp);
|
930 |
+
}
|
931 |
+
}
|
932 |
+
}
|
933 |
+
else if (signRead)
|
934 |
+
{
|
935 |
+
// Read sign and apply if within sign tensor bounds.
|
936 |
+
if ((uint32_t)signXb < p.swLimit && (uint32_t)signY < p.sShape.y)
|
937 |
+
{
|
938 |
+
int s = p.s[si];
|
939 |
+
s >>= signXo;
|
940 |
+
if (s & 1) v *= p.slope;
|
941 |
+
if (s & 2) v = 0.f;
|
942 |
+
}
|
943 |
+
}
|
944 |
+
else // Forward pass with no sign write.
|
945 |
+
{
|
946 |
+
if (v < 0.f) v *= p.slope;
|
947 |
+
v = InternalType<T>::clamp(v, p.clamp);
|
948 |
+
}
|
949 |
+
|
950 |
+
if (!downInline) // Write into temporary buffer.
|
951 |
+
s_tileUpXY[idx] = v;
|
952 |
+
else if ((uint32_t)x < p.yShape.x && (uint32_t)y < p.yShape.y) // Write directly into output buffer
|
953 |
+
*((T*)((char*)p.y + (x * get_stride<index_t>(p.yStride.x) + y * get_stride<index_t>(p.yStride.y) + mapOfsOut))) = (T)(v * (scalar_t)c_fd[0]);
|
954 |
+
}
|
955 |
+
}
|
956 |
+
}
|
957 |
+
|
958 |
+
// Downsampling.
|
959 |
+
if (filterMode == MODE_SUSD || filterMode == MODE_FUSD)
|
960 |
+
{
|
961 |
+
// Horizontal downsampling.
|
962 |
+
__syncthreads();
|
963 |
+
if (down == 4 && tileOutW % 4 == 0)
|
964 |
+
{
|
965 |
+
// Calculate 4 pixels at a time.
|
966 |
+
for (int idx = threadIdx.x * 4; idx < tileOutW * tileUpH; idx += blockDim.x * 4)
|
967 |
+
{
|
968 |
+
int relOutX0, relUpY;
|
969 |
+
fast_div_mod<tileOutW>(relOutX0, relUpY, idx);
|
970 |
+
int relUpX0 = relOutX0 * down;
|
971 |
+
int src0 = relUpY * tileUpW + relUpX0;
|
972 |
+
vec4_t v = InternalType<T>::zero_vec4();
|
973 |
+
#pragma unroll
|
974 |
+
for (int step = 0; step < fdSize; step++)
|
975 |
+
{
|
976 |
+
v.x += s_tileUpXY[src0 + 0 + step] * (scalar_t)c_fd[step];
|
977 |
+
v.y += s_tileUpXY[src0 + 4 + step] * (scalar_t)c_fd[step];
|
978 |
+
v.z += s_tileUpXY[src0 + 8 + step] * (scalar_t)c_fd[step];
|
979 |
+
v.w += s_tileUpXY[src0 + 12 + step] * (scalar_t)c_fd[step];
|
980 |
+
}
|
981 |
+
s_tileDownX[idx+0] = v.x;
|
982 |
+
s_tileDownX[idx+1] = v.y;
|
983 |
+
s_tileDownX[idx+2] = v.z;
|
984 |
+
s_tileDownX[idx+3] = v.w;
|
985 |
+
}
|
986 |
+
}
|
987 |
+
else if ((down == 2 || down == 4) && (tileOutW % 2 == 0))
|
988 |
+
{
|
989 |
+
// Calculate 2 pixels at a time.
|
990 |
+
for (int idx = threadIdx.x * 2; idx < tileOutW * tileUpH; idx += blockDim.x * 2)
|
991 |
+
{
|
992 |
+
int relOutX0, relUpY;
|
993 |
+
fast_div_mod<tileOutW>(relOutX0, relUpY, idx);
|
994 |
+
int relUpX0 = relOutX0 * down;
|
995 |
+
int src0 = relUpY * tileUpW + relUpX0;
|
996 |
+
vec2_t v = InternalType<T>::zero_vec2();
|
997 |
+
#pragma unroll
|
998 |
+
for (int step = 0; step < fdSize; step++)
|
999 |
+
{
|
1000 |
+
v.x += s_tileUpXY[src0 + 0 + step] * (scalar_t)c_fd[step];
|
1001 |
+
v.y += s_tileUpXY[src0 + down + step] * (scalar_t)c_fd[step];
|
1002 |
+
}
|
1003 |
+
s_tileDownX[idx+0] = v.x;
|
1004 |
+
s_tileDownX[idx+1] = v.y;
|
1005 |
+
}
|
1006 |
+
}
|
1007 |
+
else
|
1008 |
+
{
|
1009 |
+
// Calculate 1 pixel at a time.
|
1010 |
+
for (int idx = threadIdx.x; idx < tileOutW * tileUpH; idx += blockDim.x)
|
1011 |
+
{
|
1012 |
+
int relOutX0, relUpY;
|
1013 |
+
fast_div_mod<tileOutW>(relOutX0, relUpY, idx);
|
1014 |
+
int relUpX0 = relOutX0 * down;
|
1015 |
+
int src = relUpY * tileUpW + relUpX0;
|
1016 |
+
scalar_t v = 0.f;
|
1017 |
+
#pragma unroll
|
1018 |
+
for (int step = 0; step < fdSize; step++)
|
1019 |
+
v += s_tileUpXY[src + step] * (scalar_t)c_fd[step];
|
1020 |
+
s_tileDownX[idx] = v;
|
1021 |
+
}
|
1022 |
+
}
|
1023 |
+
|
1024 |
+
// Vertical downsampling & store output tile.
|
1025 |
+
__syncthreads();
|
1026 |
+
for (int idx = threadIdx.x; idx < tileOutW * tileOutH; idx += blockDim.x)
|
1027 |
+
{
|
1028 |
+
int relOutX, relOutY0;
|
1029 |
+
fast_div_mod<tileOutW>(relOutX, relOutY0, idx);
|
1030 |
+
int relUpY0 = relOutY0 * down;
|
1031 |
+
int src0 = relUpY0 * tileOutW + relOutX;
|
1032 |
+
scalar_t v = 0;
|
1033 |
+
#pragma unroll
|
1034 |
+
for (int step = 0; step < fdSize; step++)
|
1035 |
+
v += s_tileDownX[src0 + step * tileOutW] * (scalar_t)c_fd[step];
|
1036 |
+
|
1037 |
+
int outX = tileOutX + relOutX;
|
1038 |
+
int outY = tileOutY + relOutY0;
|
1039 |
+
|
1040 |
+
if (outX < p.yShape.x & outY < p.yShape.y)
|
1041 |
+
*((T*)((char*)p.y + (outX * get_stride<index_t>(p.yStride.x) + outY * get_stride<index_t>(p.yStride.y) + mapOfsOut))) = (T)v;
|
1042 |
+
}
|
1043 |
+
}
|
1044 |
+
else if (filterMode == MODE_SUFD || filterMode == MODE_FUFD)
|
1045 |
+
{
|
1046 |
+
// Full downsampling filter.
|
1047 |
+
if (down == 2)
|
1048 |
+
{
|
1049 |
+
// 2-wide.
|
1050 |
+
__syncthreads();
|
1051 |
+
for (int idx = threadIdx.x * 2; idx < tileOutW * tileOutH; idx += blockDim.x * 2)
|
1052 |
+
{
|
1053 |
+
int relOutX0, relOutY0;
|
1054 |
+
fast_div_mod<tileOutW>(relOutX0, relOutY0, idx);
|
1055 |
+
int relUpX0 = relOutX0 * down;
|
1056 |
+
int relUpY0 = relOutY0 * down;
|
1057 |
+
int src0 = relUpY0 * tileUpW + relUpX0;
|
1058 |
+
vec2_t v = InternalType<T>::zero_vec2();
|
1059 |
+
#pragma unroll
|
1060 |
+
for (int sy = 0; sy < fdSize; sy++)
|
1061 |
+
#pragma unroll
|
1062 |
+
for (int sx = 0; sx < fdSize; sx++)
|
1063 |
+
{
|
1064 |
+
v.x += s_tileUpXY[src0 + 0 + sx + sy * tileUpW] * (scalar_t)c_fd[sx + sy * MAX_FILTER_SIZE];
|
1065 |
+
v.y += s_tileUpXY[src0 + 2 + sx + sy * tileUpW] * (scalar_t)c_fd[sx + sy * MAX_FILTER_SIZE];
|
1066 |
+
}
|
1067 |
+
|
1068 |
+
int outX = tileOutX + relOutX0;
|
1069 |
+
int outY = tileOutY + relOutY0;
|
1070 |
+
if ((uint32_t)outY < p.yShape.y)
|
1071 |
+
{
|
1072 |
+
index_t ofs = outX * get_stride<index_t>(p.yStride.x) + outY * get_stride<index_t>(p.yStride.y) + mapOfsOut;
|
1073 |
+
if (outX + 0 < p.yShape.x) *((T*)((char*)p.y + ofs)) = (T)v.x;
|
1074 |
+
if (outX + 1 < p.yShape.x) *((T*)((char*)p.y + ofs + get_stride<index_t>(p.yStride.x))) = (T)v.y;
|
1075 |
+
}
|
1076 |
+
}
|
1077 |
+
}
|
1078 |
+
else if (down == 1 && !downInline)
|
1079 |
+
{
|
1080 |
+
// Thread per pixel.
|
1081 |
+
__syncthreads();
|
1082 |
+
for (int idx = threadIdx.x; idx < tileOutW * tileOutH; idx += blockDim.x)
|
1083 |
+
{
|
1084 |
+
int relOutX0, relOutY0;
|
1085 |
+
fast_div_mod<tileOutW>(relOutX0, relOutY0, idx);
|
1086 |
+
scalar_t v = s_tileUpXY[idx] * (scalar_t)c_fd[0]; // 1x1 filter.
|
1087 |
+
|
1088 |
+
int outX = tileOutX + relOutX0;
|
1089 |
+
int outY = tileOutY + relOutY0;
|
1090 |
+
if ((uint32_t)outX < p.yShape.x && (uint32_t)outY < p.yShape.y)
|
1091 |
+
*((T*)((char*)p.y + (outX * get_stride<index_t>(p.yStride.x) + outY * get_stride<index_t>(p.yStride.y) + mapOfsOut))) = (T)v;
|
1092 |
+
}
|
1093 |
+
}
|
1094 |
+
}
|
1095 |
+
|
1096 |
+
if (!enableXrep)
|
1097 |
+
break;
|
1098 |
+
}
|
1099 |
+
}
|
1100 |
+
|
1101 |
+
//------------------------------------------------------------------------
|
1102 |
+
// Compute activation function and signs for upsampled data tensor, modifying data tensor in-place. Used for accelerating the generic variant.
|
1103 |
+
// Sign tensor is known to be contiguous, and p.x and p.s have the same z, w dimensions. 64-bit indexing is always used.
|
1104 |
+
|
1105 |
+
template <class T, bool signWrite, bool signRead>
|
1106 |
+
static __global__ void filtered_lrelu_act_kernel(filtered_lrelu_act_kernel_params p)
|
1107 |
+
{
|
1108 |
+
typedef typename InternalType<T>::scalar_t scalar_t;
|
1109 |
+
|
1110 |
+
// Indexing.
|
1111 |
+
int32_t x = threadIdx.x + blockIdx.x * blockDim.x;
|
1112 |
+
int32_t ymax = signWrite ? p.sShape.y : p.xShape.y;
|
1113 |
+
int32_t qmax = p.xShape.z * p.xShape.w; // Combined minibatch*channel maximum index.
|
1114 |
+
|
1115 |
+
// Loop to accommodate oversized tensors.
|
1116 |
+
for (int32_t q = blockIdx.z; q < qmax; q += gridDim.z)
|
1117 |
+
for (int32_t y = blockIdx.y; y < ymax; y += gridDim.y)
|
1118 |
+
{
|
1119 |
+
// Extract z and w (channel, minibatch index).
|
1120 |
+
int32_t w = q / p.xShape.z;
|
1121 |
+
int32_t z = q - w * p.xShape.z;
|
1122 |
+
|
1123 |
+
// Choose behavior based on sign read/write mode.
|
1124 |
+
if (signWrite)
|
1125 |
+
{
|
1126 |
+
// Process value if in p.x.
|
1127 |
+
uint32_t s = 0;
|
1128 |
+
if (x < p.xShape.x && y < p.xShape.y)
|
1129 |
+
{
|
1130 |
+
int64_t ix = x * p.xStride.x + y * p.xStride.y + z * p.xStride.z + w * p.xStride.w;
|
1131 |
+
T* pv = ((T*)p.x) + ix;
|
1132 |
+
scalar_t v = (scalar_t)(*pv);
|
1133 |
+
|
1134 |
+
// Gain, LReLU, clamp.
|
1135 |
+
v *= p.gain;
|
1136 |
+
if (v < 0.f)
|
1137 |
+
{
|
1138 |
+
v *= p.slope;
|
1139 |
+
s = 1; // Sign.
|
1140 |
+
}
|
1141 |
+
if (fabsf(v) > p.clamp)
|
1142 |
+
{
|
1143 |
+
v = InternalType<T>::clamp(v, p.clamp);
|
1144 |
+
s = 2; // Clamp.
|
1145 |
+
}
|
1146 |
+
|
1147 |
+
*pv = (T)v; // Write value.
|
1148 |
+
}
|
1149 |
+
|
1150 |
+
// Coalesce into threads 0 and 16 of warp.
|
1151 |
+
uint32_t m = (threadIdx.x & 16) ? 0xffff0000u : 0x0000ffffu;
|
1152 |
+
s <<= ((threadIdx.x & 15) << 1); // Shift into place.
|
1153 |
+
s |= __shfl_xor_sync(m, s, 1); // Distribute.
|
1154 |
+
s |= __shfl_xor_sync(m, s, 2);
|
1155 |
+
s |= __shfl_xor_sync(m, s, 4);
|
1156 |
+
s |= __shfl_xor_sync(m, s, 8);
|
1157 |
+
|
1158 |
+
// Write signs if leader and in p.s.
|
1159 |
+
if (!(threadIdx.x & 15) && x < p.sShape.x) // y is always in.
|
1160 |
+
{
|
1161 |
+
uint64_t is = x + p.sShape.x * (y + (int64_t)p.sShape.y * q); // Contiguous.
|
1162 |
+
((uint32_t*)p.s)[is >> 4] = s;
|
1163 |
+
}
|
1164 |
+
}
|
1165 |
+
else if (signRead)
|
1166 |
+
{
|
1167 |
+
// Process value if in p.x.
|
1168 |
+
if (x < p.xShape.x) // y is always in.
|
1169 |
+
{
|
1170 |
+
int64_t ix = x * p.xStride.x + y * p.xStride.y + z * p.xStride.z + w * p.xStride.w;
|
1171 |
+
T* pv = ((T*)p.x) + ix;
|
1172 |
+
scalar_t v = (scalar_t)(*pv);
|
1173 |
+
v *= p.gain;
|
1174 |
+
|
1175 |
+
// Apply sign buffer offset.
|
1176 |
+
uint32_t sx = x + p.sOfs.x;
|
1177 |
+
uint32_t sy = y + p.sOfs.y;
|
1178 |
+
|
1179 |
+
// Read and apply signs if we land inside valid region of sign buffer.
|
1180 |
+
if (sx < p.sShape.x && sy < p.sShape.y)
|
1181 |
+
{
|
1182 |
+
uint64_t is = (sx >> 2) + (p.sShape.x >> 2) * (sy + (uint64_t)p.sShape.y * q); // Contiguous.
|
1183 |
+
unsigned char s = p.s[is];
|
1184 |
+
s >>= (sx & 3) << 1; // Shift into place.
|
1185 |
+
if (s & 1) // Sign?
|
1186 |
+
v *= p.slope;
|
1187 |
+
if (s & 2) // Clamp?
|
1188 |
+
v = 0.f;
|
1189 |
+
}
|
1190 |
+
|
1191 |
+
*pv = (T)v; // Write value.
|
1192 |
+
}
|
1193 |
+
}
|
1194 |
+
else
|
1195 |
+
{
|
1196 |
+
// Forward pass with no sign write. Process value if in p.x.
|
1197 |
+
if (x < p.xShape.x) // y is always in.
|
1198 |
+
{
|
1199 |
+
int64_t ix = x * p.xStride.x + y * p.xStride.y + z * p.xStride.z + w * p.xStride.w;
|
1200 |
+
T* pv = ((T*)p.x) + ix;
|
1201 |
+
scalar_t v = (scalar_t)(*pv);
|
1202 |
+
v *= p.gain;
|
1203 |
+
if (v < 0.f)
|
1204 |
+
v *= p.slope;
|
1205 |
+
if (fabsf(v) > p.clamp)
|
1206 |
+
v = InternalType<T>::clamp(v, p.clamp);
|
1207 |
+
*pv = (T)v; // Write value.
|
1208 |
+
}
|
1209 |
+
}
|
1210 |
+
}
|
1211 |
+
}
|
1212 |
+
|
1213 |
+
template <class T, bool signWrite, bool signRead> void* choose_filtered_lrelu_act_kernel(void)
|
1214 |
+
{
|
1215 |
+
return (void*)filtered_lrelu_act_kernel<T, signWrite, signRead>;
|
1216 |
+
}
|
1217 |
+
|
1218 |
+
//------------------------------------------------------------------------
|
1219 |
+
// CUDA kernel selection.
|
1220 |
+
|
1221 |
+
template <class T, class index_t, bool signWrite, bool signRead> filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel(const filtered_lrelu_kernel_params& p, int sharedKB)
|
1222 |
+
{
|
1223 |
+
filtered_lrelu_kernel_spec s = { 0 };
|
1224 |
+
|
1225 |
+
// Return the first matching kernel.
|
1226 |
+
#define CASE(SH, U, FU, D, FD, MODE, TW, TH, W, XR, WS) \
|
1227 |
+
if (sharedKB >= SH) \
|
1228 |
+
if ((p.fuShape.y == 0 && (MODE == MODE_SUSD || MODE == MODE_SUFD)) || (p.fuShape.y > 0 && (MODE == MODE_FUSD || MODE == MODE_FUFD))) \
|
1229 |
+
if ((p.fdShape.y == 0 && (MODE == MODE_SUSD || MODE == MODE_FUSD)) || (p.fdShape.y > 0 && (MODE == MODE_SUFD || MODE == MODE_FUFD))) \
|
1230 |
+
if (p.up == U && p.fuShape.x <= FU && p.fuShape.y <= FU && p.down == D && p.fdShape.x <= FD && p.fdShape.y <= FD) \
|
1231 |
+
{ \
|
1232 |
+
static_assert((D*TW % 4) == 0, "down * tileWidth must be divisible by 4"); \
|
1233 |
+
static_assert(FU % U == 0, "upscaling filter size must be multiple of upscaling factor"); \
|
1234 |
+
static_assert(FD % D == 0, "downscaling filter size must be multiple of downscaling factor"); \
|
1235 |
+
s.setup = (void*)setup_filters_kernel; \
|
1236 |
+
s.exec = (void*)filtered_lrelu_kernel<T, index_t, SH, signWrite, signRead, MODE, U, FU, D, FD, TW, TH, W*32, !!XR, !!WS>; \
|
1237 |
+
s.tileOut = make_int2(TW, TH); \
|
1238 |
+
s.numWarps = W; \
|
1239 |
+
s.xrep = XR; \
|
1240 |
+
s.dynamicSharedKB = (SH == 48) ? 0 : SH; \
|
1241 |
+
return s; \
|
1242 |
+
}
|
1243 |
+
|
1244 |
+
// Launch parameters for various kernel specializations.
|
1245 |
+
// Small filters must be listed before large filters, otherwise the kernel for larger filter will always match first.
|
1246 |
+
// Kernels that use more shared memory must be listed before those that use less, for the same reason.
|
1247 |
+
|
1248 |
+
CASE(/*sharedKB*/48, /*up,fu*/1,1, /*down,fd*/1,1, /*mode*/MODE_FUFD, /*tw,th,warps,xrep,wskip*/64, 178, 32, 0, 0) // 1t-upf1-downf1
|
1249 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/1,1, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/152, 95, 16, 0, 0) // 4t-ups2-downf1
|
1250 |
+
CASE(/*sharedKB*/48, /*up,fu*/1,1, /*down,fd*/2,8, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/56, 22, 16, 0, 0) // 4t-upf1-downs2
|
1251 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/2,8, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/56, 29, 16, 11, 0) // 4t-ups2-downs2
|
1252 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/2,8, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/60, 28, 16, 0, 0) // 4t-upf2-downs2
|
1253 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/2,8, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/56, 28, 16, 0, 0) // 4t-ups2-downf2
|
1254 |
+
CASE(/*sharedKB*/48, /*up,fu*/4,16, /*down,fd*/2,8, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/56, 31, 16, 11, 0) // 4t-ups4-downs2
|
1255 |
+
CASE(/*sharedKB*/48, /*up,fu*/4,16, /*down,fd*/2,8, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/56, 36, 16, 0, 0) // 4t-ups4-downf2
|
1256 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/4,16, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/16, 22, 16, 12, 0) // 4t-ups2-downs4
|
1257 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,8, /*down,fd*/4,16, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/29, 15, 16, 0, 0) // 4t-upf2-downs4
|
1258 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/1,1, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/96, 150, 28, 0, 0) // 6t-ups2-downf1
|
1259 |
+
CASE(/*sharedKB*/48, /*up,fu*/1,1, /*down,fd*/2,12, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/32, 35, 24, 0, 0) // 6t-upf1-downs2
|
1260 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/2,12, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/32, 46, 16, 10, 0) // 6t-ups2-downs2
|
1261 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/2,12, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/58, 28, 24, 8, 0) // 6t-upf2-downs2
|
1262 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/2,12, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/52, 28, 16, 0, 0) // 6t-ups2-downf2
|
1263 |
+
CASE(/*sharedKB*/48, /*up,fu*/4,24, /*down,fd*/2,12, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/32, 51, 16, 5, 0) // 6t-ups4-downs2
|
1264 |
+
CASE(/*sharedKB*/48, /*up,fu*/4,24, /*down,fd*/2,12, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/32, 56, 16, 6, 0) // 6t-ups4-downf2
|
1265 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/4,24, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/16, 18, 16, 12, 0) // 6t-ups2-downs4
|
1266 |
+
CASE(/*sharedKB*/96, /*up,fu*/2,12, /*down,fd*/4,24, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/27, 31, 32, 6, 0) // 6t-upf2-downs4 96kB
|
1267 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,12, /*down,fd*/4,24, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/27, 13, 24, 0, 0) // 6t-upf2-downs4
|
1268 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/1,1, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/148, 89, 24, 0, 0) // 8t-ups2-downf1
|
1269 |
+
CASE(/*sharedKB*/48, /*up,fu*/1,1, /*down,fd*/2,16, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/32, 31, 16, 5, 0) // 8t-upf1-downs2
|
1270 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/2,16, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/32, 41, 16, 9, 0) // 8t-ups2-downs2
|
1271 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/2,16, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/56, 26, 24, 0, 0) // 8t-upf2-downs2
|
1272 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/2,16, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/32, 40, 16, 0, 0) // 8t-ups2-downf2
|
1273 |
+
CASE(/*sharedKB*/48, /*up,fu*/4,32, /*down,fd*/2,16, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/32, 46, 24, 5, 0) // 8t-ups4-downs2
|
1274 |
+
CASE(/*sharedKB*/48, /*up,fu*/4,32, /*down,fd*/2,16, /*mode*/MODE_SUFD, /*tw,th,warps,xrep,wskip*/32, 50, 16, 0, 0) // 8t-ups4-downf2
|
1275 |
+
CASE(/*sharedKB*/96, /*up,fu*/2,16, /*down,fd*/4,32, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/24, 24, 32, 12, 1) // 8t-ups2-downs4 96kB
|
1276 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/4,32, /*mode*/MODE_SUSD, /*tw,th,warps,xrep,wskip*/16, 13, 16, 10, 1) // 8t-ups2-downs4
|
1277 |
+
CASE(/*sharedKB*/96, /*up,fu*/2,16, /*down,fd*/4,32, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/25, 28, 28, 4, 0) // 8t-upf2-downs4 96kB
|
1278 |
+
CASE(/*sharedKB*/48, /*up,fu*/2,16, /*down,fd*/4,32, /*mode*/MODE_FUSD, /*tw,th,warps,xrep,wskip*/25, 10, 24, 0, 0) // 8t-upf2-downs4
|
1279 |
+
|
1280 |
+
#undef CASE
|
1281 |
+
return s; // No kernel found.
|
1282 |
+
}
|
1283 |
+
|
1284 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/filtered_lrelu.h
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <cuda_runtime.h>
|
10 |
+
|
11 |
+
//------------------------------------------------------------------------
|
12 |
+
// CUDA kernel parameters.
|
13 |
+
|
14 |
+
struct filtered_lrelu_kernel_params
|
15 |
+
{
|
16 |
+
// These parameters decide which kernel to use.
|
17 |
+
int up; // upsampling ratio (1, 2, 4)
|
18 |
+
int down; // downsampling ratio (1, 2, 4)
|
19 |
+
int2 fuShape; // [size, 1] | [size, size]
|
20 |
+
int2 fdShape; // [size, 1] | [size, size]
|
21 |
+
|
22 |
+
int _dummy; // Alignment.
|
23 |
+
|
24 |
+
// Rest of the parameters.
|
25 |
+
const void* x; // Input tensor.
|
26 |
+
void* y; // Output tensor.
|
27 |
+
const void* b; // Bias tensor.
|
28 |
+
unsigned char* s; // Sign tensor in/out. NULL if unused.
|
29 |
+
const float* fu; // Upsampling filter.
|
30 |
+
const float* fd; // Downsampling filter.
|
31 |
+
|
32 |
+
int2 pad0; // Left/top padding.
|
33 |
+
float gain; // Additional gain factor.
|
34 |
+
float slope; // Leaky ReLU slope on negative side.
|
35 |
+
float clamp; // Clamp after nonlinearity.
|
36 |
+
int flip; // Filter kernel flip for gradient computation.
|
37 |
+
|
38 |
+
int tilesXdim; // Original number of horizontal output tiles.
|
39 |
+
int tilesXrep; // Number of horizontal tiles per CTA.
|
40 |
+
int blockZofs; // Block z offset to support large minibatch, channel dimensions.
|
41 |
+
|
42 |
+
int4 xShape; // [width, height, channel, batch]
|
43 |
+
int4 yShape; // [width, height, channel, batch]
|
44 |
+
int2 sShape; // [width, height] - width is in bytes. Contiguous. Zeros if unused.
|
45 |
+
int2 sOfs; // [ofs_x, ofs_y] - offset between upsampled data and sign tensor.
|
46 |
+
int swLimit; // Active width of sign tensor in bytes.
|
47 |
+
|
48 |
+
longlong4 xStride; // Strides of all tensors except signs, same component order as shapes.
|
49 |
+
longlong4 yStride; //
|
50 |
+
int64_t bStride; //
|
51 |
+
longlong3 fuStride; //
|
52 |
+
longlong3 fdStride; //
|
53 |
+
};
|
54 |
+
|
55 |
+
struct filtered_lrelu_act_kernel_params
|
56 |
+
{
|
57 |
+
void* x; // Input/output, modified in-place.
|
58 |
+
unsigned char* s; // Sign tensor in/out. NULL if unused.
|
59 |
+
|
60 |
+
float gain; // Additional gain factor.
|
61 |
+
float slope; // Leaky ReLU slope on negative side.
|
62 |
+
float clamp; // Clamp after nonlinearity.
|
63 |
+
|
64 |
+
int4 xShape; // [width, height, channel, batch]
|
65 |
+
longlong4 xStride; // Input/output tensor strides, same order as in shape.
|
66 |
+
int2 sShape; // [width, height] - width is in elements. Contiguous. Zeros if unused.
|
67 |
+
int2 sOfs; // [ofs_x, ofs_y] - offset between upsampled data and sign tensor.
|
68 |
+
};
|
69 |
+
|
70 |
+
//------------------------------------------------------------------------
|
71 |
+
// CUDA kernel specialization.
|
72 |
+
|
73 |
+
struct filtered_lrelu_kernel_spec
|
74 |
+
{
|
75 |
+
void* setup; // Function for filter kernel setup.
|
76 |
+
void* exec; // Function for main operation.
|
77 |
+
int2 tileOut; // Width/height of launch tile.
|
78 |
+
int numWarps; // Number of warps per thread block, determines launch block size.
|
79 |
+
int xrep; // For processing multiple horizontal tiles per thread block.
|
80 |
+
int dynamicSharedKB; // How much dynamic shared memory the exec kernel wants.
|
81 |
+
};
|
82 |
+
|
83 |
+
//------------------------------------------------------------------------
|
84 |
+
// CUDA kernel selection.
|
85 |
+
|
86 |
+
template <class T, class index_t, bool signWrite, bool signRead> filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel(const filtered_lrelu_kernel_params& p, int sharedKB);
|
87 |
+
template <class T, bool signWrite, bool signRead> void* choose_filtered_lrelu_act_kernel(void);
|
88 |
+
template <bool signWrite, bool signRead> cudaError_t copy_filters(cudaStream_t stream);
|
89 |
+
|
90 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/filtered_lrelu.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import os
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
from .. import custom_ops
|
15 |
+
from .. import misc
|
16 |
+
from . import upfirdn2d
|
17 |
+
from . import bias_act
|
18 |
+
|
19 |
+
#----------------------------------------------------------------------------
|
20 |
+
|
21 |
+
_plugin = None
|
22 |
+
|
23 |
+
def _init():
|
24 |
+
global _plugin
|
25 |
+
if _plugin is None:
|
26 |
+
_plugin = custom_ops.get_plugin(
|
27 |
+
module_name='filtered_lrelu_plugin',
|
28 |
+
sources=['filtered_lrelu.cpp', 'filtered_lrelu_wr.cu', 'filtered_lrelu_rd.cu', 'filtered_lrelu_ns.cu'],
|
29 |
+
headers=['filtered_lrelu.h', 'filtered_lrelu.cu'],
|
30 |
+
source_dir=os.path.dirname(__file__),
|
31 |
+
extra_cuda_cflags=['--use_fast_math'],
|
32 |
+
)
|
33 |
+
return True
|
34 |
+
|
35 |
+
def _get_filter_size(f):
|
36 |
+
if f is None:
|
37 |
+
return 1, 1
|
38 |
+
assert isinstance(f, torch.Tensor)
|
39 |
+
assert 1 <= f.ndim <= 2
|
40 |
+
return f.shape[-1], f.shape[0] # width, height
|
41 |
+
|
42 |
+
def _parse_padding(padding):
|
43 |
+
if isinstance(padding, int):
|
44 |
+
padding = [padding, padding]
|
45 |
+
assert isinstance(padding, (list, tuple))
|
46 |
+
assert all(isinstance(x, (int, np.integer)) for x in padding)
|
47 |
+
padding = [int(x) for x in padding]
|
48 |
+
if len(padding) == 2:
|
49 |
+
px, py = padding
|
50 |
+
padding = [px, px, py, py]
|
51 |
+
px0, px1, py0, py1 = padding
|
52 |
+
return px0, px1, py0, py1
|
53 |
+
|
54 |
+
#----------------------------------------------------------------------------
|
55 |
+
|
56 |
+
def filtered_lrelu(x, fu=None, fd=None, b=None, up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False, impl='cuda'):
|
57 |
+
r"""Filtered leaky ReLU for a batch of 2D images.
|
58 |
+
|
59 |
+
Performs the following sequence of operations for each channel:
|
60 |
+
|
61 |
+
1. Add channel-specific bias if provided (`b`).
|
62 |
+
|
63 |
+
2. Upsample the image by inserting N-1 zeros after each pixel (`up`).
|
64 |
+
|
65 |
+
3. Pad the image with the specified number of zeros on each side (`padding`).
|
66 |
+
Negative padding corresponds to cropping the image.
|
67 |
+
|
68 |
+
4. Convolve the image with the specified upsampling FIR filter (`fu`), shrinking it
|
69 |
+
so that the footprint of all output pixels lies within the input image.
|
70 |
+
|
71 |
+
5. Multiply each value by the provided gain factor (`gain`).
|
72 |
+
|
73 |
+
6. Apply leaky ReLU activation function to each value.
|
74 |
+
|
75 |
+
7. Clamp each value between -clamp and +clamp, if `clamp` parameter is provided.
|
76 |
+
|
77 |
+
8. Convolve the image with the specified downsampling FIR filter (`fd`), shrinking
|
78 |
+
it so that the footprint of all output pixels lies within the input image.
|
79 |
+
|
80 |
+
9. Downsample the image by keeping every Nth pixel (`down`).
|
81 |
+
|
82 |
+
The fused op is considerably more efficient than performing the same calculation
|
83 |
+
using standard PyTorch ops. It supports gradients of arbitrary order.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
x: Float32/float16/float64 input tensor of the shape
|
87 |
+
`[batch_size, num_channels, in_height, in_width]`.
|
88 |
+
fu: Float32 upsampling FIR filter of the shape
|
89 |
+
`[filter_height, filter_width]` (non-separable),
|
90 |
+
`[filter_taps]` (separable), or
|
91 |
+
`None` (identity).
|
92 |
+
fd: Float32 downsampling FIR filter of the shape
|
93 |
+
`[filter_height, filter_width]` (non-separable),
|
94 |
+
`[filter_taps]` (separable), or
|
95 |
+
`None` (identity).
|
96 |
+
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
|
97 |
+
as `x`. The length of vector must must match the channel dimension of `x`.
|
98 |
+
up: Integer upsampling factor (default: 1).
|
99 |
+
down: Integer downsampling factor. (default: 1).
|
100 |
+
padding: Padding with respect to the upsampled image. Can be a single number
|
101 |
+
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
102 |
+
(default: 0).
|
103 |
+
gain: Overall scaling factor for signal magnitude (default: sqrt(2)).
|
104 |
+
slope: Slope on the negative side of leaky ReLU (default: 0.2).
|
105 |
+
clamp: Maximum magnitude for leaky ReLU output (default: None).
|
106 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
107 |
+
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
111 |
+
"""
|
112 |
+
assert isinstance(x, torch.Tensor)
|
113 |
+
assert impl in ['ref', 'cuda']
|
114 |
+
if impl == 'cuda' and x.device.type == 'cuda' and _init():
|
115 |
+
return _filtered_lrelu_cuda(up=up, down=down, padding=padding, gain=gain, slope=slope, clamp=clamp, flip_filter=flip_filter).apply(x, fu, fd, b, None, 0, 0)
|
116 |
+
return _filtered_lrelu_ref(x, fu=fu, fd=fd, b=b, up=up, down=down, padding=padding, gain=gain, slope=slope, clamp=clamp, flip_filter=flip_filter)
|
117 |
+
|
118 |
+
#----------------------------------------------------------------------------
|
119 |
+
|
120 |
+
@misc.profiled_function
|
121 |
+
def _filtered_lrelu_ref(x, fu=None, fd=None, b=None, up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False):
|
122 |
+
"""Slow and memory-inefficient reference implementation of `filtered_lrelu()` using
|
123 |
+
existing `upfirdn2n()` and `bias_act()` ops.
|
124 |
+
"""
|
125 |
+
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
126 |
+
fu_w, fu_h = _get_filter_size(fu)
|
127 |
+
fd_w, fd_h = _get_filter_size(fd)
|
128 |
+
if b is not None:
|
129 |
+
assert isinstance(b, torch.Tensor) and b.dtype == x.dtype
|
130 |
+
misc.assert_shape(b, [x.shape[1]])
|
131 |
+
assert isinstance(up, int) and up >= 1
|
132 |
+
assert isinstance(down, int) and down >= 1
|
133 |
+
px0, px1, py0, py1 = _parse_padding(padding)
|
134 |
+
assert gain == float(gain) and gain > 0
|
135 |
+
assert slope == float(slope) and slope >= 0
|
136 |
+
assert clamp is None or (clamp == float(clamp) and clamp >= 0)
|
137 |
+
|
138 |
+
# Calculate output size.
|
139 |
+
batch_size, channels, in_h, in_w = x.shape
|
140 |
+
in_dtype = x.dtype
|
141 |
+
out_w = (in_w * up + (px0 + px1) - (fu_w - 1) - (fd_w - 1) + (down - 1)) // down
|
142 |
+
out_h = (in_h * up + (py0 + py1) - (fu_h - 1) - (fd_h - 1) + (down - 1)) // down
|
143 |
+
|
144 |
+
# Compute using existing ops.
|
145 |
+
x = bias_act.bias_act(x=x, b=b) # Apply bias.
|
146 |
+
x = upfirdn2d.upfirdn2d(x=x, f=fu, up=up, padding=[px0, px1, py0, py1], gain=up**2, flip_filter=flip_filter) # Upsample.
|
147 |
+
x = bias_act.bias_act(x=x, act='lrelu', alpha=slope, gain=gain, clamp=clamp) # Bias, leaky ReLU, clamp.
|
148 |
+
x = upfirdn2d.upfirdn2d(x=x, f=fd, down=down, flip_filter=flip_filter) # Downsample.
|
149 |
+
|
150 |
+
# Check output shape & dtype.
|
151 |
+
misc.assert_shape(x, [batch_size, channels, out_h, out_w])
|
152 |
+
assert x.dtype == in_dtype
|
153 |
+
return x
|
154 |
+
|
155 |
+
#----------------------------------------------------------------------------
|
156 |
+
|
157 |
+
_filtered_lrelu_cuda_cache = dict()
|
158 |
+
|
159 |
+
def _filtered_lrelu_cuda(up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False):
|
160 |
+
"""Fast CUDA implementation of `filtered_lrelu()` using custom ops.
|
161 |
+
"""
|
162 |
+
assert isinstance(up, int) and up >= 1
|
163 |
+
assert isinstance(down, int) and down >= 1
|
164 |
+
px0, px1, py0, py1 = _parse_padding(padding)
|
165 |
+
assert gain == float(gain) and gain > 0
|
166 |
+
gain = float(gain)
|
167 |
+
assert slope == float(slope) and slope >= 0
|
168 |
+
slope = float(slope)
|
169 |
+
assert clamp is None or (clamp == float(clamp) and clamp >= 0)
|
170 |
+
clamp = float(clamp if clamp is not None else 'inf')
|
171 |
+
|
172 |
+
# Lookup from cache.
|
173 |
+
key = (up, down, px0, px1, py0, py1, gain, slope, clamp, flip_filter)
|
174 |
+
if key in _filtered_lrelu_cuda_cache:
|
175 |
+
return _filtered_lrelu_cuda_cache[key]
|
176 |
+
|
177 |
+
# Forward op.
|
178 |
+
class FilteredLReluCuda(torch.autograd.Function):
|
179 |
+
@staticmethod
|
180 |
+
def forward(ctx, x, fu, fd, b, si, sx, sy): # pylint: disable=arguments-differ
|
181 |
+
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
182 |
+
|
183 |
+
# Replace empty up/downsample kernels with full 1x1 kernels (faster than separable).
|
184 |
+
if fu is None:
|
185 |
+
fu = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
186 |
+
if fd is None:
|
187 |
+
fd = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
188 |
+
assert 1 <= fu.ndim <= 2
|
189 |
+
assert 1 <= fd.ndim <= 2
|
190 |
+
|
191 |
+
# Replace separable 1x1 kernels with full 1x1 kernels when scale factor is 1.
|
192 |
+
if up == 1 and fu.ndim == 1 and fu.shape[0] == 1:
|
193 |
+
fu = fu.square()[None]
|
194 |
+
if down == 1 and fd.ndim == 1 and fd.shape[0] == 1:
|
195 |
+
fd = fd.square()[None]
|
196 |
+
|
197 |
+
# Missing sign input tensor.
|
198 |
+
if si is None:
|
199 |
+
si = torch.empty([0])
|
200 |
+
|
201 |
+
# Missing bias tensor.
|
202 |
+
if b is None:
|
203 |
+
b = torch.zeros([x.shape[1]], dtype=x.dtype, device=x.device)
|
204 |
+
|
205 |
+
# Construct internal sign tensor only if gradients are needed.
|
206 |
+
write_signs = (si.numel() == 0) and (x.requires_grad or b.requires_grad)
|
207 |
+
|
208 |
+
# Warn if input storage strides are not in decreasing order due to e.g. channels-last layout.
|
209 |
+
strides = [x.stride(i) for i in range(x.ndim) if x.size(i) > 1]
|
210 |
+
if any(a < b for a, b in zip(strides[:-1], strides[1:])):
|
211 |
+
warnings.warn("low-performance memory layout detected in filtered_lrelu input", RuntimeWarning)
|
212 |
+
|
213 |
+
# Call C++/Cuda plugin if datatype is supported.
|
214 |
+
if x.dtype in [torch.float16, torch.float32]:
|
215 |
+
if torch.cuda.current_stream(x.device) != torch.cuda.default_stream(x.device):
|
216 |
+
warnings.warn("filtered_lrelu called with non-default cuda stream but concurrent execution is not supported", RuntimeWarning)
|
217 |
+
y, so, return_code = _plugin.filtered_lrelu(x, fu, fd, b, si, up, down, px0, px1, py0, py1, sx, sy, gain, slope, clamp, flip_filter, write_signs)
|
218 |
+
else:
|
219 |
+
return_code = -1
|
220 |
+
|
221 |
+
# No Cuda kernel found? Fall back to generic implementation. Still more memory efficient than the reference implementation because
|
222 |
+
# only the bit-packed sign tensor is retained for gradient computation.
|
223 |
+
if return_code < 0:
|
224 |
+
warnings.warn("filtered_lrelu called with parameters that have no optimized CUDA kernel, using generic fallback", RuntimeWarning)
|
225 |
+
|
226 |
+
y = x.add(b.unsqueeze(-1).unsqueeze(-1)) # Add bias.
|
227 |
+
y = upfirdn2d.upfirdn2d(x=y, f=fu, up=up, padding=[px0, px1, py0, py1], gain=up**2, flip_filter=flip_filter) # Upsample.
|
228 |
+
so = _plugin.filtered_lrelu_act_(y, si, sx, sy, gain, slope, clamp, write_signs) # Activation function and sign handling. Modifies y in-place.
|
229 |
+
y = upfirdn2d.upfirdn2d(x=y, f=fd, down=down, flip_filter=flip_filter) # Downsample.
|
230 |
+
|
231 |
+
# Prepare for gradient computation.
|
232 |
+
ctx.save_for_backward(fu, fd, (si if si.numel() else so))
|
233 |
+
ctx.x_shape = x.shape
|
234 |
+
ctx.y_shape = y.shape
|
235 |
+
ctx.s_ofs = sx, sy
|
236 |
+
return y
|
237 |
+
|
238 |
+
@staticmethod
|
239 |
+
def backward(ctx, dy): # pylint: disable=arguments-differ
|
240 |
+
fu, fd, si = ctx.saved_tensors
|
241 |
+
_, _, xh, xw = ctx.x_shape
|
242 |
+
_, _, yh, yw = ctx.y_shape
|
243 |
+
sx, sy = ctx.s_ofs
|
244 |
+
dx = None # 0
|
245 |
+
dfu = None; assert not ctx.needs_input_grad[1]
|
246 |
+
dfd = None; assert not ctx.needs_input_grad[2]
|
247 |
+
db = None # 3
|
248 |
+
dsi = None; assert not ctx.needs_input_grad[4]
|
249 |
+
dsx = None; assert not ctx.needs_input_grad[5]
|
250 |
+
dsy = None; assert not ctx.needs_input_grad[6]
|
251 |
+
|
252 |
+
if ctx.needs_input_grad[0] or ctx.needs_input_grad[3]:
|
253 |
+
pp = [
|
254 |
+
(fu.shape[-1] - 1) + (fd.shape[-1] - 1) - px0,
|
255 |
+
xw * up - yw * down + px0 - (up - 1),
|
256 |
+
(fu.shape[0] - 1) + (fd.shape[0] - 1) - py0,
|
257 |
+
xh * up - yh * down + py0 - (up - 1),
|
258 |
+
]
|
259 |
+
gg = gain * (up ** 2) / (down ** 2)
|
260 |
+
ff = (not flip_filter)
|
261 |
+
sx = sx - (fu.shape[-1] - 1) + px0
|
262 |
+
sy = sy - (fu.shape[0] - 1) + py0
|
263 |
+
dx = _filtered_lrelu_cuda(up=down, down=up, padding=pp, gain=gg, slope=slope, clamp=None, flip_filter=ff).apply(dy, fd, fu, None, si, sx, sy)
|
264 |
+
|
265 |
+
if ctx.needs_input_grad[3]:
|
266 |
+
db = dx.sum([0, 2, 3])
|
267 |
+
|
268 |
+
return dx, dfu, dfd, db, dsi, dsx, dsy
|
269 |
+
|
270 |
+
# Add to cache.
|
271 |
+
_filtered_lrelu_cuda_cache[key] = FilteredLReluCuda
|
272 |
+
return FilteredLReluCuda
|
273 |
+
|
274 |
+
#----------------------------------------------------------------------------
|
torch_utils/ops/filtered_lrelu_ns.cu
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include "filtered_lrelu.cu"
|
10 |
+
|
11 |
+
// Template/kernel specializations for no signs mode (no gradients required).
|
12 |
+
|
13 |
+
// Full op, 32-bit indexing.
|
14 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int32_t, false, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
15 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int32_t, false, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
16 |
+
|
17 |
+
// Full op, 64-bit indexing.
|
18 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int64_t, false, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
19 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int64_t, false, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
20 |
+
|
21 |
+
// Activation/signs only for generic variant. 64-bit indexing.
|
22 |
+
template void* choose_filtered_lrelu_act_kernel<c10::Half, false, false>(void);
|
23 |
+
template void* choose_filtered_lrelu_act_kernel<float, false, false>(void);
|
24 |
+
template void* choose_filtered_lrelu_act_kernel<double, false, false>(void);
|
25 |
+
|
26 |
+
// Copy filters to constant memory.
|
27 |
+
template cudaError_t copy_filters<false, false>(cudaStream_t stream);
|
torch_utils/ops/filtered_lrelu_rd.cu
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include "filtered_lrelu.cu"
|
10 |
+
|
11 |
+
// Template/kernel specializations for sign read mode.
|
12 |
+
|
13 |
+
// Full op, 32-bit indexing.
|
14 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int32_t, false, true>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
15 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int32_t, false, true>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
16 |
+
|
17 |
+
// Full op, 64-bit indexing.
|
18 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int64_t, false, true>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
19 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int64_t, false, true>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
20 |
+
|
21 |
+
// Activation/signs only for generic variant. 64-bit indexing.
|
22 |
+
template void* choose_filtered_lrelu_act_kernel<c10::Half, false, true>(void);
|
23 |
+
template void* choose_filtered_lrelu_act_kernel<float, false, true>(void);
|
24 |
+
template void* choose_filtered_lrelu_act_kernel<double, false, true>(void);
|
25 |
+
|
26 |
+
// Copy filters to constant memory.
|
27 |
+
template cudaError_t copy_filters<false, true>(cudaStream_t stream);
|
torch_utils/ops/filtered_lrelu_wr.cu
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include "filtered_lrelu.cu"
|
10 |
+
|
11 |
+
// Template/kernel specializations for sign write mode.
|
12 |
+
|
13 |
+
// Full op, 32-bit indexing.
|
14 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int32_t, true, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
15 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int32_t, true, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
16 |
+
|
17 |
+
// Full op, 64-bit indexing.
|
18 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<c10::Half, int64_t, true, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
19 |
+
template filtered_lrelu_kernel_spec choose_filtered_lrelu_kernel<float, int64_t, true, false>(const filtered_lrelu_kernel_params& p, int sharedKB);
|
20 |
+
|
21 |
+
// Activation/signs only for generic variant. 64-bit indexing.
|
22 |
+
template void* choose_filtered_lrelu_act_kernel<c10::Half, true, false>(void);
|
23 |
+
template void* choose_filtered_lrelu_act_kernel<float, true, false>(void);
|
24 |
+
template void* choose_filtered_lrelu_act_kernel<double, true, false>(void);
|
25 |
+
|
26 |
+
// Copy filters to constant memory.
|
27 |
+
template cudaError_t copy_filters<true, false>(cudaStream_t stream);
|
torch_utils/ops/fma.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Fused multiply-add, with slightly faster gradients than `torch.addcmul()`."""
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
#----------------------------------------------------------------------------
|
14 |
+
|
15 |
+
def fma(a, b, c): # => a * b + c
|
16 |
+
return _FusedMultiplyAdd.apply(a, b, c)
|
17 |
+
|
18 |
+
#----------------------------------------------------------------------------
|
19 |
+
|
20 |
+
class _FusedMultiplyAdd(torch.autograd.Function): # a * b + c
|
21 |
+
@staticmethod
|
22 |
+
def forward(ctx, a, b, c): # pylint: disable=arguments-differ
|
23 |
+
out = torch.addcmul(c, a, b)
|
24 |
+
ctx.save_for_backward(a, b)
|
25 |
+
ctx.c_shape = c.shape
|
26 |
+
return out
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def backward(ctx, dout): # pylint: disable=arguments-differ
|
30 |
+
a, b = ctx.saved_tensors
|
31 |
+
c_shape = ctx.c_shape
|
32 |
+
da = None
|
33 |
+
db = None
|
34 |
+
dc = None
|
35 |
+
|
36 |
+
if ctx.needs_input_grad[0]:
|
37 |
+
da = _unbroadcast(dout * b, a.shape)
|
38 |
+
|
39 |
+
if ctx.needs_input_grad[1]:
|
40 |
+
db = _unbroadcast(dout * a, b.shape)
|
41 |
+
|
42 |
+
if ctx.needs_input_grad[2]:
|
43 |
+
dc = _unbroadcast(dout, c_shape)
|
44 |
+
|
45 |
+
return da, db, dc
|
46 |
+
|
47 |
+
#----------------------------------------------------------------------------
|
48 |
+
|
49 |
+
def _unbroadcast(x, shape):
|
50 |
+
extra_dims = x.ndim - len(shape)
|
51 |
+
assert extra_dims >= 0
|
52 |
+
dim = [i for i in range(x.ndim) if x.shape[i] > 1 and (i < extra_dims or shape[i - extra_dims] == 1)]
|
53 |
+
if len(dim):
|
54 |
+
x = x.sum(dim=dim, keepdim=True)
|
55 |
+
if extra_dims:
|
56 |
+
x = x.reshape(-1, *x.shape[extra_dims+1:])
|
57 |
+
assert x.shape == shape
|
58 |
+
return x
|
59 |
+
|
60 |
+
#----------------------------------------------------------------------------
|
torch_utils/ops/grid_sample_gradfix.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Custom replacement for `torch.nn.functional.grid_sample` that
|
10 |
+
supports arbitrarily high order gradients between the input and output.
|
11 |
+
Only works on 2D images and assumes
|
12 |
+
`mode='bilinear'`, `padding_mode='zeros'`, `align_corners=False`."""
|
13 |
+
|
14 |
+
import torch
|
15 |
+
|
16 |
+
# pylint: disable=redefined-builtin
|
17 |
+
# pylint: disable=arguments-differ
|
18 |
+
# pylint: disable=protected-access
|
19 |
+
|
20 |
+
#----------------------------------------------------------------------------
|
21 |
+
|
22 |
+
enabled = False # Enable the custom op by setting this to true.
|
23 |
+
|
24 |
+
#----------------------------------------------------------------------------
|
25 |
+
|
26 |
+
def grid_sample(input, grid):
|
27 |
+
if _should_use_custom_op():
|
28 |
+
return _GridSample2dForward.apply(input, grid)
|
29 |
+
return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=False)
|
30 |
+
|
31 |
+
#----------------------------------------------------------------------------
|
32 |
+
|
33 |
+
def _should_use_custom_op():
|
34 |
+
return enabled
|
35 |
+
|
36 |
+
#----------------------------------------------------------------------------
|
37 |
+
|
38 |
+
class _GridSample2dForward(torch.autograd.Function):
|
39 |
+
@staticmethod
|
40 |
+
def forward(ctx, input, grid):
|
41 |
+
assert input.ndim == 4
|
42 |
+
assert grid.ndim == 4
|
43 |
+
output = torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=False)
|
44 |
+
ctx.save_for_backward(input, grid)
|
45 |
+
return output
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def backward(ctx, grad_output):
|
49 |
+
input, grid = ctx.saved_tensors
|
50 |
+
grad_input, grad_grid = _GridSample2dBackward.apply(grad_output, input, grid)
|
51 |
+
return grad_input, grad_grid
|
52 |
+
|
53 |
+
#----------------------------------------------------------------------------
|
54 |
+
|
55 |
+
class _GridSample2dBackward(torch.autograd.Function):
|
56 |
+
@staticmethod
|
57 |
+
def forward(ctx, grad_output, input, grid):
|
58 |
+
op = torch._C._jit_get_operation('aten::grid_sampler_2d_backward')
|
59 |
+
grad_input, grad_grid = op(grad_output, input, grid, 0, 0, False)
|
60 |
+
ctx.save_for_backward(grid)
|
61 |
+
return grad_input, grad_grid
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def backward(ctx, grad2_grad_input, grad2_grad_grid):
|
65 |
+
_ = grad2_grad_grid # unused
|
66 |
+
grid, = ctx.saved_tensors
|
67 |
+
grad2_grad_output = None
|
68 |
+
grad2_input = None
|
69 |
+
grad2_grid = None
|
70 |
+
|
71 |
+
if ctx.needs_input_grad[0]:
|
72 |
+
grad2_grad_output = _GridSample2dForward.apply(grad2_grad_input, grid)
|
73 |
+
|
74 |
+
assert not ctx.needs_input_grad[2]
|
75 |
+
return grad2_grad_output, grad2_input, grad2_grid
|
76 |
+
|
77 |
+
#----------------------------------------------------------------------------
|
torch_utils/ops/upfirdn2d.cpp
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <torch/extension.h>
|
10 |
+
#include <ATen/cuda/CUDAContext.h>
|
11 |
+
#include <c10/cuda/CUDAGuard.h>
|
12 |
+
#include "upfirdn2d.h"
|
13 |
+
|
14 |
+
//------------------------------------------------------------------------
|
15 |
+
|
16 |
+
static torch::Tensor upfirdn2d(torch::Tensor x, torch::Tensor f, int upx, int upy, int downx, int downy, int padx0, int padx1, int pady0, int pady1, bool flip, float gain)
|
17 |
+
{
|
18 |
+
// Validate arguments.
|
19 |
+
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
|
20 |
+
TORCH_CHECK(f.device() == x.device(), "f must reside on the same device as x");
|
21 |
+
TORCH_CHECK(f.dtype() == torch::kFloat, "f must be float32");
|
22 |
+
TORCH_CHECK(x.numel() <= INT_MAX, "x is too large");
|
23 |
+
TORCH_CHECK(f.numel() <= INT_MAX, "f is too large");
|
24 |
+
TORCH_CHECK(x.numel() > 0, "x has zero size");
|
25 |
+
TORCH_CHECK(f.numel() > 0, "f has zero size");
|
26 |
+
TORCH_CHECK(x.dim() == 4, "x must be rank 4");
|
27 |
+
TORCH_CHECK(f.dim() == 2, "f must be rank 2");
|
28 |
+
TORCH_CHECK((x.size(0)-1)*x.stride(0) + (x.size(1)-1)*x.stride(1) + (x.size(2)-1)*x.stride(2) + (x.size(3)-1)*x.stride(3) <= INT_MAX, "x memory footprint is too large");
|
29 |
+
TORCH_CHECK(f.size(0) >= 1 && f.size(1) >= 1, "f must be at least 1x1");
|
30 |
+
TORCH_CHECK(upx >= 1 && upy >= 1, "upsampling factor must be at least 1");
|
31 |
+
TORCH_CHECK(downx >= 1 && downy >= 1, "downsampling factor must be at least 1");
|
32 |
+
|
33 |
+
// Create output tensor.
|
34 |
+
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
35 |
+
int outW = ((int)x.size(3) * upx + padx0 + padx1 - (int)f.size(1) + downx) / downx;
|
36 |
+
int outH = ((int)x.size(2) * upy + pady0 + pady1 - (int)f.size(0) + downy) / downy;
|
37 |
+
TORCH_CHECK(outW >= 1 && outH >= 1, "output must be at least 1x1");
|
38 |
+
torch::Tensor y = torch::empty({x.size(0), x.size(1), outH, outW}, x.options(), x.suggest_memory_format());
|
39 |
+
TORCH_CHECK(y.numel() <= INT_MAX, "output is too large");
|
40 |
+
TORCH_CHECK((y.size(0)-1)*y.stride(0) + (y.size(1)-1)*y.stride(1) + (y.size(2)-1)*y.stride(2) + (y.size(3)-1)*y.stride(3) <= INT_MAX, "output memory footprint is too large");
|
41 |
+
|
42 |
+
// Initialize CUDA kernel parameters.
|
43 |
+
upfirdn2d_kernel_params p;
|
44 |
+
p.x = x.data_ptr();
|
45 |
+
p.f = f.data_ptr<float>();
|
46 |
+
p.y = y.data_ptr();
|
47 |
+
p.up = make_int2(upx, upy);
|
48 |
+
p.down = make_int2(downx, downy);
|
49 |
+
p.pad0 = make_int2(padx0, pady0);
|
50 |
+
p.flip = (flip) ? 1 : 0;
|
51 |
+
p.gain = gain;
|
52 |
+
p.inSize = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0));
|
53 |
+
p.inStride = make_int4((int)x.stride(3), (int)x.stride(2), (int)x.stride(1), (int)x.stride(0));
|
54 |
+
p.filterSize = make_int2((int)f.size(1), (int)f.size(0));
|
55 |
+
p.filterStride = make_int2((int)f.stride(1), (int)f.stride(0));
|
56 |
+
p.outSize = make_int4((int)y.size(3), (int)y.size(2), (int)y.size(1), (int)y.size(0));
|
57 |
+
p.outStride = make_int4((int)y.stride(3), (int)y.stride(2), (int)y.stride(1), (int)y.stride(0));
|
58 |
+
p.sizeMajor = (p.inStride.z == 1) ? p.inSize.w : p.inSize.w * p.inSize.z;
|
59 |
+
p.sizeMinor = (p.inStride.z == 1) ? p.inSize.z : 1;
|
60 |
+
|
61 |
+
// Choose CUDA kernel.
|
62 |
+
upfirdn2d_kernel_spec spec;
|
63 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&]
|
64 |
+
{
|
65 |
+
spec = choose_upfirdn2d_kernel<scalar_t>(p);
|
66 |
+
});
|
67 |
+
|
68 |
+
// Set looping options.
|
69 |
+
p.loopMajor = (p.sizeMajor - 1) / 16384 + 1;
|
70 |
+
p.loopMinor = spec.loopMinor;
|
71 |
+
p.loopX = spec.loopX;
|
72 |
+
p.launchMinor = (p.sizeMinor - 1) / p.loopMinor + 1;
|
73 |
+
p.launchMajor = (p.sizeMajor - 1) / p.loopMajor + 1;
|
74 |
+
|
75 |
+
// Compute grid size.
|
76 |
+
dim3 blockSize, gridSize;
|
77 |
+
if (spec.tileOutW < 0) // large
|
78 |
+
{
|
79 |
+
blockSize = dim3(4, 32, 1);
|
80 |
+
gridSize = dim3(
|
81 |
+
((p.outSize.y - 1) / blockSize.x + 1) * p.launchMinor,
|
82 |
+
(p.outSize.x - 1) / (blockSize.y * p.loopX) + 1,
|
83 |
+
p.launchMajor);
|
84 |
+
}
|
85 |
+
else // small
|
86 |
+
{
|
87 |
+
blockSize = dim3(256, 1, 1);
|
88 |
+
gridSize = dim3(
|
89 |
+
((p.outSize.y - 1) / spec.tileOutH + 1) * p.launchMinor,
|
90 |
+
(p.outSize.x - 1) / (spec.tileOutW * p.loopX) + 1,
|
91 |
+
p.launchMajor);
|
92 |
+
}
|
93 |
+
|
94 |
+
// Launch CUDA kernel.
|
95 |
+
void* args[] = {&p};
|
96 |
+
AT_CUDA_CHECK(cudaLaunchKernel(spec.kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream()));
|
97 |
+
return y;
|
98 |
+
}
|
99 |
+
|
100 |
+
//------------------------------------------------------------------------
|
101 |
+
|
102 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
103 |
+
{
|
104 |
+
m.def("upfirdn2d", &upfirdn2d);
|
105 |
+
}
|
106 |
+
|
107 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/upfirdn2d.cu
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <c10/util/Half.h>
|
10 |
+
#include "upfirdn2d.h"
|
11 |
+
|
12 |
+
//------------------------------------------------------------------------
|
13 |
+
// Helpers.
|
14 |
+
|
15 |
+
template <class T> struct InternalType;
|
16 |
+
template <> struct InternalType<double> { typedef double scalar_t; };
|
17 |
+
template <> struct InternalType<float> { typedef float scalar_t; };
|
18 |
+
template <> struct InternalType<c10::Half> { typedef float scalar_t; };
|
19 |
+
|
20 |
+
static __device__ __forceinline__ int floor_div(int a, int b)
|
21 |
+
{
|
22 |
+
int t = 1 - a / b;
|
23 |
+
return (a + t * b) / b - t;
|
24 |
+
}
|
25 |
+
|
26 |
+
//------------------------------------------------------------------------
|
27 |
+
// Generic CUDA implementation for large filters.
|
28 |
+
|
29 |
+
template <class T> static __global__ void upfirdn2d_kernel_large(upfirdn2d_kernel_params p)
|
30 |
+
{
|
31 |
+
typedef typename InternalType<T>::scalar_t scalar_t;
|
32 |
+
|
33 |
+
// Calculate thread index.
|
34 |
+
int minorBase = blockIdx.x * blockDim.x + threadIdx.x;
|
35 |
+
int outY = minorBase / p.launchMinor;
|
36 |
+
minorBase -= outY * p.launchMinor;
|
37 |
+
int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
|
38 |
+
int majorBase = blockIdx.z * p.loopMajor;
|
39 |
+
if (outXBase >= p.outSize.x | outY >= p.outSize.y | majorBase >= p.sizeMajor)
|
40 |
+
return;
|
41 |
+
|
42 |
+
// Setup Y receptive field.
|
43 |
+
int midY = outY * p.down.y + p.up.y - 1 - p.pad0.y;
|
44 |
+
int inY = min(max(floor_div(midY, p.up.y), 0), p.inSize.y);
|
45 |
+
int h = min(max(floor_div(midY + p.filterSize.y, p.up.y), 0), p.inSize.y) - inY;
|
46 |
+
int filterY = midY + p.filterSize.y - (inY + 1) * p.up.y;
|
47 |
+
if (p.flip)
|
48 |
+
filterY = p.filterSize.y - 1 - filterY;
|
49 |
+
|
50 |
+
// Loop over major, minor, and X.
|
51 |
+
for (int majorIdx = 0, major = majorBase; majorIdx < p.loopMajor & major < p.sizeMajor; majorIdx++, major++)
|
52 |
+
for (int minorIdx = 0, minor = minorBase; minorIdx < p.loopMinor & minor < p.sizeMinor; minorIdx++, minor += p.launchMinor)
|
53 |
+
{
|
54 |
+
int nc = major * p.sizeMinor + minor;
|
55 |
+
int n = nc / p.inSize.z;
|
56 |
+
int c = nc - n * p.inSize.z;
|
57 |
+
for (int loopX = 0, outX = outXBase; loopX < p.loopX & outX < p.outSize.x; loopX++, outX += blockDim.y)
|
58 |
+
{
|
59 |
+
// Setup X receptive field.
|
60 |
+
int midX = outX * p.down.x + p.up.x - 1 - p.pad0.x;
|
61 |
+
int inX = min(max(floor_div(midX, p.up.x), 0), p.inSize.x);
|
62 |
+
int w = min(max(floor_div(midX + p.filterSize.x, p.up.x), 0), p.inSize.x) - inX;
|
63 |
+
int filterX = midX + p.filterSize.x - (inX + 1) * p.up.x;
|
64 |
+
if (p.flip)
|
65 |
+
filterX = p.filterSize.x - 1 - filterX;
|
66 |
+
|
67 |
+
// Initialize pointers.
|
68 |
+
const T* xp = &((const T*)p.x)[inX * p.inStride.x + inY * p.inStride.y + c * p.inStride.z + n * p.inStride.w];
|
69 |
+
const float* fp = &p.f[filterX * p.filterStride.x + filterY * p.filterStride.y];
|
70 |
+
int filterStepX = ((p.flip) ? p.up.x : -p.up.x) * p.filterStride.x;
|
71 |
+
int filterStepY = ((p.flip) ? p.up.y : -p.up.y) * p.filterStride.y;
|
72 |
+
|
73 |
+
// Inner loop.
|
74 |
+
scalar_t v = 0;
|
75 |
+
for (int y = 0; y < h; y++)
|
76 |
+
{
|
77 |
+
for (int x = 0; x < w; x++)
|
78 |
+
{
|
79 |
+
v += (scalar_t)(*xp) * (scalar_t)(*fp);
|
80 |
+
xp += p.inStride.x;
|
81 |
+
fp += filterStepX;
|
82 |
+
}
|
83 |
+
xp += p.inStride.y - w * p.inStride.x;
|
84 |
+
fp += filterStepY - w * filterStepX;
|
85 |
+
}
|
86 |
+
|
87 |
+
// Store result.
|
88 |
+
v *= p.gain;
|
89 |
+
((T*)p.y)[outX * p.outStride.x + outY * p.outStride.y + c * p.outStride.z + n * p.outStride.w] = (T)v;
|
90 |
+
}
|
91 |
+
}
|
92 |
+
}
|
93 |
+
|
94 |
+
//------------------------------------------------------------------------
|
95 |
+
// Specialized CUDA implementation for small filters.
|
96 |
+
|
97 |
+
template <class T, int upx, int upy, int downx, int downy, int filterW, int filterH, int tileOutW, int tileOutH, int loopMinor>
|
98 |
+
static __global__ void upfirdn2d_kernel_small(upfirdn2d_kernel_params p)
|
99 |
+
{
|
100 |
+
typedef typename InternalType<T>::scalar_t scalar_t;
|
101 |
+
const int tileInW = ((tileOutW - 1) * downx + filterW - 1) / upx + 1;
|
102 |
+
const int tileInH = ((tileOutH - 1) * downy + filterH - 1) / upy + 1;
|
103 |
+
__shared__ volatile scalar_t sf[filterH][filterW];
|
104 |
+
__shared__ volatile scalar_t sx[tileInH][tileInW][loopMinor];
|
105 |
+
|
106 |
+
// Calculate tile index.
|
107 |
+
int minorBase = blockIdx.x;
|
108 |
+
int tileOutY = minorBase / p.launchMinor;
|
109 |
+
minorBase -= tileOutY * p.launchMinor;
|
110 |
+
minorBase *= loopMinor;
|
111 |
+
tileOutY *= tileOutH;
|
112 |
+
int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
|
113 |
+
int majorBase = blockIdx.z * p.loopMajor;
|
114 |
+
if (tileOutXBase >= p.outSize.x | tileOutY >= p.outSize.y | majorBase >= p.sizeMajor)
|
115 |
+
return;
|
116 |
+
|
117 |
+
// Load filter (flipped).
|
118 |
+
for (int tapIdx = threadIdx.x; tapIdx < filterH * filterW; tapIdx += blockDim.x)
|
119 |
+
{
|
120 |
+
int fy = tapIdx / filterW;
|
121 |
+
int fx = tapIdx - fy * filterW;
|
122 |
+
scalar_t v = 0;
|
123 |
+
if (fx < p.filterSize.x & fy < p.filterSize.y)
|
124 |
+
{
|
125 |
+
int ffx = (p.flip) ? fx : p.filterSize.x - 1 - fx;
|
126 |
+
int ffy = (p.flip) ? fy : p.filterSize.y - 1 - fy;
|
127 |
+
v = (scalar_t)p.f[ffx * p.filterStride.x + ffy * p.filterStride.y];
|
128 |
+
}
|
129 |
+
sf[fy][fx] = v;
|
130 |
+
}
|
131 |
+
|
132 |
+
// Loop over major and X.
|
133 |
+
for (int majorIdx = 0, major = majorBase; majorIdx < p.loopMajor & major < p.sizeMajor; majorIdx++, major++)
|
134 |
+
{
|
135 |
+
int baseNC = major * p.sizeMinor + minorBase;
|
136 |
+
int n = baseNC / p.inSize.z;
|
137 |
+
int baseC = baseNC - n * p.inSize.z;
|
138 |
+
for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outSize.x; loopX++, tileOutX += tileOutW)
|
139 |
+
{
|
140 |
+
// Load input pixels.
|
141 |
+
int tileMidX = tileOutX * downx + upx - 1 - p.pad0.x;
|
142 |
+
int tileMidY = tileOutY * downy + upy - 1 - p.pad0.y;
|
143 |
+
int tileInX = floor_div(tileMidX, upx);
|
144 |
+
int tileInY = floor_div(tileMidY, upy);
|
145 |
+
__syncthreads();
|
146 |
+
for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW * loopMinor; inIdx += blockDim.x)
|
147 |
+
{
|
148 |
+
int relC = inIdx;
|
149 |
+
int relInX = relC / loopMinor;
|
150 |
+
int relInY = relInX / tileInW;
|
151 |
+
relC -= relInX * loopMinor;
|
152 |
+
relInX -= relInY * tileInW;
|
153 |
+
int c = baseC + relC;
|
154 |
+
int inX = tileInX + relInX;
|
155 |
+
int inY = tileInY + relInY;
|
156 |
+
scalar_t v = 0;
|
157 |
+
if (inX >= 0 & inY >= 0 & inX < p.inSize.x & inY < p.inSize.y & c < p.inSize.z)
|
158 |
+
v = (scalar_t)((const T*)p.x)[inX * p.inStride.x + inY * p.inStride.y + c * p.inStride.z + n * p.inStride.w];
|
159 |
+
sx[relInY][relInX][relC] = v;
|
160 |
+
}
|
161 |
+
|
162 |
+
// Loop over output pixels.
|
163 |
+
__syncthreads();
|
164 |
+
for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW * loopMinor; outIdx += blockDim.x)
|
165 |
+
{
|
166 |
+
int relC = outIdx;
|
167 |
+
int relOutX = relC / loopMinor;
|
168 |
+
int relOutY = relOutX / tileOutW;
|
169 |
+
relC -= relOutX * loopMinor;
|
170 |
+
relOutX -= relOutY * tileOutW;
|
171 |
+
int c = baseC + relC;
|
172 |
+
int outX = tileOutX + relOutX;
|
173 |
+
int outY = tileOutY + relOutY;
|
174 |
+
|
175 |
+
// Setup receptive field.
|
176 |
+
int midX = tileMidX + relOutX * downx;
|
177 |
+
int midY = tileMidY + relOutY * downy;
|
178 |
+
int inX = floor_div(midX, upx);
|
179 |
+
int inY = floor_div(midY, upy);
|
180 |
+
int relInX = inX - tileInX;
|
181 |
+
int relInY = inY - tileInY;
|
182 |
+
int filterX = (inX + 1) * upx - midX - 1; // flipped
|
183 |
+
int filterY = (inY + 1) * upy - midY - 1; // flipped
|
184 |
+
|
185 |
+
// Inner loop.
|
186 |
+
if (outX < p.outSize.x & outY < p.outSize.y & c < p.outSize.z)
|
187 |
+
{
|
188 |
+
scalar_t v = 0;
|
189 |
+
#pragma unroll
|
190 |
+
for (int y = 0; y < filterH / upy; y++)
|
191 |
+
#pragma unroll
|
192 |
+
for (int x = 0; x < filterW / upx; x++)
|
193 |
+
v += sx[relInY + y][relInX + x][relC] * sf[filterY + y * upy][filterX + x * upx];
|
194 |
+
v *= p.gain;
|
195 |
+
((T*)p.y)[outX * p.outStride.x + outY * p.outStride.y + c * p.outStride.z + n * p.outStride.w] = (T)v;
|
196 |
+
}
|
197 |
+
}
|
198 |
+
}
|
199 |
+
}
|
200 |
+
}
|
201 |
+
|
202 |
+
//------------------------------------------------------------------------
|
203 |
+
// CUDA kernel selection.
|
204 |
+
|
205 |
+
template <class T> upfirdn2d_kernel_spec choose_upfirdn2d_kernel(const upfirdn2d_kernel_params& p)
|
206 |
+
{
|
207 |
+
int s = p.inStride.z, fx = p.filterSize.x, fy = p.filterSize.y;
|
208 |
+
upfirdn2d_kernel_spec spec = {(void*)upfirdn2d_kernel_large<T>, -1,-1,1, 4}; // contiguous
|
209 |
+
if (s == 1) spec = {(void*)upfirdn2d_kernel_large<T>, -1,-1,4, 1}; // channels_last
|
210 |
+
|
211 |
+
// No up/downsampling.
|
212 |
+
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1)
|
213 |
+
{
|
214 |
+
// contiguous
|
215 |
+
if (s != 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,24, 64,32,1>, 64,32,1, 1};
|
216 |
+
if (s != 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,16, 64,32,1>, 64,32,1, 1};
|
217 |
+
if (s != 1 && fx <= 7 && fy <= 7 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 7,7, 64,16,1>, 64,16,1, 1};
|
218 |
+
if (s != 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 6,6, 64,16,1>, 64,16,1, 1};
|
219 |
+
if (s != 1 && fx <= 5 && fy <= 5 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 5,5, 64,16,1>, 64,16,1, 1};
|
220 |
+
if (s != 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 4,4, 64,16,1>, 64,16,1, 1};
|
221 |
+
if (s != 1 && fx <= 3 && fy <= 3 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 3,3, 64,16,1>, 64,16,1, 1};
|
222 |
+
if (s != 1 && fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,1, 128,8,1>, 128,8,1, 1};
|
223 |
+
if (s != 1 && fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,1, 128,8,1>, 128,8,1, 1};
|
224 |
+
if (s != 1 && fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 8,1, 128,8,1>, 128,8,1, 1};
|
225 |
+
if (s != 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,24, 32,32,1>, 32,32,1, 1};
|
226 |
+
if (s != 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,16, 32,32,1>, 32,32,1, 1};
|
227 |
+
if (s != 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,8, 32,32,1>, 32,32,1, 1};
|
228 |
+
// channels_last
|
229 |
+
if (s == 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,24, 32,32,1>, 32,32,1, 1};
|
230 |
+
if (s == 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,16, 32,32,1>, 32,32,1, 1};
|
231 |
+
if (s == 1 && fx <= 7 && fy <= 7 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 7,7, 16,16,8>, 16,16,8, 1};
|
232 |
+
if (s == 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 6,6, 16,16,8>, 16,16,8, 1};
|
233 |
+
if (s == 1 && fx <= 5 && fy <= 5 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 5,5, 16,16,8>, 16,16,8, 1};
|
234 |
+
if (s == 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 4,4, 16,16,8>, 16,16,8, 1};
|
235 |
+
if (s == 1 && fx <= 3 && fy <= 3 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 3,3, 16,16,8>, 16,16,8, 1};
|
236 |
+
if (s == 1 && fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,1, 128,1,16>, 128,1,16, 1};
|
237 |
+
if (s == 1 && fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,1, 128,1,16>, 128,1,16, 1};
|
238 |
+
if (s == 1 && fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 8,1, 128,1,16>, 128,1,16, 1};
|
239 |
+
if (s == 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,24, 1,128,16>, 1,128,16, 1};
|
240 |
+
if (s == 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,16, 1,128,16>, 1,128,16, 1};
|
241 |
+
if (s == 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,8, 1,128,16>, 1,128,16, 1};
|
242 |
+
}
|
243 |
+
|
244 |
+
// 2x upsampling.
|
245 |
+
if (p.up.x == 2 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1)
|
246 |
+
{
|
247 |
+
// contiguous
|
248 |
+
if (s != 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 24,24, 64,32,1>, 64,32,1, 1};
|
249 |
+
if (s != 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 16,16, 64,32,1>, 64,32,1, 1};
|
250 |
+
if (s != 1 && fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 8,8, 64,16,1>, 64,16,1, 1};
|
251 |
+
if (s != 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 6,6, 64,16,1>, 64,16,1, 1};
|
252 |
+
if (s != 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 4,4, 64,16,1>, 64,16,1, 1};
|
253 |
+
if (s != 1 && fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 2,2, 64,16,1>, 64,16,1, 1};
|
254 |
+
// channels_last
|
255 |
+
if (s == 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 24,24, 32,32,1>, 32,32,1, 1};
|
256 |
+
if (s == 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 16,16, 32,32,1>, 32,32,1, 1};
|
257 |
+
if (s == 1 && fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 8,8, 16,16,8>, 16,16,8, 1};
|
258 |
+
if (s == 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 6,6, 16,16,8>, 16,16,8, 1};
|
259 |
+
if (s == 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 4,4, 16,16,8>, 16,16,8, 1};
|
260 |
+
if (s == 1 && fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 2,2, 16,16,8>, 16,16,8, 1};
|
261 |
+
}
|
262 |
+
if (p.up.x == 2 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1)
|
263 |
+
{
|
264 |
+
// contiguous
|
265 |
+
if (s != 1 && fx <= 24 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 24,1, 128,8,1>, 128,8,1, 1};
|
266 |
+
if (s != 1 && fx <= 16 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 16,1, 128,8,1>, 128,8,1, 1};
|
267 |
+
if (s != 1 && fx <= 8 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 8,1, 128,8,1>, 128,8,1, 1};
|
268 |
+
// channels_last
|
269 |
+
if (s == 1 && fx <= 24 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 24,1, 128,1,16>, 128,1,16, 1};
|
270 |
+
if (s == 1 && fx <= 16 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 16,1, 128,1,16>, 128,1,16, 1};
|
271 |
+
if (s == 1 && fx <= 8 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 8,1, 128,1,16>, 128,1,16, 1};
|
272 |
+
}
|
273 |
+
if (p.up.x == 1 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1)
|
274 |
+
{
|
275 |
+
// contiguous
|
276 |
+
if (s != 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,24, 32,32,1>, 32,32,1, 1};
|
277 |
+
if (s != 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,16, 32,32,1>, 32,32,1, 1};
|
278 |
+
if (s != 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,8, 32,32,1>, 32,32,1, 1};
|
279 |
+
// channels_last
|
280 |
+
if (s == 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,24, 1,128,16>, 1,128,16, 1};
|
281 |
+
if (s == 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,16, 1,128,16>, 1,128,16, 1};
|
282 |
+
if (s == 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,8, 1,128,16>, 1,128,16, 1};
|
283 |
+
}
|
284 |
+
|
285 |
+
// 2x downsampling.
|
286 |
+
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 2)
|
287 |
+
{
|
288 |
+
// contiguous
|
289 |
+
if (s != 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 24,24, 32,16,1>, 32,16,1, 1};
|
290 |
+
if (s != 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 16,16, 32,16,1>, 32,16,1, 1};
|
291 |
+
if (s != 1 && fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 8,8, 32,8,1>, 32,8,1, 1};
|
292 |
+
if (s != 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 6,6, 32,8,1>, 32,8,1, 1};
|
293 |
+
if (s != 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 4,4, 32,8,1>, 32,8,1, 1};
|
294 |
+
if (s != 1 && fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 2,2, 32,8,1>, 32,8,1, 1};
|
295 |
+
// channels_last
|
296 |
+
if (s == 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 24,24, 16,16,1>, 16,16,1, 1};
|
297 |
+
if (s == 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 16,16, 16,16,1>, 16,16,1, 1};
|
298 |
+
if (s == 1 && fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 8,8, 8,8,8>, 8,8,8, 1};
|
299 |
+
if (s == 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 6,6, 8,8,8>, 8,8,8, 1};
|
300 |
+
if (s == 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 4,4, 8,8,8>, 8,8,8, 1};
|
301 |
+
if (s == 1 && fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 2,2, 8,8,8>, 8,8,8, 1};
|
302 |
+
}
|
303 |
+
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 1)
|
304 |
+
{
|
305 |
+
// contiguous
|
306 |
+
if (s != 1 && fx <= 24 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 24,1, 64,8,1>, 64,8,1, 1};
|
307 |
+
if (s != 1 && fx <= 16 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 16,1, 64,8,1>, 64,8,1, 1};
|
308 |
+
if (s != 1 && fx <= 8 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 8,1, 64,8,1>, 64,8,1, 1};
|
309 |
+
// channels_last
|
310 |
+
if (s == 1 && fx <= 24 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 24,1, 64,1,8>, 64,1,8, 1};
|
311 |
+
if (s == 1 && fx <= 16 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 16,1, 64,1,8>, 64,1,8, 1};
|
312 |
+
if (s == 1 && fx <= 8 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 8,1, 64,1,8>, 64,1,8, 1};
|
313 |
+
}
|
314 |
+
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 2)
|
315 |
+
{
|
316 |
+
// contiguous
|
317 |
+
if (s != 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,24, 32,16,1>, 32,16,1, 1};
|
318 |
+
if (s != 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,16, 32,16,1>, 32,16,1, 1};
|
319 |
+
if (s != 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,8, 32,16,1>, 32,16,1, 1};
|
320 |
+
// channels_last
|
321 |
+
if (s == 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,24, 1,64,8>, 1,64,8, 1};
|
322 |
+
if (s == 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,16, 1,64,8>, 1,64,8, 1};
|
323 |
+
if (s == 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,8, 1,64,8>, 1,64,8, 1};
|
324 |
+
}
|
325 |
+
|
326 |
+
// 4x upsampling.
|
327 |
+
if (p.up.x == 4 && p.up.y == 4 && p.down.x == 1 && p.down.y == 1)
|
328 |
+
{
|
329 |
+
// contiguous
|
330 |
+
if (s != 1 && fx <= 48 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 4,4, 1,1, 48,48, 64,32,1>, 64,32,1, 1};
|
331 |
+
if (s != 1 && fx <= 32 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 4,4, 1,1, 32,32, 64,32,1>, 64,32,1, 1};
|
332 |
+
// channels_last
|
333 |
+
if (s == 1 && fx <= 48 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 4,4, 1,1, 48,48, 32,32,1>, 32,32,1, 1};
|
334 |
+
if (s == 1 && fx <= 32 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 4,4, 1,1, 32,32, 32,32,1>, 32,32,1, 1};
|
335 |
+
}
|
336 |
+
if (p.up.x == 4 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1)
|
337 |
+
{
|
338 |
+
// contiguous
|
339 |
+
if (s != 1 && fx <= 48 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 4,1, 1,1, 48,1, 128,8,1>, 128,8,1, 1};
|
340 |
+
if (s != 1 && fx <= 32 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 4,1, 1,1, 32,1, 128,8,1>, 128,8,1, 1};
|
341 |
+
// channels_last
|
342 |
+
if (s == 1 && fx <= 48 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 4,1, 1,1, 48,1, 128,1,16>, 128,1,16, 1};
|
343 |
+
if (s == 1 && fx <= 32 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 4,1, 1,1, 32,1, 128,1,16>, 128,1,16, 1};
|
344 |
+
}
|
345 |
+
if (p.up.x == 1 && p.up.y == 4 && p.down.x == 1 && p.down.y == 1)
|
346 |
+
{
|
347 |
+
// contiguous
|
348 |
+
if (s != 1 && fx <= 1 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 1,4, 1,1, 1,48, 32,32,1>, 32,32,1, 1};
|
349 |
+
if (s != 1 && fx <= 1 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 1,4, 1,1, 1,32, 32,32,1>, 32,32,1, 1};
|
350 |
+
// channels_last
|
351 |
+
if (s == 1 && fx <= 1 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 1,4, 1,1, 1,48, 1,128,16>, 1,128,16, 1};
|
352 |
+
if (s == 1 && fx <= 1 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 1,4, 1,1, 1,32, 1,128,16>, 1,128,16, 1};
|
353 |
+
}
|
354 |
+
|
355 |
+
// 4x downsampling (inefficient).
|
356 |
+
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 4 && p.down.y == 1)
|
357 |
+
{
|
358 |
+
// contiguous
|
359 |
+
if (s != 1 && fx <= 48 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 4,1, 48,1, 32,8,1>, 32,8,1, 1};
|
360 |
+
if (s != 1 && fx <= 32 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 4,1, 32,1, 32,8,1>, 32,8,1, 1};
|
361 |
+
// channels_last
|
362 |
+
if (s == 1 && fx <= 48 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 4,1, 48,1, 32,1,8>, 32,1,8, 1};
|
363 |
+
if (s == 1 && fx <= 32 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 4,1, 32,1, 32,1,8>, 32,1,8, 1};
|
364 |
+
}
|
365 |
+
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 4)
|
366 |
+
{
|
367 |
+
// contiguous
|
368 |
+
if (s != 1 && fx <= 1 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,4, 1,48, 32,8,1>, 32,8,1, 1};
|
369 |
+
if (s != 1 && fx <= 1 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,4, 1,32, 32,8,1>, 32,8,1, 1};
|
370 |
+
// channels_last
|
371 |
+
if (s == 1 && fx <= 1 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,4, 1,48, 1,32,8>, 1,32,8, 1};
|
372 |
+
if (s == 1 && fx <= 1 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,4, 1,32, 1,32,8>, 1,32,8, 1};
|
373 |
+
}
|
374 |
+
return spec;
|
375 |
+
}
|
376 |
+
|
377 |
+
//------------------------------------------------------------------------
|
378 |
+
// Template specializations.
|
379 |
+
|
380 |
+
template upfirdn2d_kernel_spec choose_upfirdn2d_kernel<double> (const upfirdn2d_kernel_params& p);
|
381 |
+
template upfirdn2d_kernel_spec choose_upfirdn2d_kernel<float> (const upfirdn2d_kernel_params& p);
|
382 |
+
template upfirdn2d_kernel_spec choose_upfirdn2d_kernel<c10::Half>(const upfirdn2d_kernel_params& p);
|
383 |
+
|
384 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/upfirdn2d.h
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#include <cuda_runtime.h>
|
10 |
+
|
11 |
+
//------------------------------------------------------------------------
|
12 |
+
// CUDA kernel parameters.
|
13 |
+
|
14 |
+
struct upfirdn2d_kernel_params
|
15 |
+
{
|
16 |
+
const void* x;
|
17 |
+
const float* f;
|
18 |
+
void* y;
|
19 |
+
|
20 |
+
int2 up;
|
21 |
+
int2 down;
|
22 |
+
int2 pad0;
|
23 |
+
int flip;
|
24 |
+
float gain;
|
25 |
+
|
26 |
+
int4 inSize; // [width, height, channel, batch]
|
27 |
+
int4 inStride;
|
28 |
+
int2 filterSize; // [width, height]
|
29 |
+
int2 filterStride;
|
30 |
+
int4 outSize; // [width, height, channel, batch]
|
31 |
+
int4 outStride;
|
32 |
+
int sizeMinor;
|
33 |
+
int sizeMajor;
|
34 |
+
|
35 |
+
int loopMinor;
|
36 |
+
int loopMajor;
|
37 |
+
int loopX;
|
38 |
+
int launchMinor;
|
39 |
+
int launchMajor;
|
40 |
+
};
|
41 |
+
|
42 |
+
//------------------------------------------------------------------------
|
43 |
+
// CUDA kernel specialization.
|
44 |
+
|
45 |
+
struct upfirdn2d_kernel_spec
|
46 |
+
{
|
47 |
+
void* kernel;
|
48 |
+
int tileOutW;
|
49 |
+
int tileOutH;
|
50 |
+
int loopMinor;
|
51 |
+
int loopX;
|
52 |
+
};
|
53 |
+
|
54 |
+
//------------------------------------------------------------------------
|
55 |
+
// CUDA kernel selection.
|
56 |
+
|
57 |
+
template <class T> upfirdn2d_kernel_spec choose_upfirdn2d_kernel(const upfirdn2d_kernel_params& p);
|
58 |
+
|
59 |
+
//------------------------------------------------------------------------
|
torch_utils/ops/upfirdn2d.py
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Custom PyTorch ops for efficient resampling of 2D images."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
|
15 |
+
from .. import custom_ops
|
16 |
+
from .. import misc
|
17 |
+
from . import conv2d_gradfix
|
18 |
+
|
19 |
+
#----------------------------------------------------------------------------
|
20 |
+
|
21 |
+
_plugin = None
|
22 |
+
|
23 |
+
def _init():
|
24 |
+
global _plugin
|
25 |
+
if _plugin is None:
|
26 |
+
_plugin = custom_ops.get_plugin(
|
27 |
+
module_name='upfirdn2d_plugin',
|
28 |
+
sources=['upfirdn2d.cpp', 'upfirdn2d.cu'],
|
29 |
+
headers=['upfirdn2d.h'],
|
30 |
+
source_dir=os.path.dirname(__file__),
|
31 |
+
extra_cuda_cflags=['--use_fast_math'],
|
32 |
+
)
|
33 |
+
return True
|
34 |
+
|
35 |
+
def _parse_scaling(scaling):
|
36 |
+
if isinstance(scaling, int):
|
37 |
+
scaling = [scaling, scaling]
|
38 |
+
assert isinstance(scaling, (list, tuple))
|
39 |
+
assert all(isinstance(x, int) for x in scaling)
|
40 |
+
sx, sy = scaling
|
41 |
+
assert sx >= 1 and sy >= 1
|
42 |
+
return sx, sy
|
43 |
+
|
44 |
+
def _parse_padding(padding):
|
45 |
+
if isinstance(padding, int):
|
46 |
+
padding = [padding, padding]
|
47 |
+
assert isinstance(padding, (list, tuple))
|
48 |
+
assert all(isinstance(x, int) for x in padding)
|
49 |
+
if len(padding) == 2:
|
50 |
+
padx, pady = padding
|
51 |
+
padding = [padx, padx, pady, pady]
|
52 |
+
padx0, padx1, pady0, pady1 = padding
|
53 |
+
return padx0, padx1, pady0, pady1
|
54 |
+
|
55 |
+
def _get_filter_size(f):
|
56 |
+
if f is None:
|
57 |
+
return 1, 1
|
58 |
+
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
59 |
+
fw = f.shape[-1]
|
60 |
+
fh = f.shape[0]
|
61 |
+
with misc.suppress_tracer_warnings():
|
62 |
+
fw = int(fw)
|
63 |
+
fh = int(fh)
|
64 |
+
misc.assert_shape(f, [fh, fw][:f.ndim])
|
65 |
+
assert fw >= 1 and fh >= 1
|
66 |
+
return fw, fh
|
67 |
+
|
68 |
+
#----------------------------------------------------------------------------
|
69 |
+
|
70 |
+
def setup_filter(f, device=torch.device('cpu'), normalize=True, flip_filter=False, gain=1, separable=None):
|
71 |
+
r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`.
|
72 |
+
|
73 |
+
Args:
|
74 |
+
f: Torch tensor, numpy array, or python list of the shape
|
75 |
+
`[filter_height, filter_width]` (non-separable),
|
76 |
+
`[filter_taps]` (separable),
|
77 |
+
`[]` (impulse), or
|
78 |
+
`None` (identity).
|
79 |
+
device: Result device (default: cpu).
|
80 |
+
normalize: Normalize the filter so that it retains the magnitude
|
81 |
+
for constant input signal (DC)? (default: True).
|
82 |
+
flip_filter: Flip the filter? (default: False).
|
83 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
84 |
+
separable: Return a separable filter? (default: select automatically).
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
Float32 tensor of the shape
|
88 |
+
`[filter_height, filter_width]` (non-separable) or
|
89 |
+
`[filter_taps]` (separable).
|
90 |
+
"""
|
91 |
+
# Validate.
|
92 |
+
if f is None:
|
93 |
+
f = 1
|
94 |
+
f = torch.as_tensor(f, dtype=torch.float32)
|
95 |
+
assert f.ndim in [0, 1, 2]
|
96 |
+
assert f.numel() > 0
|
97 |
+
if f.ndim == 0:
|
98 |
+
f = f[np.newaxis]
|
99 |
+
|
100 |
+
# Separable?
|
101 |
+
if separable is None:
|
102 |
+
separable = (f.ndim == 1 and f.numel() >= 8)
|
103 |
+
if f.ndim == 1 and not separable:
|
104 |
+
f = f.ger(f)
|
105 |
+
assert f.ndim == (1 if separable else 2)
|
106 |
+
|
107 |
+
# Apply normalize, flip, gain, and device.
|
108 |
+
if normalize:
|
109 |
+
f /= f.sum()
|
110 |
+
if flip_filter:
|
111 |
+
f = f.flip(list(range(f.ndim)))
|
112 |
+
f = f * (gain ** (f.ndim / 2))
|
113 |
+
f = f.to(device=device)
|
114 |
+
return f
|
115 |
+
|
116 |
+
#----------------------------------------------------------------------------
|
117 |
+
|
118 |
+
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
119 |
+
r"""Pad, upsample, filter, and downsample a batch of 2D images.
|
120 |
+
|
121 |
+
Performs the following sequence of operations for each channel:
|
122 |
+
|
123 |
+
1. Upsample the image by inserting N-1 zeros after each pixel (`up`).
|
124 |
+
|
125 |
+
2. Pad the image with the specified number of zeros on each side (`padding`).
|
126 |
+
Negative padding corresponds to cropping the image.
|
127 |
+
|
128 |
+
3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it
|
129 |
+
so that the footprint of all output pixels lies within the input image.
|
130 |
+
|
131 |
+
4. Downsample the image by keeping every Nth pixel (`down`).
|
132 |
+
|
133 |
+
This sequence of operations bears close resemblance to scipy.signal.upfirdn().
|
134 |
+
The fused op is considerably more efficient than performing the same calculation
|
135 |
+
using standard PyTorch ops. It supports gradients of arbitrary order.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
x: Float32/float64/float16 input tensor of the shape
|
139 |
+
`[batch_size, num_channels, in_height, in_width]`.
|
140 |
+
f: Float32 FIR filter of the shape
|
141 |
+
`[filter_height, filter_width]` (non-separable),
|
142 |
+
`[filter_taps]` (separable), or
|
143 |
+
`None` (identity).
|
144 |
+
up: Integer upsampling factor. Can be a single int or a list/tuple
|
145 |
+
`[x, y]` (default: 1).
|
146 |
+
down: Integer downsampling factor. Can be a single int or a list/tuple
|
147 |
+
`[x, y]` (default: 1).
|
148 |
+
padding: Padding with respect to the upsampled image. Can be a single number
|
149 |
+
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
150 |
+
(default: 0).
|
151 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
152 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
153 |
+
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
157 |
+
"""
|
158 |
+
assert isinstance(x, torch.Tensor)
|
159 |
+
assert impl in ['ref', 'cuda']
|
160 |
+
if impl == 'cuda' and x.device.type == 'cuda' and _init():
|
161 |
+
return _upfirdn2d_cuda(up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain).apply(x, f)
|
162 |
+
return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain)
|
163 |
+
|
164 |
+
#----------------------------------------------------------------------------
|
165 |
+
|
166 |
+
@misc.profiled_function
|
167 |
+
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
|
168 |
+
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.
|
169 |
+
"""
|
170 |
+
# Validate arguments.
|
171 |
+
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
172 |
+
if f is None:
|
173 |
+
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
174 |
+
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
175 |
+
assert f.dtype == torch.float32 and not f.requires_grad
|
176 |
+
batch_size, num_channels, in_height, in_width = x.shape
|
177 |
+
upx, upy = _parse_scaling(up)
|
178 |
+
downx, downy = _parse_scaling(down)
|
179 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
180 |
+
|
181 |
+
# Check that upsampled buffer is not smaller than the filter.
|
182 |
+
upW = in_width * upx + padx0 + padx1
|
183 |
+
upH = in_height * upy + pady0 + pady1
|
184 |
+
assert upW >= f.shape[-1] and upH >= f.shape[0]
|
185 |
+
|
186 |
+
# Upsample by inserting zeros.
|
187 |
+
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
|
188 |
+
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
|
189 |
+
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
|
190 |
+
|
191 |
+
# Pad or crop.
|
192 |
+
x = torch.nn.functional.pad(x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)])
|
193 |
+
x = x[:, :, max(-pady0, 0) : x.shape[2] - max(-pady1, 0), max(-padx0, 0) : x.shape[3] - max(-padx1, 0)]
|
194 |
+
|
195 |
+
# Setup filter.
|
196 |
+
f = f * (gain ** (f.ndim / 2))
|
197 |
+
f = f.to(x.dtype)
|
198 |
+
if not flip_filter:
|
199 |
+
f = f.flip(list(range(f.ndim)))
|
200 |
+
|
201 |
+
# Convolve with the filter.
|
202 |
+
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
|
203 |
+
if f.ndim == 4:
|
204 |
+
x = conv2d_gradfix.conv2d(input=x, weight=f, groups=num_channels)
|
205 |
+
else:
|
206 |
+
x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
|
207 |
+
x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)
|
208 |
+
|
209 |
+
# Downsample by throwing away pixels.
|
210 |
+
x = x[:, :, ::downy, ::downx]
|
211 |
+
return x
|
212 |
+
|
213 |
+
#----------------------------------------------------------------------------
|
214 |
+
|
215 |
+
_upfirdn2d_cuda_cache = dict()
|
216 |
+
|
217 |
+
def _upfirdn2d_cuda(up=1, down=1, padding=0, flip_filter=False, gain=1):
|
218 |
+
"""Fast CUDA implementation of `upfirdn2d()` using custom ops.
|
219 |
+
"""
|
220 |
+
# Parse arguments.
|
221 |
+
upx, upy = _parse_scaling(up)
|
222 |
+
downx, downy = _parse_scaling(down)
|
223 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
224 |
+
|
225 |
+
# Lookup from cache.
|
226 |
+
key = (upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain)
|
227 |
+
if key in _upfirdn2d_cuda_cache:
|
228 |
+
return _upfirdn2d_cuda_cache[key]
|
229 |
+
|
230 |
+
# Forward op.
|
231 |
+
class Upfirdn2dCuda(torch.autograd.Function):
|
232 |
+
@staticmethod
|
233 |
+
def forward(ctx, x, f): # pylint: disable=arguments-differ
|
234 |
+
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
235 |
+
if f is None:
|
236 |
+
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
237 |
+
if f.ndim == 1 and f.shape[0] == 1:
|
238 |
+
f = f.square().unsqueeze(0) # Convert separable-1 into full-1x1.
|
239 |
+
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
240 |
+
y = x
|
241 |
+
if f.ndim == 2:
|
242 |
+
y = _plugin.upfirdn2d(y, f, upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain)
|
243 |
+
else:
|
244 |
+
y = _plugin.upfirdn2d(y, f.unsqueeze(0), upx, 1, downx, 1, padx0, padx1, 0, 0, flip_filter, 1.0)
|
245 |
+
y = _plugin.upfirdn2d(y, f.unsqueeze(1), 1, upy, 1, downy, 0, 0, pady0, pady1, flip_filter, gain)
|
246 |
+
ctx.save_for_backward(f)
|
247 |
+
ctx.x_shape = x.shape
|
248 |
+
return y
|
249 |
+
|
250 |
+
@staticmethod
|
251 |
+
def backward(ctx, dy): # pylint: disable=arguments-differ
|
252 |
+
f, = ctx.saved_tensors
|
253 |
+
_, _, ih, iw = ctx.x_shape
|
254 |
+
_, _, oh, ow = dy.shape
|
255 |
+
fw, fh = _get_filter_size(f)
|
256 |
+
p = [
|
257 |
+
fw - padx0 - 1,
|
258 |
+
iw * upx - ow * downx + padx0 - upx + 1,
|
259 |
+
fh - pady0 - 1,
|
260 |
+
ih * upy - oh * downy + pady0 - upy + 1,
|
261 |
+
]
|
262 |
+
dx = None
|
263 |
+
df = None
|
264 |
+
|
265 |
+
if ctx.needs_input_grad[0]:
|
266 |
+
dx = _upfirdn2d_cuda(up=down, down=up, padding=p, flip_filter=(not flip_filter), gain=gain).apply(dy, f)
|
267 |
+
|
268 |
+
assert not ctx.needs_input_grad[1]
|
269 |
+
return dx, df
|
270 |
+
|
271 |
+
# Add to cache.
|
272 |
+
_upfirdn2d_cuda_cache[key] = Upfirdn2dCuda
|
273 |
+
return Upfirdn2dCuda
|
274 |
+
|
275 |
+
#----------------------------------------------------------------------------
|
276 |
+
|
277 |
+
def filter2d(x, f, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
278 |
+
r"""Filter a batch of 2D images using the given 2D FIR filter.
|
279 |
+
|
280 |
+
By default, the result is padded so that its shape matches the input.
|
281 |
+
User-specified padding is applied on top of that, with negative values
|
282 |
+
indicating cropping. Pixels outside the image are assumed to be zero.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
x: Float32/float64/float16 input tensor of the shape
|
286 |
+
`[batch_size, num_channels, in_height, in_width]`.
|
287 |
+
f: Float32 FIR filter of the shape
|
288 |
+
`[filter_height, filter_width]` (non-separable),
|
289 |
+
`[filter_taps]` (separable), or
|
290 |
+
`None` (identity).
|
291 |
+
padding: Padding with respect to the output. Can be a single number or a
|
292 |
+
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
293 |
+
(default: 0).
|
294 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
295 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
296 |
+
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
297 |
+
|
298 |
+
Returns:
|
299 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
300 |
+
"""
|
301 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
302 |
+
fw, fh = _get_filter_size(f)
|
303 |
+
p = [
|
304 |
+
padx0 + fw // 2,
|
305 |
+
padx1 + (fw - 1) // 2,
|
306 |
+
pady0 + fh // 2,
|
307 |
+
pady1 + (fh - 1) // 2,
|
308 |
+
]
|
309 |
+
return upfirdn2d(x, f, padding=p, flip_filter=flip_filter, gain=gain, impl=impl)
|
310 |
+
|
311 |
+
#----------------------------------------------------------------------------
|
312 |
+
|
313 |
+
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
314 |
+
r"""Upsample a batch of 2D images using the given 2D FIR filter.
|
315 |
+
|
316 |
+
By default, the result is padded so that its shape is a multiple of the input.
|
317 |
+
User-specified padding is applied on top of that, with negative values
|
318 |
+
indicating cropping. Pixels outside the image are assumed to be zero.
|
319 |
+
|
320 |
+
Args:
|
321 |
+
x: Float32/float64/float16 input tensor of the shape
|
322 |
+
`[batch_size, num_channels, in_height, in_width]`.
|
323 |
+
f: Float32 FIR filter of the shape
|
324 |
+
`[filter_height, filter_width]` (non-separable),
|
325 |
+
`[filter_taps]` (separable), or
|
326 |
+
`None` (identity).
|
327 |
+
up: Integer upsampling factor. Can be a single int or a list/tuple
|
328 |
+
`[x, y]` (default: 1).
|
329 |
+
padding: Padding with respect to the output. Can be a single number or a
|
330 |
+
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
331 |
+
(default: 0).
|
332 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
333 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
334 |
+
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
335 |
+
|
336 |
+
Returns:
|
337 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
338 |
+
"""
|
339 |
+
upx, upy = _parse_scaling(up)
|
340 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
341 |
+
fw, fh = _get_filter_size(f)
|
342 |
+
p = [
|
343 |
+
padx0 + (fw + upx - 1) // 2,
|
344 |
+
padx1 + (fw - upx) // 2,
|
345 |
+
pady0 + (fh + upy - 1) // 2,
|
346 |
+
pady1 + (fh - upy) // 2,
|
347 |
+
]
|
348 |
+
return upfirdn2d(x, f, up=up, padding=p, flip_filter=flip_filter, gain=gain*upx*upy, impl=impl)
|
349 |
+
|
350 |
+
#----------------------------------------------------------------------------
|
351 |
+
|
352 |
+
def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
353 |
+
r"""Downsample a batch of 2D images using the given 2D FIR filter.
|
354 |
+
|
355 |
+
By default, the result is padded so that its shape is a fraction of the input.
|
356 |
+
User-specified padding is applied on top of that, with negative values
|
357 |
+
indicating cropping. Pixels outside the image are assumed to be zero.
|
358 |
+
|
359 |
+
Args:
|
360 |
+
x: Float32/float64/float16 input tensor of the shape
|
361 |
+
`[batch_size, num_channels, in_height, in_width]`.
|
362 |
+
f: Float32 FIR filter of the shape
|
363 |
+
`[filter_height, filter_width]` (non-separable),
|
364 |
+
`[filter_taps]` (separable), or
|
365 |
+
`None` (identity).
|
366 |
+
down: Integer downsampling factor. Can be a single int or a list/tuple
|
367 |
+
`[x, y]` (default: 1).
|
368 |
+
padding: Padding with respect to the input. Can be a single number or a
|
369 |
+
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
370 |
+
(default: 0).
|
371 |
+
flip_filter: False = convolution, True = correlation (default: False).
|
372 |
+
gain: Overall scaling factor for signal magnitude (default: 1).
|
373 |
+
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
377 |
+
"""
|
378 |
+
downx, downy = _parse_scaling(down)
|
379 |
+
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
380 |
+
fw, fh = _get_filter_size(f)
|
381 |
+
p = [
|
382 |
+
padx0 + (fw - downx + 1) // 2,
|
383 |
+
padx1 + (fw - downx) // 2,
|
384 |
+
pady0 + (fh - downy + 1) // 2,
|
385 |
+
pady1 + (fh - downy) // 2,
|
386 |
+
]
|
387 |
+
return upfirdn2d(x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl)
|
388 |
+
|
389 |
+
#----------------------------------------------------------------------------
|
torch_utils/persistence.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Facilities for pickling Python code alongside other data.
|
10 |
+
|
11 |
+
The pickled code is automatically imported into a separate Python module
|
12 |
+
during unpickling. This way, any previously exported pickles will remain
|
13 |
+
usable even if the original code is no longer available, or if the current
|
14 |
+
version of the code is not consistent with what was originally pickled."""
|
15 |
+
|
16 |
+
import sys
|
17 |
+
import pickle
|
18 |
+
import io
|
19 |
+
import inspect
|
20 |
+
import copy
|
21 |
+
import uuid
|
22 |
+
import types
|
23 |
+
import dnnlib
|
24 |
+
|
25 |
+
#----------------------------------------------------------------------------
|
26 |
+
|
27 |
+
_version = 6 # internal version number
|
28 |
+
_decorators = set() # {decorator_class, ...}
|
29 |
+
_import_hooks = [] # [hook_function, ...]
|
30 |
+
_module_to_src_dict = dict() # {module: src, ...}
|
31 |
+
_src_to_module_dict = dict() # {src: module, ...}
|
32 |
+
|
33 |
+
#----------------------------------------------------------------------------
|
34 |
+
|
35 |
+
def persistent_class(orig_class):
|
36 |
+
r"""Class decorator that extends a given class to save its source code
|
37 |
+
when pickled.
|
38 |
+
|
39 |
+
Example:
|
40 |
+
|
41 |
+
from torch_utils import persistence
|
42 |
+
|
43 |
+
@persistence.persistent_class
|
44 |
+
class MyNetwork(torch.nn.Module):
|
45 |
+
def __init__(self, num_inputs, num_outputs):
|
46 |
+
super().__init__()
|
47 |
+
self.fc = MyLayer(num_inputs, num_outputs)
|
48 |
+
...
|
49 |
+
|
50 |
+
@persistence.persistent_class
|
51 |
+
class MyLayer(torch.nn.Module):
|
52 |
+
...
|
53 |
+
|
54 |
+
When pickled, any instance of `MyNetwork` and `MyLayer` will save its
|
55 |
+
source code alongside other internal state (e.g., parameters, buffers,
|
56 |
+
and submodules). This way, any previously exported pickle will remain
|
57 |
+
usable even if the class definitions have been modified or are no
|
58 |
+
longer available.
|
59 |
+
|
60 |
+
The decorator saves the source code of the entire Python module
|
61 |
+
containing the decorated class. It does *not* save the source code of
|
62 |
+
any imported modules. Thus, the imported modules must be available
|
63 |
+
during unpickling, also including `torch_utils.persistence` itself.
|
64 |
+
|
65 |
+
It is ok to call functions defined in the same module from the
|
66 |
+
decorated class. However, if the decorated class depends on other
|
67 |
+
classes defined in the same module, they must be decorated as well.
|
68 |
+
This is illustrated in the above example in the case of `MyLayer`.
|
69 |
+
|
70 |
+
It is also possible to employ the decorator just-in-time before
|
71 |
+
calling the constructor. For example:
|
72 |
+
|
73 |
+
cls = MyLayer
|
74 |
+
if want_to_make_it_persistent:
|
75 |
+
cls = persistence.persistent_class(cls)
|
76 |
+
layer = cls(num_inputs, num_outputs)
|
77 |
+
|
78 |
+
As an additional feature, the decorator also keeps track of the
|
79 |
+
arguments that were used to construct each instance of the decorated
|
80 |
+
class. The arguments can be queried via `obj.init_args` and
|
81 |
+
`obj.init_kwargs`, and they are automatically pickled alongside other
|
82 |
+
object state. A typical use case is to first unpickle a previous
|
83 |
+
instance of a persistent class, and then upgrade it to use the latest
|
84 |
+
version of the source code:
|
85 |
+
|
86 |
+
with open('old_pickle.pkl', 'rb') as f:
|
87 |
+
old_net = pickle.load(f)
|
88 |
+
new_net = MyNetwork(*old_obj.init_args, **old_obj.init_kwargs)
|
89 |
+
misc.copy_params_and_buffers(old_net, new_net, require_all=True)
|
90 |
+
"""
|
91 |
+
assert isinstance(orig_class, type)
|
92 |
+
if is_persistent(orig_class):
|
93 |
+
return orig_class
|
94 |
+
|
95 |
+
assert orig_class.__module__ in sys.modules
|
96 |
+
orig_module = sys.modules[orig_class.__module__]
|
97 |
+
orig_module_src = _module_to_src(orig_module)
|
98 |
+
|
99 |
+
class Decorator(orig_class):
|
100 |
+
_orig_module_src = orig_module_src
|
101 |
+
_orig_class_name = orig_class.__name__
|
102 |
+
|
103 |
+
def __init__(self, *args, **kwargs):
|
104 |
+
super().__init__(*args, **kwargs)
|
105 |
+
self._init_args = copy.deepcopy(args)
|
106 |
+
self._init_kwargs = copy.deepcopy(kwargs)
|
107 |
+
assert orig_class.__name__ in orig_module.__dict__
|
108 |
+
_check_pickleable(self.__reduce__())
|
109 |
+
|
110 |
+
@property
|
111 |
+
def init_args(self):
|
112 |
+
return copy.deepcopy(self._init_args)
|
113 |
+
|
114 |
+
@property
|
115 |
+
def init_kwargs(self):
|
116 |
+
return dnnlib.EasyDict(copy.deepcopy(self._init_kwargs))
|
117 |
+
|
118 |
+
def __reduce__(self):
|
119 |
+
fields = list(super().__reduce__())
|
120 |
+
fields += [None] * max(3 - len(fields), 0)
|
121 |
+
if fields[0] is not _reconstruct_persistent_obj:
|
122 |
+
meta = dict(type='class', version=_version, module_src=self._orig_module_src, class_name=self._orig_class_name, state=fields[2])
|
123 |
+
fields[0] = _reconstruct_persistent_obj # reconstruct func
|
124 |
+
fields[1] = (meta,) # reconstruct args
|
125 |
+
fields[2] = None # state dict
|
126 |
+
return tuple(fields)
|
127 |
+
|
128 |
+
Decorator.__name__ = orig_class.__name__
|
129 |
+
_decorators.add(Decorator)
|
130 |
+
return Decorator
|
131 |
+
|
132 |
+
#----------------------------------------------------------------------------
|
133 |
+
|
134 |
+
def is_persistent(obj):
|
135 |
+
r"""Test whether the given object or class is persistent, i.e.,
|
136 |
+
whether it will save its source code when pickled.
|
137 |
+
"""
|
138 |
+
try:
|
139 |
+
if obj in _decorators:
|
140 |
+
return True
|
141 |
+
except TypeError:
|
142 |
+
pass
|
143 |
+
return type(obj) in _decorators # pylint: disable=unidiomatic-typecheck
|
144 |
+
|
145 |
+
#----------------------------------------------------------------------------
|
146 |
+
|
147 |
+
def import_hook(hook):
|
148 |
+
r"""Register an import hook that is called whenever a persistent object
|
149 |
+
is being unpickled. A typical use case is to patch the pickled source
|
150 |
+
code to avoid errors and inconsistencies when the API of some imported
|
151 |
+
module has changed.
|
152 |
+
|
153 |
+
The hook should have the following signature:
|
154 |
+
|
155 |
+
hook(meta) -> modified meta
|
156 |
+
|
157 |
+
`meta` is an instance of `dnnlib.EasyDict` with the following fields:
|
158 |
+
|
159 |
+
type: Type of the persistent object, e.g. `'class'`.
|
160 |
+
version: Internal version number of `torch_utils.persistence`.
|
161 |
+
module_src Original source code of the Python module.
|
162 |
+
class_name: Class name in the original Python module.
|
163 |
+
state: Internal state of the object.
|
164 |
+
|
165 |
+
Example:
|
166 |
+
|
167 |
+
@persistence.import_hook
|
168 |
+
def wreck_my_network(meta):
|
169 |
+
if meta.class_name == 'MyNetwork':
|
170 |
+
print('MyNetwork is being imported. I will wreck it!')
|
171 |
+
meta.module_src = meta.module_src.replace("True", "False")
|
172 |
+
return meta
|
173 |
+
"""
|
174 |
+
assert callable(hook)
|
175 |
+
_import_hooks.append(hook)
|
176 |
+
|
177 |
+
#----------------------------------------------------------------------------
|
178 |
+
|
179 |
+
def _reconstruct_persistent_obj(meta):
|
180 |
+
r"""Hook that is called internally by the `pickle` module to unpickle
|
181 |
+
a persistent object.
|
182 |
+
"""
|
183 |
+
meta = dnnlib.EasyDict(meta)
|
184 |
+
meta.state = dnnlib.EasyDict(meta.state)
|
185 |
+
for hook in _import_hooks:
|
186 |
+
meta = hook(meta)
|
187 |
+
assert meta is not None
|
188 |
+
|
189 |
+
assert meta.version == _version
|
190 |
+
module = _src_to_module(meta.module_src)
|
191 |
+
|
192 |
+
assert meta.type == 'class'
|
193 |
+
orig_class = module.__dict__[meta.class_name]
|
194 |
+
decorator_class = persistent_class(orig_class)
|
195 |
+
obj = decorator_class.__new__(decorator_class)
|
196 |
+
|
197 |
+
setstate = getattr(obj, '__setstate__', None)
|
198 |
+
if callable(setstate):
|
199 |
+
setstate(meta.state) # pylint: disable=not-callable
|
200 |
+
else:
|
201 |
+
obj.__dict__.update(meta.state)
|
202 |
+
return obj
|
203 |
+
|
204 |
+
#----------------------------------------------------------------------------
|
205 |
+
|
206 |
+
def _module_to_src(module):
|
207 |
+
r"""Query the source code of a given Python module.
|
208 |
+
"""
|
209 |
+
src = _module_to_src_dict.get(module, None)
|
210 |
+
if src is None:
|
211 |
+
src = inspect.getsource(module)
|
212 |
+
_module_to_src_dict[module] = src
|
213 |
+
_src_to_module_dict[src] = module
|
214 |
+
return src
|
215 |
+
|
216 |
+
def _src_to_module(src):
|
217 |
+
r"""Get or create a Python module for the given source code.
|
218 |
+
"""
|
219 |
+
module = _src_to_module_dict.get(src, None)
|
220 |
+
if module is None:
|
221 |
+
module_name = "_imported_module_" + uuid.uuid4().hex
|
222 |
+
module = types.ModuleType(module_name)
|
223 |
+
sys.modules[module_name] = module
|
224 |
+
_module_to_src_dict[module] = src
|
225 |
+
_src_to_module_dict[src] = module
|
226 |
+
exec(src, module.__dict__) # pylint: disable=exec-used
|
227 |
+
return module
|
228 |
+
|
229 |
+
#----------------------------------------------------------------------------
|
230 |
+
|
231 |
+
def _check_pickleable(obj):
|
232 |
+
r"""Check that the given object is pickleable, raising an exception if
|
233 |
+
it is not. This function is expected to be considerably more efficient
|
234 |
+
than actually pickling the object.
|
235 |
+
"""
|
236 |
+
def recurse(obj):
|
237 |
+
if isinstance(obj, (list, tuple, set)):
|
238 |
+
return [recurse(x) for x in obj]
|
239 |
+
if isinstance(obj, dict):
|
240 |
+
return [[recurse(x), recurse(y)] for x, y in obj.items()]
|
241 |
+
if isinstance(obj, (str, int, float, bool, bytes, bytearray)):
|
242 |
+
return None # Python primitive types are pickleable.
|
243 |
+
if f'{type(obj).__module__}.{type(obj).__name__}' in ['numpy.ndarray', 'torch.Tensor', 'torch.nn.parameter.Parameter']:
|
244 |
+
return None # NumPy arrays and PyTorch tensors are pickleable.
|
245 |
+
if is_persistent(obj):
|
246 |
+
return None # Persistent objects are pickleable, by virtue of the constructor check.
|
247 |
+
return obj
|
248 |
+
with io.BytesIO() as f:
|
249 |
+
pickle.dump(recurse(obj), f)
|
250 |
+
|
251 |
+
#----------------------------------------------------------------------------
|