akhaliq HF staff NimaBoscarino commited on
Commit
b79d502
Β·
1 Parent(s): 3b74b43

Pull the existing models from the model hub (#6)

Browse files

- Pull the existing models from the model hub (b971dc429b86a8ebc93f491222263f7e6c756778)


Co-authored-by: Nima Boscarino <NimaBoscarino@users.noreply.huggingface.co>

Files changed (1) hide show
  1. app.py +14 -6
app.py CHANGED
@@ -1,10 +1,6 @@
1
  import gradio as gr
2
  import os
3
 
4
- os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
5
- os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt")
6
- os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
7
-
8
  import argparse
9
  import time
10
  from pathlib import Path
@@ -22,12 +18,24 @@ from utils.plots import plot_one_box
22
  from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
23
  from PIL import Image
24
 
 
 
 
 
 
 
 
25
 
 
 
 
 
 
26
 
27
 
28
  def detect(img,model):
29
  parser = argparse.ArgumentParser()
30
- parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
31
  parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam
32
  parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
33
  parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
@@ -183,4 +191,4 @@ def detect(img,model):
183
  return Image.fromarray(im0[:,:,::-1])
184
 
185
 
186
- gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=["yolov7","yolov7-e6"])], gr.Image(type="pil"),title="Yolov7",examples=[["horses.jpeg", "yolov7"]],description="demo for <a href='https://github.com/WongKinYiu/yolov7' style='text-decoration: underline' target='_blank'>WongKinYiu/yolov7</a> Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors").launch()
 
1
  import gradio as gr
2
  import os
3
 
 
 
 
 
4
  import argparse
5
  import time
6
  from pathlib import Path
 
18
  from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
19
  from PIL import Image
20
 
21
+ from huggingface_hub import hf_hub_download
22
+
23
+ def load_model(model_name):
24
+ model_path = hf_hub_download(repo_id=f"Yolov7/{model_name}", filename=f"{model_name}.pt"), None)
25
+
26
+ return model_path
27
+
28
 
29
+ model_names = [
30
+ "yolov7",
31
+ "yolov7-e6e",
32
+ "yolov7-e6",
33
+ ]
34
 
35
 
36
  def detect(img,model):
37
  parser = argparse.ArgumentParser()
38
+ parser.add_argument('--weights', nargs='+', type=str, default=load_model(model), help='model.pt path(s)')
39
  parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam
40
  parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
41
  parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
 
191
  return Image.fromarray(im0[:,:,::-1])
192
 
193
 
194
+ gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=model_names)], gr.Image(type="pil"),title="Yolov7",examples=[["horses.jpeg", "yolov7"]],description="demo for <a href='https://github.com/WongKinYiu/yolov7' style='text-decoration: underline' target='_blank'>WongKinYiu/yolov7</a> Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors").launch()