akhaliq HF staff commited on
Commit
e20a59b
Β·
1 Parent(s): 05edce1
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. LICENSE.md +674 -0
  2. cfg/baseline/r50-csp.yaml +49 -0
  3. cfg/baseline/x50-csp.yaml +49 -0
  4. cfg/baseline/yolor-csp-x.yaml +52 -0
  5. cfg/baseline/yolor-csp.yaml +52 -0
  6. cfg/baseline/yolor-d6.yaml +63 -0
  7. cfg/baseline/yolor-e6.yaml +63 -0
  8. cfg/baseline/yolor-p6.yaml +63 -0
  9. cfg/baseline/yolor-w6.yaml +63 -0
  10. cfg/baseline/yolov3-spp.yaml +51 -0
  11. cfg/baseline/yolov3.yaml +51 -0
  12. cfg/baseline/yolov4-csp.yaml +52 -0
  13. cfg/deploy/yolov7-d6.yaml +202 -0
  14. cfg/deploy/yolov7-e6.yaml +180 -0
  15. cfg/deploy/yolov7-e6e.yaml +301 -0
  16. cfg/deploy/yolov7-tiny-silu.yaml +112 -0
  17. cfg/deploy/yolov7-w6.yaml +158 -0
  18. cfg/deploy/yolov7.yaml +140 -0
  19. cfg/deploy/yolov7x.yaml +156 -0
  20. cfg/training/yolov7.yaml +140 -0
  21. cfg/training/yolov7d6.yaml +207 -0
  22. cfg/training/yolov7e6.yaml +185 -0
  23. cfg/training/yolov7e6e.yaml +306 -0
  24. cfg/training/yolov7w6.yaml +163 -0
  25. cfg/training/yolov7x.yaml +156 -0
  26. data/coco.yaml +23 -0
  27. data/hyp.scratch.p5.yaml +29 -0
  28. data/hyp.scratch.p6.yaml +29 -0
  29. data/hyp.scratch.tiny.yaml +29 -0
  30. detect.py +183 -0
  31. figure/performance.png +0 -0
  32. hubconf.py +97 -0
  33. inference/images/horses.jpg +0 -0
  34. models/__init__.py +1 -0
  35. models/common.py +2019 -0
  36. models/experimental.py +106 -0
  37. models/export.py +98 -0
  38. models/yolo.py +550 -0
  39. scripts/get_coco.sh +22 -0
  40. test.py +347 -0
  41. train.py +691 -0
  42. utils/__init__.py +1 -0
  43. utils/activations.py +72 -0
  44. utils/autoanchor.py +160 -0
  45. utils/aws/__init__.py +1 -0
  46. utils/aws/mime.sh +26 -0
  47. utils/aws/resume.py +37 -0
  48. utils/aws/userdata.sh +27 -0
  49. utils/datasets.py +1320 -0
  50. utils/general.py +790 -0
LICENSE.md ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
cfg/baseline/r50-csp.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-ResNet backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Stem, [128]], # 0-P1/2
16
+ [-1, 3, ResCSPC, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18
+ [-1, 4, ResCSPC, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 4-P3/8
20
+ [-1, 6, ResCSPC, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
22
+ [-1, 3, ResCSPC, [1024]], # 7
23
+ ]
24
+
25
+ # CSP-Res-PAN head
26
+ head:
27
+ [[-1, 1, SPPCSPC, [512]], # 8
28
+ [-1, 1, Conv, [256, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [5, 1, Conv, [256, 1, 1]], # route backbone P4
31
+ [[-1, -2], 1, Concat, [1]],
32
+ [-1, 2, ResCSPB, [256]], # 13
33
+ [-1, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [3, 1, Conv, [128, 1, 1]], # route backbone P3
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 2, ResCSPB, [128]], # 18
38
+ [-1, 1, Conv, [256, 3, 1]],
39
+ [-2, 1, Conv, [256, 3, 2]],
40
+ [[-1, 13], 1, Concat, [1]], # cat
41
+ [-1, 2, ResCSPB, [256]], # 22
42
+ [-1, 1, Conv, [512, 3, 1]],
43
+ [-2, 1, Conv, [512, 3, 2]],
44
+ [[-1, 8], 1, Concat, [1]], # cat
45
+ [-1, 2, ResCSPB, [512]], # 26
46
+ [-1, 1, Conv, [1024, 3, 1]],
47
+
48
+ [[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
49
+ ]
cfg/baseline/x50-csp.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-ResNeXt backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Stem, [128]], # 0-P1/2
16
+ [-1, 3, ResXCSPC, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18
+ [-1, 4, ResXCSPC, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 4-P3/8
20
+ [-1, 6, ResXCSPC, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
22
+ [-1, 3, ResXCSPC, [1024]], # 7
23
+ ]
24
+
25
+ # CSP-ResX-PAN head
26
+ head:
27
+ [[-1, 1, SPPCSPC, [512]], # 8
28
+ [-1, 1, Conv, [256, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [5, 1, Conv, [256, 1, 1]], # route backbone P4
31
+ [[-1, -2], 1, Concat, [1]],
32
+ [-1, 2, ResXCSPB, [256]], # 13
33
+ [-1, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [3, 1, Conv, [128, 1, 1]], # route backbone P3
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 2, ResXCSPB, [128]], # 18
38
+ [-1, 1, Conv, [256, 3, 1]],
39
+ [-2, 1, Conv, [256, 3, 2]],
40
+ [[-1, 13], 1, Concat, [1]], # cat
41
+ [-1, 2, ResXCSPB, [256]], # 22
42
+ [-1, 1, Conv, [512, 3, 1]],
43
+ [-2, 1, Conv, [512, 3, 2]],
44
+ [[-1, 8], 1, Concat, [1]], # cat
45
+ [-1, 2, ResXCSPB, [512]], # 26
46
+ [-1, 1, Conv, [1024, 3, 1]],
47
+
48
+ [[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
49
+ ]
cfg/baseline/yolor-csp-x.yaml ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.33 # model depth multiple
4
+ width_multiple: 1.25 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-Darknet backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, BottleneckCSPC, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, BottleneckCSPC, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, BottleneckCSPC, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, BottleneckCSPC, [1024]], # 10
26
+ ]
27
+
28
+ # CSP-Dark-PAN head
29
+ head:
30
+ [[-1, 1, SPPCSPC, [512]], # 11
31
+ [-1, 1, Conv, [256, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [8, 1, Conv, [256, 1, 1]], # route backbone P4
34
+ [[-1, -2], 1, Concat, [1]],
35
+ [-1, 2, BottleneckCSPB, [256]], # 16
36
+ [-1, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [6, 1, Conv, [128, 1, 1]], # route backbone P3
39
+ [[-1, -2], 1, Concat, [1]],
40
+ [-1, 2, BottleneckCSPB, [128]], # 21
41
+ [-1, 1, Conv, [256, 3, 1]],
42
+ [-2, 1, Conv, [256, 3, 2]],
43
+ [[-1, 16], 1, Concat, [1]], # cat
44
+ [-1, 2, BottleneckCSPB, [256]], # 25
45
+ [-1, 1, Conv, [512, 3, 1]],
46
+ [-2, 1, Conv, [512, 3, 2]],
47
+ [[-1, 11], 1, Concat, [1]], # cat
48
+ [-1, 2, BottleneckCSPB, [512]], # 29
49
+ [-1, 1, Conv, [1024, 3, 1]],
50
+
51
+ [[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
52
+ ]
cfg/baseline/yolor-csp.yaml ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-Darknet backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, BottleneckCSPC, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, BottleneckCSPC, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, BottleneckCSPC, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, BottleneckCSPC, [1024]], # 10
26
+ ]
27
+
28
+ # CSP-Dark-PAN head
29
+ head:
30
+ [[-1, 1, SPPCSPC, [512]], # 11
31
+ [-1, 1, Conv, [256, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [8, 1, Conv, [256, 1, 1]], # route backbone P4
34
+ [[-1, -2], 1, Concat, [1]],
35
+ [-1, 2, BottleneckCSPB, [256]], # 16
36
+ [-1, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [6, 1, Conv, [128, 1, 1]], # route backbone P3
39
+ [[-1, -2], 1, Concat, [1]],
40
+ [-1, 2, BottleneckCSPB, [128]], # 21
41
+ [-1, 1, Conv, [256, 3, 1]],
42
+ [-2, 1, Conv, [256, 3, 2]],
43
+ [[-1, 16], 1, Concat, [1]], # cat
44
+ [-1, 2, BottleneckCSPB, [256]], # 25
45
+ [-1, 1, Conv, [512, 3, 1]],
46
+ [-2, 1, Conv, [512, 3, 2]],
47
+ [[-1, 11], 1, Concat, [1]], # cat
48
+ [-1, 2, BottleneckCSPB, [512]], # 29
49
+ [-1, 1, Conv, [1024, 3, 1]],
50
+
51
+ [[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
52
+ ]
cfg/baseline/yolor-d6.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # expand model depth
4
+ width_multiple: 1.25 # expand layer channels
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # CSP-Darknet backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+ [-1, 1, DownC, [128]], # 2-P2/4
19
+ [-1, 3, BottleneckCSPA, [128]],
20
+ [-1, 1, DownC, [256]], # 4-P3/8
21
+ [-1, 15, BottleneckCSPA, [256]],
22
+ [-1, 1, DownC, [512]], # 6-P4/16
23
+ [-1, 15, BottleneckCSPA, [512]],
24
+ [-1, 1, DownC, [768]], # 8-P5/32
25
+ [-1, 7, BottleneckCSPA, [768]],
26
+ [-1, 1, DownC, [1024]], # 10-P6/64
27
+ [-1, 7, BottleneckCSPA, [1024]], # 11
28
+ ]
29
+
30
+ # CSP-Dark-PAN head
31
+ head:
32
+ [[-1, 1, SPPCSPC, [512]], # 12
33
+ [-1, 1, Conv, [384, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [-6, 1, Conv, [384, 1, 1]], # route backbone P5
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 3, BottleneckCSPB, [384]], # 17
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [-13, 1, Conv, [256, 1, 1]], # route backbone P4
41
+ [[-1, -2], 1, Concat, [1]],
42
+ [-1, 3, BottleneckCSPB, [256]], # 22
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46
+ [[-1, -2], 1, Concat, [1]],
47
+ [-1, 3, BottleneckCSPB, [128]], # 27
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-2, 1, DownC, [256]],
50
+ [[-1, 22], 1, Concat, [1]], # cat
51
+ [-1, 3, BottleneckCSPB, [256]], # 31
52
+ [-1, 1, Conv, [512, 3, 1]],
53
+ [-2, 1, DownC, [384]],
54
+ [[-1, 17], 1, Concat, [1]], # cat
55
+ [-1, 3, BottleneckCSPB, [384]], # 35
56
+ [-1, 1, Conv, [768, 3, 1]],
57
+ [-2, 1, DownC, [512]],
58
+ [[-1, 12], 1, Concat, [1]], # cat
59
+ [-1, 3, BottleneckCSPB, [512]], # 39
60
+ [-1, 1, Conv, [1024, 3, 1]],
61
+
62
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63
+ ]
cfg/baseline/yolor-e6.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # expand model depth
4
+ width_multiple: 1.25 # expand layer channels
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # CSP-Darknet backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+ [-1, 1, DownC, [128]], # 2-P2/4
19
+ [-1, 3, BottleneckCSPA, [128]],
20
+ [-1, 1, DownC, [256]], # 4-P3/8
21
+ [-1, 7, BottleneckCSPA, [256]],
22
+ [-1, 1, DownC, [512]], # 6-P4/16
23
+ [-1, 7, BottleneckCSPA, [512]],
24
+ [-1, 1, DownC, [768]], # 8-P5/32
25
+ [-1, 3, BottleneckCSPA, [768]],
26
+ [-1, 1, DownC, [1024]], # 10-P6/64
27
+ [-1, 3, BottleneckCSPA, [1024]], # 11
28
+ ]
29
+
30
+ # CSP-Dark-PAN head
31
+ head:
32
+ [[-1, 1, SPPCSPC, [512]], # 12
33
+ [-1, 1, Conv, [384, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [-6, 1, Conv, [384, 1, 1]], # route backbone P5
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 3, BottleneckCSPB, [384]], # 17
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [-13, 1, Conv, [256, 1, 1]], # route backbone P4
41
+ [[-1, -2], 1, Concat, [1]],
42
+ [-1, 3, BottleneckCSPB, [256]], # 22
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46
+ [[-1, -2], 1, Concat, [1]],
47
+ [-1, 3, BottleneckCSPB, [128]], # 27
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-2, 1, DownC, [256]],
50
+ [[-1, 22], 1, Concat, [1]], # cat
51
+ [-1, 3, BottleneckCSPB, [256]], # 31
52
+ [-1, 1, Conv, [512, 3, 1]],
53
+ [-2, 1, DownC, [384]],
54
+ [[-1, 17], 1, Concat, [1]], # cat
55
+ [-1, 3, BottleneckCSPB, [384]], # 35
56
+ [-1, 1, Conv, [768, 3, 1]],
57
+ [-2, 1, DownC, [512]],
58
+ [[-1, 12], 1, Concat, [1]], # cat
59
+ [-1, 3, BottleneckCSPB, [512]], # 39
60
+ [-1, 1, Conv, [1024, 3, 1]],
61
+
62
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63
+ ]
cfg/baseline/yolor-p6.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # expand model depth
4
+ width_multiple: 1.0 # expand layer channels
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # CSP-Darknet backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
19
+ [-1, 3, BottleneckCSPA, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
21
+ [-1, 7, BottleneckCSPA, [256]],
22
+ [-1, 1, Conv, [384, 3, 2]], # 6-P4/16
23
+ [-1, 7, BottleneckCSPA, [384]],
24
+ [-1, 1, Conv, [512, 3, 2]], # 8-P5/32
25
+ [-1, 3, BottleneckCSPA, [512]],
26
+ [-1, 1, Conv, [640, 3, 2]], # 10-P6/64
27
+ [-1, 3, BottleneckCSPA, [640]], # 11
28
+ ]
29
+
30
+ # CSP-Dark-PAN head
31
+ head:
32
+ [[-1, 1, SPPCSPC, [320]], # 12
33
+ [-1, 1, Conv, [256, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [-6, 1, Conv, [256, 1, 1]], # route backbone P5
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 3, BottleneckCSPB, [256]], # 17
38
+ [-1, 1, Conv, [192, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [-13, 1, Conv, [192, 1, 1]], # route backbone P4
41
+ [[-1, -2], 1, Concat, [1]],
42
+ [-1, 3, BottleneckCSPB, [192]], # 22
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46
+ [[-1, -2], 1, Concat, [1]],
47
+ [-1, 3, BottleneckCSPB, [128]], # 27
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-2, 1, Conv, [192, 3, 2]],
50
+ [[-1, 22], 1, Concat, [1]], # cat
51
+ [-1, 3, BottleneckCSPB, [192]], # 31
52
+ [-1, 1, Conv, [384, 3, 1]],
53
+ [-2, 1, Conv, [256, 3, 2]],
54
+ [[-1, 17], 1, Concat, [1]], # cat
55
+ [-1, 3, BottleneckCSPB, [256]], # 35
56
+ [-1, 1, Conv, [512, 3, 1]],
57
+ [-2, 1, Conv, [320, 3, 2]],
58
+ [[-1, 12], 1, Concat, [1]], # cat
59
+ [-1, 3, BottleneckCSPB, [320]], # 39
60
+ [-1, 1, Conv, [640, 3, 1]],
61
+
62
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63
+ ]
cfg/baseline/yolor-w6.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # expand model depth
4
+ width_multiple: 1.0 # expand layer channels
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # CSP-Darknet backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
19
+ [-1, 3, BottleneckCSPA, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
21
+ [-1, 7, BottleneckCSPA, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
23
+ [-1, 7, BottleneckCSPA, [512]],
24
+ [-1, 1, Conv, [768, 3, 2]], # 8-P5/32
25
+ [-1, 3, BottleneckCSPA, [768]],
26
+ [-1, 1, Conv, [1024, 3, 2]], # 10-P6/64
27
+ [-1, 3, BottleneckCSPA, [1024]], # 11
28
+ ]
29
+
30
+ # CSP-Dark-PAN head
31
+ head:
32
+ [[-1, 1, SPPCSPC, [512]], # 12
33
+ [-1, 1, Conv, [384, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [-6, 1, Conv, [384, 1, 1]], # route backbone P5
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 3, BottleneckCSPB, [384]], # 17
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [-13, 1, Conv, [256, 1, 1]], # route backbone P4
41
+ [[-1, -2], 1, Concat, [1]],
42
+ [-1, 3, BottleneckCSPB, [256]], # 22
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46
+ [[-1, -2], 1, Concat, [1]],
47
+ [-1, 3, BottleneckCSPB, [128]], # 27
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-2, 1, Conv, [256, 3, 2]],
50
+ [[-1, 22], 1, Concat, [1]], # cat
51
+ [-1, 3, BottleneckCSPB, [256]], # 31
52
+ [-1, 1, Conv, [512, 3, 1]],
53
+ [-2, 1, Conv, [384, 3, 2]],
54
+ [[-1, 17], 1, Concat, [1]], # cat
55
+ [-1, 3, BottleneckCSPB, [384]], # 35
56
+ [-1, 1, Conv, [768, 3, 1]],
57
+ [-2, 1, Conv, [512, 3, 2]],
58
+ [[-1, 12], 1, Concat, [1]], # cat
59
+ [-1, 3, BottleneckCSPB, [512]], # 39
60
+ [-1, 1, Conv, [1024, 3, 1]],
61
+
62
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63
+ ]
cfg/baseline/yolov3-spp.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3-SPP head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, SPP, [512, [5, 9, 13]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
cfg/baseline/yolov3.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3 head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, Conv, [512, [1, 1]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
cfg/baseline/yolov4-csp.yaml ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-Darknet backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, BottleneckCSPC, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, BottleneckCSPC, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, BottleneckCSPC, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, BottleneckCSPC, [1024]], # 10
26
+ ]
27
+
28
+ # CSP-Dark-PAN head
29
+ head:
30
+ [[-1, 1, SPPCSPC, [512]], # 11
31
+ [-1, 1, Conv, [256, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [8, 1, Conv, [256, 1, 1]], # route backbone P4
34
+ [[-1, -2], 1, Concat, [1]],
35
+ [-1, 2, BottleneckCSPB, [256]], # 16
36
+ [-1, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [6, 1, Conv, [128, 1, 1]], # route backbone P3
39
+ [[-1, -2], 1, Concat, [1]],
40
+ [-1, 2, BottleneckCSPB, [128]], # 21
41
+ [-1, 1, Conv, [256, 3, 1]],
42
+ [-2, 1, Conv, [256, 3, 2]],
43
+ [[-1, 16], 1, Concat, [1]], # cat
44
+ [-1, 2, BottleneckCSPB, [256]], # 25
45
+ [-1, 1, Conv, [512, 3, 1]],
46
+ [-2, 1, Conv, [512, 3, 2]],
47
+ [[-1, 11], 1, Concat, [1]], # cat
48
+ [-1, 2, BottleneckCSPB, [512]], # 29
49
+ [-1, 1, Conv, [1024, 3, 1]],
50
+
51
+ [[22,26,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
52
+ ]
cfg/deploy/yolov7-d6.yaml ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7-d6 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [96, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [192]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [-1, 1, Conv, [64, 3, 1]],
29
+ [-1, 1, Conv, [64, 3, 1]],
30
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
31
+ [-1, 1, Conv, [192, 1, 1]], # 14
32
+
33
+ [-1, 1, DownC, [384]], # 15-P3/8
34
+ [-1, 1, Conv, [128, 1, 1]],
35
+ [-2, 1, Conv, [128, 1, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [-1, 1, Conv, [128, 3, 1]],
42
+ [-1, 1, Conv, [128, 3, 1]],
43
+ [-1, 1, Conv, [128, 3, 1]],
44
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
45
+ [-1, 1, Conv, [384, 1, 1]], # 27
46
+
47
+ [-1, 1, DownC, [768]], # 28-P4/16
48
+ [-1, 1, Conv, [256, 1, 1]],
49
+ [-2, 1, Conv, [256, 1, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [-1, 1, Conv, [256, 3, 1]],
53
+ [-1, 1, Conv, [256, 3, 1]],
54
+ [-1, 1, Conv, [256, 3, 1]],
55
+ [-1, 1, Conv, [256, 3, 1]],
56
+ [-1, 1, Conv, [256, 3, 1]],
57
+ [-1, 1, Conv, [256, 3, 1]],
58
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
59
+ [-1, 1, Conv, [768, 1, 1]], # 40
60
+
61
+ [-1, 1, DownC, [1152]], # 41-P5/32
62
+ [-1, 1, Conv, [384, 1, 1]],
63
+ [-2, 1, Conv, [384, 1, 1]],
64
+ [-1, 1, Conv, [384, 3, 1]],
65
+ [-1, 1, Conv, [384, 3, 1]],
66
+ [-1, 1, Conv, [384, 3, 1]],
67
+ [-1, 1, Conv, [384, 3, 1]],
68
+ [-1, 1, Conv, [384, 3, 1]],
69
+ [-1, 1, Conv, [384, 3, 1]],
70
+ [-1, 1, Conv, [384, 3, 1]],
71
+ [-1, 1, Conv, [384, 3, 1]],
72
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
73
+ [-1, 1, Conv, [1152, 1, 1]], # 53
74
+
75
+ [-1, 1, DownC, [1536]], # 54-P6/64
76
+ [-1, 1, Conv, [512, 1, 1]],
77
+ [-2, 1, Conv, [512, 1, 1]],
78
+ [-1, 1, Conv, [512, 3, 1]],
79
+ [-1, 1, Conv, [512, 3, 1]],
80
+ [-1, 1, Conv, [512, 3, 1]],
81
+ [-1, 1, Conv, [512, 3, 1]],
82
+ [-1, 1, Conv, [512, 3, 1]],
83
+ [-1, 1, Conv, [512, 3, 1]],
84
+ [-1, 1, Conv, [512, 3, 1]],
85
+ [-1, 1, Conv, [512, 3, 1]],
86
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
87
+ [-1, 1, Conv, [1536, 1, 1]], # 66
88
+ ]
89
+
90
+ # yolov7-d6 head
91
+ head:
92
+ [[-1, 1, SPPCSPC, [768]], # 67
93
+
94
+ [-1, 1, Conv, [576, 1, 1]],
95
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
96
+ [53, 1, Conv, [576, 1, 1]], # route backbone P5
97
+ [[-1, -2], 1, Concat, [1]],
98
+
99
+ [-1, 1, Conv, [384, 1, 1]],
100
+ [-2, 1, Conv, [384, 1, 1]],
101
+ [-1, 1, Conv, [192, 3, 1]],
102
+ [-1, 1, Conv, [192, 3, 1]],
103
+ [-1, 1, Conv, [192, 3, 1]],
104
+ [-1, 1, Conv, [192, 3, 1]],
105
+ [-1, 1, Conv, [192, 3, 1]],
106
+ [-1, 1, Conv, [192, 3, 1]],
107
+ [-1, 1, Conv, [192, 3, 1]],
108
+ [-1, 1, Conv, [192, 3, 1]],
109
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
110
+ [-1, 1, Conv, [576, 1, 1]], # 83
111
+
112
+ [-1, 1, Conv, [384, 1, 1]],
113
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
114
+ [40, 1, Conv, [384, 1, 1]], # route backbone P4
115
+ [[-1, -2], 1, Concat, [1]],
116
+
117
+ [-1, 1, Conv, [256, 1, 1]],
118
+ [-2, 1, Conv, [256, 1, 1]],
119
+ [-1, 1, Conv, [128, 3, 1]],
120
+ [-1, 1, Conv, [128, 3, 1]],
121
+ [-1, 1, Conv, [128, 3, 1]],
122
+ [-1, 1, Conv, [128, 3, 1]],
123
+ [-1, 1, Conv, [128, 3, 1]],
124
+ [-1, 1, Conv, [128, 3, 1]],
125
+ [-1, 1, Conv, [128, 3, 1]],
126
+ [-1, 1, Conv, [128, 3, 1]],
127
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
128
+ [-1, 1, Conv, [384, 1, 1]], # 99
129
+
130
+ [-1, 1, Conv, [192, 1, 1]],
131
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
132
+ [27, 1, Conv, [192, 1, 1]], # route backbone P3
133
+ [[-1, -2], 1, Concat, [1]],
134
+
135
+ [-1, 1, Conv, [128, 1, 1]],
136
+ [-2, 1, Conv, [128, 1, 1]],
137
+ [-1, 1, Conv, [64, 3, 1]],
138
+ [-1, 1, Conv, [64, 3, 1]],
139
+ [-1, 1, Conv, [64, 3, 1]],
140
+ [-1, 1, Conv, [64, 3, 1]],
141
+ [-1, 1, Conv, [64, 3, 1]],
142
+ [-1, 1, Conv, [64, 3, 1]],
143
+ [-1, 1, Conv, [64, 3, 1]],
144
+ [-1, 1, Conv, [64, 3, 1]],
145
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
146
+ [-1, 1, Conv, [192, 1, 1]], # 115
147
+
148
+ [-1, 1, DownC, [384]],
149
+ [[-1, 99], 1, Concat, [1]],
150
+
151
+ [-1, 1, Conv, [256, 1, 1]],
152
+ [-2, 1, Conv, [256, 1, 1]],
153
+ [-1, 1, Conv, [128, 3, 1]],
154
+ [-1, 1, Conv, [128, 3, 1]],
155
+ [-1, 1, Conv, [128, 3, 1]],
156
+ [-1, 1, Conv, [128, 3, 1]],
157
+ [-1, 1, Conv, [128, 3, 1]],
158
+ [-1, 1, Conv, [128, 3, 1]],
159
+ [-1, 1, Conv, [128, 3, 1]],
160
+ [-1, 1, Conv, [128, 3, 1]],
161
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
162
+ [-1, 1, Conv, [384, 1, 1]], # 129
163
+
164
+ [-1, 1, DownC, [576]],
165
+ [[-1, 83], 1, Concat, [1]],
166
+
167
+ [-1, 1, Conv, [384, 1, 1]],
168
+ [-2, 1, Conv, [384, 1, 1]],
169
+ [-1, 1, Conv, [192, 3, 1]],
170
+ [-1, 1, Conv, [192, 3, 1]],
171
+ [-1, 1, Conv, [192, 3, 1]],
172
+ [-1, 1, Conv, [192, 3, 1]],
173
+ [-1, 1, Conv, [192, 3, 1]],
174
+ [-1, 1, Conv, [192, 3, 1]],
175
+ [-1, 1, Conv, [192, 3, 1]],
176
+ [-1, 1, Conv, [192, 3, 1]],
177
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
178
+ [-1, 1, Conv, [576, 1, 1]], # 143
179
+
180
+ [-1, 1, DownC, [768]],
181
+ [[-1, 67], 1, Concat, [1]],
182
+
183
+ [-1, 1, Conv, [512, 1, 1]],
184
+ [-2, 1, Conv, [512, 1, 1]],
185
+ [-1, 1, Conv, [256, 3, 1]],
186
+ [-1, 1, Conv, [256, 3, 1]],
187
+ [-1, 1, Conv, [256, 3, 1]],
188
+ [-1, 1, Conv, [256, 3, 1]],
189
+ [-1, 1, Conv, [256, 3, 1]],
190
+ [-1, 1, Conv, [256, 3, 1]],
191
+ [-1, 1, Conv, [256, 3, 1]],
192
+ [-1, 1, Conv, [256, 3, 1]],
193
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
194
+ [-1, 1, Conv, [768, 1, 1]], # 157
195
+
196
+ [115, 1, Conv, [384, 3, 1]],
197
+ [129, 1, Conv, [768, 3, 1]],
198
+ [143, 1, Conv, [1152, 3, 1]],
199
+ [157, 1, Conv, [1536, 3, 1]],
200
+
201
+ [[158,159,160,161], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
202
+ ]
cfg/deploy/yolov7-e6.yaml ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7-e6 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [160]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29
+ [-1, 1, Conv, [160, 1, 1]], # 12
30
+
31
+ [-1, 1, DownC, [320]], # 13-P3/8
32
+ [-1, 1, Conv, [128, 1, 1]],
33
+ [-2, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
41
+ [-1, 1, Conv, [320, 1, 1]], # 23
42
+
43
+ [-1, 1, DownC, [640]], # 24-P4/16
44
+ [-1, 1, Conv, [256, 1, 1]],
45
+ [-2, 1, Conv, [256, 1, 1]],
46
+ [-1, 1, Conv, [256, 3, 1]],
47
+ [-1, 1, Conv, [256, 3, 1]],
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-1, 1, Conv, [256, 3, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
53
+ [-1, 1, Conv, [640, 1, 1]], # 34
54
+
55
+ [-1, 1, DownC, [960]], # 35-P5/32
56
+ [-1, 1, Conv, [384, 1, 1]],
57
+ [-2, 1, Conv, [384, 1, 1]],
58
+ [-1, 1, Conv, [384, 3, 1]],
59
+ [-1, 1, Conv, [384, 3, 1]],
60
+ [-1, 1, Conv, [384, 3, 1]],
61
+ [-1, 1, Conv, [384, 3, 1]],
62
+ [-1, 1, Conv, [384, 3, 1]],
63
+ [-1, 1, Conv, [384, 3, 1]],
64
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
65
+ [-1, 1, Conv, [960, 1, 1]], # 45
66
+
67
+ [-1, 1, DownC, [1280]], # 46-P6/64
68
+ [-1, 1, Conv, [512, 1, 1]],
69
+ [-2, 1, Conv, [512, 1, 1]],
70
+ [-1, 1, Conv, [512, 3, 1]],
71
+ [-1, 1, Conv, [512, 3, 1]],
72
+ [-1, 1, Conv, [512, 3, 1]],
73
+ [-1, 1, Conv, [512, 3, 1]],
74
+ [-1, 1, Conv, [512, 3, 1]],
75
+ [-1, 1, Conv, [512, 3, 1]],
76
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
77
+ [-1, 1, Conv, [1280, 1, 1]], # 56
78
+ ]
79
+
80
+ # yolov7-e6 head
81
+ head:
82
+ [[-1, 1, SPPCSPC, [640]], # 57
83
+
84
+ [-1, 1, Conv, [480, 1, 1]],
85
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
86
+ [45, 1, Conv, [480, 1, 1]], # route backbone P5
87
+ [[-1, -2], 1, Concat, [1]],
88
+
89
+ [-1, 1, Conv, [384, 1, 1]],
90
+ [-2, 1, Conv, [384, 1, 1]],
91
+ [-1, 1, Conv, [192, 3, 1]],
92
+ [-1, 1, Conv, [192, 3, 1]],
93
+ [-1, 1, Conv, [192, 3, 1]],
94
+ [-1, 1, Conv, [192, 3, 1]],
95
+ [-1, 1, Conv, [192, 3, 1]],
96
+ [-1, 1, Conv, [192, 3, 1]],
97
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
98
+ [-1, 1, Conv, [480, 1, 1]], # 71
99
+
100
+ [-1, 1, Conv, [320, 1, 1]],
101
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
102
+ [34, 1, Conv, [320, 1, 1]], # route backbone P4
103
+ [[-1, -2], 1, Concat, [1]],
104
+
105
+ [-1, 1, Conv, [256, 1, 1]],
106
+ [-2, 1, Conv, [256, 1, 1]],
107
+ [-1, 1, Conv, [128, 3, 1]],
108
+ [-1, 1, Conv, [128, 3, 1]],
109
+ [-1, 1, Conv, [128, 3, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
114
+ [-1, 1, Conv, [320, 1, 1]], # 85
115
+
116
+ [-1, 1, Conv, [160, 1, 1]],
117
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
118
+ [23, 1, Conv, [160, 1, 1]], # route backbone P3
119
+ [[-1, -2], 1, Concat, [1]],
120
+
121
+ [-1, 1, Conv, [128, 1, 1]],
122
+ [-2, 1, Conv, [128, 1, 1]],
123
+ [-1, 1, Conv, [64, 3, 1]],
124
+ [-1, 1, Conv, [64, 3, 1]],
125
+ [-1, 1, Conv, [64, 3, 1]],
126
+ [-1, 1, Conv, [64, 3, 1]],
127
+ [-1, 1, Conv, [64, 3, 1]],
128
+ [-1, 1, Conv, [64, 3, 1]],
129
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
130
+ [-1, 1, Conv, [160, 1, 1]], # 99
131
+
132
+ [-1, 1, DownC, [320]],
133
+ [[-1, 85], 1, Concat, [1]],
134
+
135
+ [-1, 1, Conv, [256, 1, 1]],
136
+ [-2, 1, Conv, [256, 1, 1]],
137
+ [-1, 1, Conv, [128, 3, 1]],
138
+ [-1, 1, Conv, [128, 3, 1]],
139
+ [-1, 1, Conv, [128, 3, 1]],
140
+ [-1, 1, Conv, [128, 3, 1]],
141
+ [-1, 1, Conv, [128, 3, 1]],
142
+ [-1, 1, Conv, [128, 3, 1]],
143
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
144
+ [-1, 1, Conv, [320, 1, 1]], # 111
145
+
146
+ [-1, 1, DownC, [480]],
147
+ [[-1, 71], 1, Concat, [1]],
148
+
149
+ [-1, 1, Conv, [384, 1, 1]],
150
+ [-2, 1, Conv, [384, 1, 1]],
151
+ [-1, 1, Conv, [192, 3, 1]],
152
+ [-1, 1, Conv, [192, 3, 1]],
153
+ [-1, 1, Conv, [192, 3, 1]],
154
+ [-1, 1, Conv, [192, 3, 1]],
155
+ [-1, 1, Conv, [192, 3, 1]],
156
+ [-1, 1, Conv, [192, 3, 1]],
157
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
158
+ [-1, 1, Conv, [480, 1, 1]], # 123
159
+
160
+ [-1, 1, DownC, [640]],
161
+ [[-1, 57], 1, Concat, [1]],
162
+
163
+ [-1, 1, Conv, [512, 1, 1]],
164
+ [-2, 1, Conv, [512, 1, 1]],
165
+ [-1, 1, Conv, [256, 3, 1]],
166
+ [-1, 1, Conv, [256, 3, 1]],
167
+ [-1, 1, Conv, [256, 3, 1]],
168
+ [-1, 1, Conv, [256, 3, 1]],
169
+ [-1, 1, Conv, [256, 3, 1]],
170
+ [-1, 1, Conv, [256, 3, 1]],
171
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
172
+ [-1, 1, Conv, [640, 1, 1]], # 135
173
+
174
+ [99, 1, Conv, [320, 3, 1]],
175
+ [111, 1, Conv, [640, 3, 1]],
176
+ [123, 1, Conv, [960, 3, 1]],
177
+ [135, 1, Conv, [1280, 3, 1]],
178
+
179
+ [[136,137,138,139], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
180
+ ]
cfg/deploy/yolov7-e6e.yaml ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7-e6e backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [160]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29
+ [-1, 1, Conv, [160, 1, 1]], # 12
30
+ [-11, 1, Conv, [64, 1, 1]],
31
+ [-12, 1, Conv, [64, 1, 1]],
32
+ [-1, 1, Conv, [64, 3, 1]],
33
+ [-1, 1, Conv, [64, 3, 1]],
34
+ [-1, 1, Conv, [64, 3, 1]],
35
+ [-1, 1, Conv, [64, 3, 1]],
36
+ [-1, 1, Conv, [64, 3, 1]],
37
+ [-1, 1, Conv, [64, 3, 1]],
38
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
39
+ [-1, 1, Conv, [160, 1, 1]], # 22
40
+ [[-1, -11], 1, Shortcut, [1]], # 23
41
+
42
+ [-1, 1, DownC, [320]], # 24-P3/8
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, Conv, [128, 3, 1]],
46
+ [-1, 1, Conv, [128, 3, 1]],
47
+ [-1, 1, Conv, [128, 3, 1]],
48
+ [-1, 1, Conv, [128, 3, 1]],
49
+ [-1, 1, Conv, [128, 3, 1]],
50
+ [-1, 1, Conv, [128, 3, 1]],
51
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
52
+ [-1, 1, Conv, [320, 1, 1]], # 34
53
+ [-11, 1, Conv, [128, 1, 1]],
54
+ [-12, 1, Conv, [128, 1, 1]],
55
+ [-1, 1, Conv, [128, 3, 1]],
56
+ [-1, 1, Conv, [128, 3, 1]],
57
+ [-1, 1, Conv, [128, 3, 1]],
58
+ [-1, 1, Conv, [128, 3, 1]],
59
+ [-1, 1, Conv, [128, 3, 1]],
60
+ [-1, 1, Conv, [128, 3, 1]],
61
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62
+ [-1, 1, Conv, [320, 1, 1]], # 44
63
+ [[-1, -11], 1, Shortcut, [1]], # 45
64
+
65
+ [-1, 1, DownC, [640]], # 46-P4/16
66
+ [-1, 1, Conv, [256, 1, 1]],
67
+ [-2, 1, Conv, [256, 1, 1]],
68
+ [-1, 1, Conv, [256, 3, 1]],
69
+ [-1, 1, Conv, [256, 3, 1]],
70
+ [-1, 1, Conv, [256, 3, 1]],
71
+ [-1, 1, Conv, [256, 3, 1]],
72
+ [-1, 1, Conv, [256, 3, 1]],
73
+ [-1, 1, Conv, [256, 3, 1]],
74
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
75
+ [-1, 1, Conv, [640, 1, 1]], # 56
76
+ [-11, 1, Conv, [256, 1, 1]],
77
+ [-12, 1, Conv, [256, 1, 1]],
78
+ [-1, 1, Conv, [256, 3, 1]],
79
+ [-1, 1, Conv, [256, 3, 1]],
80
+ [-1, 1, Conv, [256, 3, 1]],
81
+ [-1, 1, Conv, [256, 3, 1]],
82
+ [-1, 1, Conv, [256, 3, 1]],
83
+ [-1, 1, Conv, [256, 3, 1]],
84
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
85
+ [-1, 1, Conv, [640, 1, 1]], # 66
86
+ [[-1, -11], 1, Shortcut, [1]], # 67
87
+
88
+ [-1, 1, DownC, [960]], # 68-P5/32
89
+ [-1, 1, Conv, [384, 1, 1]],
90
+ [-2, 1, Conv, [384, 1, 1]],
91
+ [-1, 1, Conv, [384, 3, 1]],
92
+ [-1, 1, Conv, [384, 3, 1]],
93
+ [-1, 1, Conv, [384, 3, 1]],
94
+ [-1, 1, Conv, [384, 3, 1]],
95
+ [-1, 1, Conv, [384, 3, 1]],
96
+ [-1, 1, Conv, [384, 3, 1]],
97
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
98
+ [-1, 1, Conv, [960, 1, 1]], # 78
99
+ [-11, 1, Conv, [384, 1, 1]],
100
+ [-12, 1, Conv, [384, 1, 1]],
101
+ [-1, 1, Conv, [384, 3, 1]],
102
+ [-1, 1, Conv, [384, 3, 1]],
103
+ [-1, 1, Conv, [384, 3, 1]],
104
+ [-1, 1, Conv, [384, 3, 1]],
105
+ [-1, 1, Conv, [384, 3, 1]],
106
+ [-1, 1, Conv, [384, 3, 1]],
107
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
108
+ [-1, 1, Conv, [960, 1, 1]], # 88
109
+ [[-1, -11], 1, Shortcut, [1]], # 89
110
+
111
+ [-1, 1, DownC, [1280]], # 90-P6/64
112
+ [-1, 1, Conv, [512, 1, 1]],
113
+ [-2, 1, Conv, [512, 1, 1]],
114
+ [-1, 1, Conv, [512, 3, 1]],
115
+ [-1, 1, Conv, [512, 3, 1]],
116
+ [-1, 1, Conv, [512, 3, 1]],
117
+ [-1, 1, Conv, [512, 3, 1]],
118
+ [-1, 1, Conv, [512, 3, 1]],
119
+ [-1, 1, Conv, [512, 3, 1]],
120
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
121
+ [-1, 1, Conv, [1280, 1, 1]], # 100
122
+ [-11, 1, Conv, [512, 1, 1]],
123
+ [-12, 1, Conv, [512, 1, 1]],
124
+ [-1, 1, Conv, [512, 3, 1]],
125
+ [-1, 1, Conv, [512, 3, 1]],
126
+ [-1, 1, Conv, [512, 3, 1]],
127
+ [-1, 1, Conv, [512, 3, 1]],
128
+ [-1, 1, Conv, [512, 3, 1]],
129
+ [-1, 1, Conv, [512, 3, 1]],
130
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
131
+ [-1, 1, Conv, [1280, 1, 1]], # 110
132
+ [[-1, -11], 1, Shortcut, [1]], # 111
133
+ ]
134
+
135
+ # yolov7-e6e head
136
+ head:
137
+ [[-1, 1, SPPCSPC, [640]], # 112
138
+
139
+ [-1, 1, Conv, [480, 1, 1]],
140
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
141
+ [89, 1, Conv, [480, 1, 1]], # route backbone P5
142
+ [[-1, -2], 1, Concat, [1]],
143
+
144
+ [-1, 1, Conv, [384, 1, 1]],
145
+ [-2, 1, Conv, [384, 1, 1]],
146
+ [-1, 1, Conv, [192, 3, 1]],
147
+ [-1, 1, Conv, [192, 3, 1]],
148
+ [-1, 1, Conv, [192, 3, 1]],
149
+ [-1, 1, Conv, [192, 3, 1]],
150
+ [-1, 1, Conv, [192, 3, 1]],
151
+ [-1, 1, Conv, [192, 3, 1]],
152
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
153
+ [-1, 1, Conv, [480, 1, 1]], # 126
154
+ [-11, 1, Conv, [384, 1, 1]],
155
+ [-12, 1, Conv, [384, 1, 1]],
156
+ [-1, 1, Conv, [192, 3, 1]],
157
+ [-1, 1, Conv, [192, 3, 1]],
158
+ [-1, 1, Conv, [192, 3, 1]],
159
+ [-1, 1, Conv, [192, 3, 1]],
160
+ [-1, 1, Conv, [192, 3, 1]],
161
+ [-1, 1, Conv, [192, 3, 1]],
162
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
163
+ [-1, 1, Conv, [480, 1, 1]], # 136
164
+ [[-1, -11], 1, Shortcut, [1]], # 137
165
+
166
+ [-1, 1, Conv, [320, 1, 1]],
167
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
168
+ [67, 1, Conv, [320, 1, 1]], # route backbone P4
169
+ [[-1, -2], 1, Concat, [1]],
170
+
171
+ [-1, 1, Conv, [256, 1, 1]],
172
+ [-2, 1, Conv, [256, 1, 1]],
173
+ [-1, 1, Conv, [128, 3, 1]],
174
+ [-1, 1, Conv, [128, 3, 1]],
175
+ [-1, 1, Conv, [128, 3, 1]],
176
+ [-1, 1, Conv, [128, 3, 1]],
177
+ [-1, 1, Conv, [128, 3, 1]],
178
+ [-1, 1, Conv, [128, 3, 1]],
179
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
180
+ [-1, 1, Conv, [320, 1, 1]], # 151
181
+ [-11, 1, Conv, [256, 1, 1]],
182
+ [-12, 1, Conv, [256, 1, 1]],
183
+ [-1, 1, Conv, [128, 3, 1]],
184
+ [-1, 1, Conv, [128, 3, 1]],
185
+ [-1, 1, Conv, [128, 3, 1]],
186
+ [-1, 1, Conv, [128, 3, 1]],
187
+ [-1, 1, Conv, [128, 3, 1]],
188
+ [-1, 1, Conv, [128, 3, 1]],
189
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
190
+ [-1, 1, Conv, [320, 1, 1]], # 161
191
+ [[-1, -11], 1, Shortcut, [1]], # 162
192
+
193
+ [-1, 1, Conv, [160, 1, 1]],
194
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
195
+ [45, 1, Conv, [160, 1, 1]], # route backbone P3
196
+ [[-1, -2], 1, Concat, [1]],
197
+
198
+ [-1, 1, Conv, [128, 1, 1]],
199
+ [-2, 1, Conv, [128, 1, 1]],
200
+ [-1, 1, Conv, [64, 3, 1]],
201
+ [-1, 1, Conv, [64, 3, 1]],
202
+ [-1, 1, Conv, [64, 3, 1]],
203
+ [-1, 1, Conv, [64, 3, 1]],
204
+ [-1, 1, Conv, [64, 3, 1]],
205
+ [-1, 1, Conv, [64, 3, 1]],
206
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
207
+ [-1, 1, Conv, [160, 1, 1]], # 176
208
+ [-11, 1, Conv, [128, 1, 1]],
209
+ [-12, 1, Conv, [128, 1, 1]],
210
+ [-1, 1, Conv, [64, 3, 1]],
211
+ [-1, 1, Conv, [64, 3, 1]],
212
+ [-1, 1, Conv, [64, 3, 1]],
213
+ [-1, 1, Conv, [64, 3, 1]],
214
+ [-1, 1, Conv, [64, 3, 1]],
215
+ [-1, 1, Conv, [64, 3, 1]],
216
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
217
+ [-1, 1, Conv, [160, 1, 1]], # 186
218
+ [[-1, -11], 1, Shortcut, [1]], # 187
219
+
220
+ [-1, 1, DownC, [320]],
221
+ [[-1, 162], 1, Concat, [1]],
222
+
223
+ [-1, 1, Conv, [256, 1, 1]],
224
+ [-2, 1, Conv, [256, 1, 1]],
225
+ [-1, 1, Conv, [128, 3, 1]],
226
+ [-1, 1, Conv, [128, 3, 1]],
227
+ [-1, 1, Conv, [128, 3, 1]],
228
+ [-1, 1, Conv, [128, 3, 1]],
229
+ [-1, 1, Conv, [128, 3, 1]],
230
+ [-1, 1, Conv, [128, 3, 1]],
231
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
232
+ [-1, 1, Conv, [320, 1, 1]], # 199
233
+ [-11, 1, Conv, [256, 1, 1]],
234
+ [-12, 1, Conv, [256, 1, 1]],
235
+ [-1, 1, Conv, [128, 3, 1]],
236
+ [-1, 1, Conv, [128, 3, 1]],
237
+ [-1, 1, Conv, [128, 3, 1]],
238
+ [-1, 1, Conv, [128, 3, 1]],
239
+ [-1, 1, Conv, [128, 3, 1]],
240
+ [-1, 1, Conv, [128, 3, 1]],
241
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
242
+ [-1, 1, Conv, [320, 1, 1]], # 209
243
+ [[-1, -11], 1, Shortcut, [1]], # 210
244
+
245
+ [-1, 1, DownC, [480]],
246
+ [[-1, 137], 1, Concat, [1]],
247
+
248
+ [-1, 1, Conv, [384, 1, 1]],
249
+ [-2, 1, Conv, [384, 1, 1]],
250
+ [-1, 1, Conv, [192, 3, 1]],
251
+ [-1, 1, Conv, [192, 3, 1]],
252
+ [-1, 1, Conv, [192, 3, 1]],
253
+ [-1, 1, Conv, [192, 3, 1]],
254
+ [-1, 1, Conv, [192, 3, 1]],
255
+ [-1, 1, Conv, [192, 3, 1]],
256
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
257
+ [-1, 1, Conv, [480, 1, 1]], # 222
258
+ [-11, 1, Conv, [384, 1, 1]],
259
+ [-12, 1, Conv, [384, 1, 1]],
260
+ [-1, 1, Conv, [192, 3, 1]],
261
+ [-1, 1, Conv, [192, 3, 1]],
262
+ [-1, 1, Conv, [192, 3, 1]],
263
+ [-1, 1, Conv, [192, 3, 1]],
264
+ [-1, 1, Conv, [192, 3, 1]],
265
+ [-1, 1, Conv, [192, 3, 1]],
266
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
267
+ [-1, 1, Conv, [480, 1, 1]], # 232
268
+ [[-1, -11], 1, Shortcut, [1]], # 233
269
+
270
+ [-1, 1, DownC, [640]],
271
+ [[-1, 112], 1, Concat, [1]],
272
+
273
+ [-1, 1, Conv, [512, 1, 1]],
274
+ [-2, 1, Conv, [512, 1, 1]],
275
+ [-1, 1, Conv, [256, 3, 1]],
276
+ [-1, 1, Conv, [256, 3, 1]],
277
+ [-1, 1, Conv, [256, 3, 1]],
278
+ [-1, 1, Conv, [256, 3, 1]],
279
+ [-1, 1, Conv, [256, 3, 1]],
280
+ [-1, 1, Conv, [256, 3, 1]],
281
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
282
+ [-1, 1, Conv, [640, 1, 1]], # 245
283
+ [-11, 1, Conv, [512, 1, 1]],
284
+ [-12, 1, Conv, [512, 1, 1]],
285
+ [-1, 1, Conv, [256, 3, 1]],
286
+ [-1, 1, Conv, [256, 3, 1]],
287
+ [-1, 1, Conv, [256, 3, 1]],
288
+ [-1, 1, Conv, [256, 3, 1]],
289
+ [-1, 1, Conv, [256, 3, 1]],
290
+ [-1, 1, Conv, [256, 3, 1]],
291
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
292
+ [-1, 1, Conv, [640, 1, 1]], # 255
293
+ [[-1, -11], 1, Shortcut, [1]], # 256
294
+
295
+ [187, 1, Conv, [320, 3, 1]],
296
+ [210, 1, Conv, [640, 3, 1]],
297
+ [233, 1, Conv, [960, 3, 1]],
298
+ [256, 1, Conv, [1280, 3, 1]],
299
+
300
+ [[257,258,259,260], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
301
+ ]
cfg/deploy/yolov7-tiny-silu.yaml ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv7-tiny backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 2]], # 0-P1/2
16
+
17
+ [-1, 1, Conv, [64, 3, 2]], # 1-P2/4
18
+
19
+ [-1, 1, Conv, [32, 1, 1]],
20
+ [-2, 1, Conv, [32, 1, 1]],
21
+ [-1, 1, Conv, [32, 3, 1]],
22
+ [-1, 1, Conv, [32, 3, 1]],
23
+ [[-1, -2, -3, -4], 1, Concat, [1]],
24
+ [-1, 1, Conv, [64, 1, 1]], # 7
25
+
26
+ [-1, 1, MP, []], # 8-P3/8
27
+ [-1, 1, Conv, [64, 1, 1]],
28
+ [-2, 1, Conv, [64, 1, 1]],
29
+ [-1, 1, Conv, [64, 3, 1]],
30
+ [-1, 1, Conv, [64, 3, 1]],
31
+ [[-1, -2, -3, -4], 1, Concat, [1]],
32
+ [-1, 1, Conv, [128, 1, 1]], # 14
33
+
34
+ [-1, 1, MP, []], # 15-P4/16
35
+ [-1, 1, Conv, [128, 1, 1]],
36
+ [-2, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [[-1, -2, -3, -4], 1, Concat, [1]],
40
+ [-1, 1, Conv, [256, 1, 1]], # 21
41
+
42
+ [-1, 1, MP, []], # 22-P5/32
43
+ [-1, 1, Conv, [256, 1, 1]],
44
+ [-2, 1, Conv, [256, 1, 1]],
45
+ [-1, 1, Conv, [256, 3, 1]],
46
+ [-1, 1, Conv, [256, 3, 1]],
47
+ [[-1, -2, -3, -4], 1, Concat, [1]],
48
+ [-1, 1, Conv, [512, 1, 1]], # 28
49
+ ]
50
+
51
+ # YOLOv7-tiny head
52
+ head:
53
+ [[-1, 1, Conv, [256, 1, 1]],
54
+ [-2, 1, Conv, [256, 1, 1]],
55
+ [-1, 1, SP, [5]],
56
+ [-2, 1, SP, [9]],
57
+ [-3, 1, SP, [13]],
58
+ [[-1, -2, -3, -4], 1, Concat, [1]],
59
+ [-1, 1, Conv, [256, 1, 1]],
60
+ [[-1, -7], 1, Concat, [1]],
61
+ [-1, 1, Conv, [256, 1, 1]], # 37
62
+
63
+ [-1, 1, Conv, [128, 1, 1]],
64
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
65
+ [21, 1, Conv, [128, 1, 1]], # route backbone P4
66
+ [[-1, -2], 1, Concat, [1]],
67
+
68
+ [-1, 1, Conv, [64, 1, 1]],
69
+ [-2, 1, Conv, [64, 1, 1]],
70
+ [-1, 1, Conv, [64, 3, 1]],
71
+ [-1, 1, Conv, [64, 3, 1]],
72
+ [[-1, -2, -3, -4], 1, Concat, [1]],
73
+ [-1, 1, Conv, [128, 1, 1]], # 47
74
+
75
+ [-1, 1, Conv, [64, 1, 1]],
76
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
77
+ [14, 1, Conv, [64, 1, 1]], # route backbone P3
78
+ [[-1, -2], 1, Concat, [1]],
79
+
80
+ [-1, 1, Conv, [32, 1, 1]],
81
+ [-2, 1, Conv, [32, 1, 1]],
82
+ [-1, 1, Conv, [32, 3, 1]],
83
+ [-1, 1, Conv, [32, 3, 1]],
84
+ [[-1, -2, -3, -4], 1, Concat, [1]],
85
+ [-1, 1, Conv, [64, 1, 1]], # 57
86
+
87
+ [-1, 1, Conv, [128, 3, 2]],
88
+ [[-1, 47], 1, Concat, [1]],
89
+
90
+ [-1, 1, Conv, [64, 1, 1]],
91
+ [-2, 1, Conv, [64, 1, 1]],
92
+ [-1, 1, Conv, [64, 3, 1]],
93
+ [-1, 1, Conv, [64, 3, 1]],
94
+ [[-1, -2, -3, -4], 1, Concat, [1]],
95
+ [-1, 1, Conv, [128, 1, 1]], # 65
96
+
97
+ [-1, 1, Conv, [256, 3, 2]],
98
+ [[-1, 37], 1, Concat, [1]],
99
+
100
+ [-1, 1, Conv, [128, 1, 1]],
101
+ [-2, 1, Conv, [128, 1, 1]],
102
+ [-1, 1, Conv, [128, 3, 1]],
103
+ [-1, 1, Conv, [128, 3, 1]],
104
+ [[-1, -2, -3, -4], 1, Concat, [1]],
105
+ [-1, 1, Conv, [256, 1, 1]], # 73
106
+
107
+ [57, 1, Conv, [128, 3, 1]],
108
+ [65, 1, Conv, [256, 3, 1]],
109
+ [73, 1, Conv, [512, 3, 1]],
110
+
111
+ [[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
112
+ ]
cfg/deploy/yolov7-w6.yaml ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7-w6 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [[-1, -3, -5, -6], 1, Concat, [1]],
27
+ [-1, 1, Conv, [128, 1, 1]], # 10
28
+
29
+ [-1, 1, Conv, [256, 3, 2]], # 11-P3/8
30
+ [-1, 1, Conv, [128, 1, 1]],
31
+ [-2, 1, Conv, [128, 1, 1]],
32
+ [-1, 1, Conv, [128, 3, 1]],
33
+ [-1, 1, Conv, [128, 3, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [[-1, -3, -5, -6], 1, Concat, [1]],
37
+ [-1, 1, Conv, [256, 1, 1]], # 19
38
+
39
+ [-1, 1, Conv, [512, 3, 2]], # 20-P4/16
40
+ [-1, 1, Conv, [256, 1, 1]],
41
+ [-2, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [256, 3, 1]],
43
+ [-1, 1, Conv, [256, 3, 1]],
44
+ [-1, 1, Conv, [256, 3, 1]],
45
+ [-1, 1, Conv, [256, 3, 1]],
46
+ [[-1, -3, -5, -6], 1, Concat, [1]],
47
+ [-1, 1, Conv, [512, 1, 1]], # 28
48
+
49
+ [-1, 1, Conv, [768, 3, 2]], # 29-P5/32
50
+ [-1, 1, Conv, [384, 1, 1]],
51
+ [-2, 1, Conv, [384, 1, 1]],
52
+ [-1, 1, Conv, [384, 3, 1]],
53
+ [-1, 1, Conv, [384, 3, 1]],
54
+ [-1, 1, Conv, [384, 3, 1]],
55
+ [-1, 1, Conv, [384, 3, 1]],
56
+ [[-1, -3, -5, -6], 1, Concat, [1]],
57
+ [-1, 1, Conv, [768, 1, 1]], # 37
58
+
59
+ [-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
60
+ [-1, 1, Conv, [512, 1, 1]],
61
+ [-2, 1, Conv, [512, 1, 1]],
62
+ [-1, 1, Conv, [512, 3, 1]],
63
+ [-1, 1, Conv, [512, 3, 1]],
64
+ [-1, 1, Conv, [512, 3, 1]],
65
+ [-1, 1, Conv, [512, 3, 1]],
66
+ [[-1, -3, -5, -6], 1, Concat, [1]],
67
+ [-1, 1, Conv, [1024, 1, 1]], # 46
68
+ ]
69
+
70
+ # yolov7-w6 head
71
+ head:
72
+ [[-1, 1, SPPCSPC, [512]], # 47
73
+
74
+ [-1, 1, Conv, [384, 1, 1]],
75
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
76
+ [37, 1, Conv, [384, 1, 1]], # route backbone P5
77
+ [[-1, -2], 1, Concat, [1]],
78
+
79
+ [-1, 1, Conv, [384, 1, 1]],
80
+ [-2, 1, Conv, [384, 1, 1]],
81
+ [-1, 1, Conv, [192, 3, 1]],
82
+ [-1, 1, Conv, [192, 3, 1]],
83
+ [-1, 1, Conv, [192, 3, 1]],
84
+ [-1, 1, Conv, [192, 3, 1]],
85
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
86
+ [-1, 1, Conv, [384, 1, 1]], # 59
87
+
88
+ [-1, 1, Conv, [256, 1, 1]],
89
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
90
+ [28, 1, Conv, [256, 1, 1]], # route backbone P4
91
+ [[-1, -2], 1, Concat, [1]],
92
+
93
+ [-1, 1, Conv, [256, 1, 1]],
94
+ [-2, 1, Conv, [256, 1, 1]],
95
+ [-1, 1, Conv, [128, 3, 1]],
96
+ [-1, 1, Conv, [128, 3, 1]],
97
+ [-1, 1, Conv, [128, 3, 1]],
98
+ [-1, 1, Conv, [128, 3, 1]],
99
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
100
+ [-1, 1, Conv, [256, 1, 1]], # 71
101
+
102
+ [-1, 1, Conv, [128, 1, 1]],
103
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
104
+ [19, 1, Conv, [128, 1, 1]], # route backbone P3
105
+ [[-1, -2], 1, Concat, [1]],
106
+
107
+ [-1, 1, Conv, [128, 1, 1]],
108
+ [-2, 1, Conv, [128, 1, 1]],
109
+ [-1, 1, Conv, [64, 3, 1]],
110
+ [-1, 1, Conv, [64, 3, 1]],
111
+ [-1, 1, Conv, [64, 3, 1]],
112
+ [-1, 1, Conv, [64, 3, 1]],
113
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
114
+ [-1, 1, Conv, [128, 1, 1]], # 83
115
+
116
+ [-1, 1, Conv, [256, 3, 2]],
117
+ [[-1, 71], 1, Concat, [1]], # cat
118
+
119
+ [-1, 1, Conv, [256, 1, 1]],
120
+ [-2, 1, Conv, [256, 1, 1]],
121
+ [-1, 1, Conv, [128, 3, 1]],
122
+ [-1, 1, Conv, [128, 3, 1]],
123
+ [-1, 1, Conv, [128, 3, 1]],
124
+ [-1, 1, Conv, [128, 3, 1]],
125
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
126
+ [-1, 1, Conv, [256, 1, 1]], # 93
127
+
128
+ [-1, 1, Conv, [384, 3, 2]],
129
+ [[-1, 59], 1, Concat, [1]], # cat
130
+
131
+ [-1, 1, Conv, [384, 1, 1]],
132
+ [-2, 1, Conv, [384, 1, 1]],
133
+ [-1, 1, Conv, [192, 3, 1]],
134
+ [-1, 1, Conv, [192, 3, 1]],
135
+ [-1, 1, Conv, [192, 3, 1]],
136
+ [-1, 1, Conv, [192, 3, 1]],
137
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
138
+ [-1, 1, Conv, [384, 1, 1]], # 103
139
+
140
+ [-1, 1, Conv, [512, 3, 2]],
141
+ [[-1, 47], 1, Concat, [1]], # cat
142
+
143
+ [-1, 1, Conv, [512, 1, 1]],
144
+ [-2, 1, Conv, [512, 1, 1]],
145
+ [-1, 1, Conv, [256, 3, 1]],
146
+ [-1, 1, Conv, [256, 3, 1]],
147
+ [-1, 1, Conv, [256, 3, 1]],
148
+ [-1, 1, Conv, [256, 3, 1]],
149
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
150
+ [-1, 1, Conv, [512, 1, 1]], # 113
151
+
152
+ [83, 1, Conv, [256, 3, 1]],
153
+ [93, 1, Conv, [512, 3, 1]],
154
+ [103, 1, Conv, [768, 3, 1]],
155
+ [113, 1, Conv, [1024, 3, 1]],
156
+
157
+ [[114,115,116,117], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
158
+ ]
cfg/deploy/yolov7.yaml ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # yolov7 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+
17
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
18
+ [-1, 1, Conv, [64, 3, 1]],
19
+
20
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
21
+ [-1, 1, Conv, [64, 1, 1]],
22
+ [-2, 1, Conv, [64, 1, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [[-1, -3, -5, -6], 1, Concat, [1]],
28
+ [-1, 1, Conv, [256, 1, 1]], # 11
29
+
30
+ [-1, 1, MP, []],
31
+ [-1, 1, Conv, [128, 1, 1]],
32
+ [-3, 1, Conv, [128, 1, 1]],
33
+ [-1, 1, Conv, [128, 3, 2]],
34
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
35
+ [-1, 1, Conv, [128, 1, 1]],
36
+ [-2, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [[-1, -3, -5, -6], 1, Concat, [1]],
42
+ [-1, 1, Conv, [512, 1, 1]], # 24
43
+
44
+ [-1, 1, MP, []],
45
+ [-1, 1, Conv, [256, 1, 1]],
46
+ [-3, 1, Conv, [256, 1, 1]],
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
49
+ [-1, 1, Conv, [256, 1, 1]],
50
+ [-2, 1, Conv, [256, 1, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [-1, 1, Conv, [256, 3, 1]],
53
+ [-1, 1, Conv, [256, 3, 1]],
54
+ [-1, 1, Conv, [256, 3, 1]],
55
+ [[-1, -3, -5, -6], 1, Concat, [1]],
56
+ [-1, 1, Conv, [1024, 1, 1]], # 37
57
+
58
+ [-1, 1, MP, []],
59
+ [-1, 1, Conv, [512, 1, 1]],
60
+ [-3, 1, Conv, [512, 1, 1]],
61
+ [-1, 1, Conv, [512, 3, 2]],
62
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
63
+ [-1, 1, Conv, [256, 1, 1]],
64
+ [-2, 1, Conv, [256, 1, 1]],
65
+ [-1, 1, Conv, [256, 3, 1]],
66
+ [-1, 1, Conv, [256, 3, 1]],
67
+ [-1, 1, Conv, [256, 3, 1]],
68
+ [-1, 1, Conv, [256, 3, 1]],
69
+ [[-1, -3, -5, -6], 1, Concat, [1]],
70
+ [-1, 1, Conv, [1024, 1, 1]], # 50
71
+ ]
72
+
73
+ # yolov7 head
74
+ head:
75
+ [[-1, 1, SPPCSPC, [512]], # 51
76
+
77
+ [-1, 1, Conv, [256, 1, 1]],
78
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
79
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
80
+ [[-1, -2], 1, Concat, [1]],
81
+
82
+ [-1, 1, Conv, [256, 1, 1]],
83
+ [-2, 1, Conv, [256, 1, 1]],
84
+ [-1, 1, Conv, [128, 3, 1]],
85
+ [-1, 1, Conv, [128, 3, 1]],
86
+ [-1, 1, Conv, [128, 3, 1]],
87
+ [-1, 1, Conv, [128, 3, 1]],
88
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
89
+ [-1, 1, Conv, [256, 1, 1]], # 63
90
+
91
+ [-1, 1, Conv, [128, 1, 1]],
92
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
94
+ [[-1, -2], 1, Concat, [1]],
95
+
96
+ [-1, 1, Conv, [128, 1, 1]],
97
+ [-2, 1, Conv, [128, 1, 1]],
98
+ [-1, 1, Conv, [64, 3, 1]],
99
+ [-1, 1, Conv, [64, 3, 1]],
100
+ [-1, 1, Conv, [64, 3, 1]],
101
+ [-1, 1, Conv, [64, 3, 1]],
102
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
103
+ [-1, 1, Conv, [128, 1, 1]], # 75
104
+
105
+ [-1, 1, MP, []],
106
+ [-1, 1, Conv, [128, 1, 1]],
107
+ [-3, 1, Conv, [128, 1, 1]],
108
+ [-1, 1, Conv, [128, 3, 2]],
109
+ [[-1, -3, 63], 1, Concat, [1]],
110
+
111
+ [-1, 1, Conv, [256, 1, 1]],
112
+ [-2, 1, Conv, [256, 1, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [-1, 1, Conv, [128, 3, 1]],
115
+ [-1, 1, Conv, [128, 3, 1]],
116
+ [-1, 1, Conv, [128, 3, 1]],
117
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
118
+ [-1, 1, Conv, [256, 1, 1]], # 88
119
+
120
+ [-1, 1, MP, []],
121
+ [-1, 1, Conv, [256, 1, 1]],
122
+ [-3, 1, Conv, [256, 1, 1]],
123
+ [-1, 1, Conv, [256, 3, 2]],
124
+ [[-1, -3, 51], 1, Concat, [1]],
125
+
126
+ [-1, 1, Conv, [512, 1, 1]],
127
+ [-2, 1, Conv, [512, 1, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [-1, 1, Conv, [256, 3, 1]],
130
+ [-1, 1, Conv, [256, 3, 1]],
131
+ [-1, 1, Conv, [256, 3, 1]],
132
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
133
+ [-1, 1, Conv, [512, 1, 1]], # 101
134
+
135
+ [75, 1, RepConv, [256, 3, 1]],
136
+ [88, 1, RepConv, [512, 3, 1]],
137
+ [101, 1, RepConv, [1024, 3, 1]],
138
+
139
+ [[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
140
+ ]
cfg/deploy/yolov7x.yaml ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # yolov7x backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [40, 3, 1]], # 0
16
+
17
+ [-1, 1, Conv, [80, 3, 2]], # 1-P1/2
18
+ [-1, 1, Conv, [80, 3, 1]],
19
+
20
+ [-1, 1, Conv, [160, 3, 2]], # 3-P2/4
21
+ [-1, 1, Conv, [64, 1, 1]],
22
+ [-2, 1, Conv, [64, 1, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [-1, 1, Conv, [64, 3, 1]],
29
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
30
+ [-1, 1, Conv, [320, 1, 1]], # 13
31
+
32
+ [-1, 1, MP, []],
33
+ [-1, 1, Conv, [160, 1, 1]],
34
+ [-3, 1, Conv, [160, 1, 1]],
35
+ [-1, 1, Conv, [160, 3, 2]],
36
+ [[-1, -3], 1, Concat, [1]], # 18-P3/8
37
+ [-1, 1, Conv, [128, 1, 1]],
38
+ [-2, 1, Conv, [128, 1, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [-1, 1, Conv, [128, 3, 1]],
42
+ [-1, 1, Conv, [128, 3, 1]],
43
+ [-1, 1, Conv, [128, 3, 1]],
44
+ [-1, 1, Conv, [128, 3, 1]],
45
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
46
+ [-1, 1, Conv, [640, 1, 1]], # 28
47
+
48
+ [-1, 1, MP, []],
49
+ [-1, 1, Conv, [320, 1, 1]],
50
+ [-3, 1, Conv, [320, 1, 1]],
51
+ [-1, 1, Conv, [320, 3, 2]],
52
+ [[-1, -3], 1, Concat, [1]], # 33-P4/16
53
+ [-1, 1, Conv, [256, 1, 1]],
54
+ [-2, 1, Conv, [256, 1, 1]],
55
+ [-1, 1, Conv, [256, 3, 1]],
56
+ [-1, 1, Conv, [256, 3, 1]],
57
+ [-1, 1, Conv, [256, 3, 1]],
58
+ [-1, 1, Conv, [256, 3, 1]],
59
+ [-1, 1, Conv, [256, 3, 1]],
60
+ [-1, 1, Conv, [256, 3, 1]],
61
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62
+ [-1, 1, Conv, [1280, 1, 1]], # 43
63
+
64
+ [-1, 1, MP, []],
65
+ [-1, 1, Conv, [640, 1, 1]],
66
+ [-3, 1, Conv, [640, 1, 1]],
67
+ [-1, 1, Conv, [640, 3, 2]],
68
+ [[-1, -3], 1, Concat, [1]], # 48-P5/32
69
+ [-1, 1, Conv, [256, 1, 1]],
70
+ [-2, 1, Conv, [256, 1, 1]],
71
+ [-1, 1, Conv, [256, 3, 1]],
72
+ [-1, 1, Conv, [256, 3, 1]],
73
+ [-1, 1, Conv, [256, 3, 1]],
74
+ [-1, 1, Conv, [256, 3, 1]],
75
+ [-1, 1, Conv, [256, 3, 1]],
76
+ [-1, 1, Conv, [256, 3, 1]],
77
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
78
+ [-1, 1, Conv, [1280, 1, 1]], # 58
79
+ ]
80
+
81
+ # yolov7x head
82
+ head:
83
+ [[-1, 1, SPPCSPC, [640]], # 59
84
+
85
+ [-1, 1, Conv, [320, 1, 1]],
86
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
87
+ [43, 1, Conv, [320, 1, 1]], # route backbone P4
88
+ [[-1, -2], 1, Concat, [1]],
89
+
90
+ [-1, 1, Conv, [256, 1, 1]],
91
+ [-2, 1, Conv, [256, 1, 1]],
92
+ [-1, 1, Conv, [256, 3, 1]],
93
+ [-1, 1, Conv, [256, 3, 1]],
94
+ [-1, 1, Conv, [256, 3, 1]],
95
+ [-1, 1, Conv, [256, 3, 1]],
96
+ [-1, 1, Conv, [256, 3, 1]],
97
+ [-1, 1, Conv, [256, 3, 1]],
98
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
99
+ [-1, 1, Conv, [320, 1, 1]], # 73
100
+
101
+ [-1, 1, Conv, [160, 1, 1]],
102
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
103
+ [28, 1, Conv, [160, 1, 1]], # route backbone P3
104
+ [[-1, -2], 1, Concat, [1]],
105
+
106
+ [-1, 1, Conv, [128, 1, 1]],
107
+ [-2, 1, Conv, [128, 1, 1]],
108
+ [-1, 1, Conv, [128, 3, 1]],
109
+ [-1, 1, Conv, [128, 3, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
115
+ [-1, 1, Conv, [160, 1, 1]], # 87
116
+
117
+ [-1, 1, MP, []],
118
+ [-1, 1, Conv, [160, 1, 1]],
119
+ [-3, 1, Conv, [160, 1, 1]],
120
+ [-1, 1, Conv, [160, 3, 2]],
121
+ [[-1, -3, 73], 1, Concat, [1]],
122
+
123
+ [-1, 1, Conv, [256, 1, 1]],
124
+ [-2, 1, Conv, [256, 1, 1]],
125
+ [-1, 1, Conv, [256, 3, 1]],
126
+ [-1, 1, Conv, [256, 3, 1]],
127
+ [-1, 1, Conv, [256, 3, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [-1, 1, Conv, [256, 3, 1]],
130
+ [-1, 1, Conv, [256, 3, 1]],
131
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
132
+ [-1, 1, Conv, [320, 1, 1]], # 102
133
+
134
+ [-1, 1, MP, []],
135
+ [-1, 1, Conv, [320, 1, 1]],
136
+ [-3, 1, Conv, [320, 1, 1]],
137
+ [-1, 1, Conv, [320, 3, 2]],
138
+ [[-1, -3, 59], 1, Concat, [1]],
139
+
140
+ [-1, 1, Conv, [512, 1, 1]],
141
+ [-2, 1, Conv, [512, 1, 1]],
142
+ [-1, 1, Conv, [512, 3, 1]],
143
+ [-1, 1, Conv, [512, 3, 1]],
144
+ [-1, 1, Conv, [512, 3, 1]],
145
+ [-1, 1, Conv, [512, 3, 1]],
146
+ [-1, 1, Conv, [512, 3, 1]],
147
+ [-1, 1, Conv, [512, 3, 1]],
148
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
149
+ [-1, 1, Conv, [640, 1, 1]], # 117
150
+
151
+ [87, 1, Conv, [320, 3, 1]],
152
+ [102, 1, Conv, [640, 3, 1]],
153
+ [117, 1, Conv, [1280, 3, 1]],
154
+
155
+ [[118,119,120], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
156
+ ]
cfg/training/yolov7.yaml ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # yolov7 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+
17
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
18
+ [-1, 1, Conv, [64, 3, 1]],
19
+
20
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
21
+ [-1, 1, Conv, [64, 1, 1]],
22
+ [-2, 1, Conv, [64, 1, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [[-1, -3, -5, -6], 1, Concat, [1]],
28
+ [-1, 1, Conv, [256, 1, 1]], # 11
29
+
30
+ [-1, 1, MP, []],
31
+ [-1, 1, Conv, [128, 1, 1]],
32
+ [-3, 1, Conv, [128, 1, 1]],
33
+ [-1, 1, Conv, [128, 3, 2]],
34
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
35
+ [-1, 1, Conv, [128, 1, 1]],
36
+ [-2, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [[-1, -3, -5, -6], 1, Concat, [1]],
42
+ [-1, 1, Conv, [512, 1, 1]], # 24
43
+
44
+ [-1, 1, MP, []],
45
+ [-1, 1, Conv, [256, 1, 1]],
46
+ [-3, 1, Conv, [256, 1, 1]],
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
49
+ [-1, 1, Conv, [256, 1, 1]],
50
+ [-2, 1, Conv, [256, 1, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [-1, 1, Conv, [256, 3, 1]],
53
+ [-1, 1, Conv, [256, 3, 1]],
54
+ [-1, 1, Conv, [256, 3, 1]],
55
+ [[-1, -3, -5, -6], 1, Concat, [1]],
56
+ [-1, 1, Conv, [1024, 1, 1]], # 37
57
+
58
+ [-1, 1, MP, []],
59
+ [-1, 1, Conv, [512, 1, 1]],
60
+ [-3, 1, Conv, [512, 1, 1]],
61
+ [-1, 1, Conv, [512, 3, 2]],
62
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
63
+ [-1, 1, Conv, [256, 1, 1]],
64
+ [-2, 1, Conv, [256, 1, 1]],
65
+ [-1, 1, Conv, [256, 3, 1]],
66
+ [-1, 1, Conv, [256, 3, 1]],
67
+ [-1, 1, Conv, [256, 3, 1]],
68
+ [-1, 1, Conv, [256, 3, 1]],
69
+ [[-1, -3, -5, -6], 1, Concat, [1]],
70
+ [-1, 1, Conv, [1024, 1, 1]], # 50
71
+ ]
72
+
73
+ # yolov7 head
74
+ head:
75
+ [[-1, 1, SPPCSPC, [512]], # 51
76
+
77
+ [-1, 1, Conv, [256, 1, 1]],
78
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
79
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
80
+ [[-1, -2], 1, Concat, [1]],
81
+
82
+ [-1, 1, Conv, [256, 1, 1]],
83
+ [-2, 1, Conv, [256, 1, 1]],
84
+ [-1, 1, Conv, [128, 3, 1]],
85
+ [-1, 1, Conv, [128, 3, 1]],
86
+ [-1, 1, Conv, [128, 3, 1]],
87
+ [-1, 1, Conv, [128, 3, 1]],
88
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
89
+ [-1, 1, Conv, [256, 1, 1]], # 63
90
+
91
+ [-1, 1, Conv, [128, 1, 1]],
92
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
94
+ [[-1, -2], 1, Concat, [1]],
95
+
96
+ [-1, 1, Conv, [128, 1, 1]],
97
+ [-2, 1, Conv, [128, 1, 1]],
98
+ [-1, 1, Conv, [64, 3, 1]],
99
+ [-1, 1, Conv, [64, 3, 1]],
100
+ [-1, 1, Conv, [64, 3, 1]],
101
+ [-1, 1, Conv, [64, 3, 1]],
102
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
103
+ [-1, 1, Conv, [128, 1, 1]], # 75
104
+
105
+ [-1, 1, MP, []],
106
+ [-1, 1, Conv, [128, 1, 1]],
107
+ [-3, 1, Conv, [128, 1, 1]],
108
+ [-1, 1, Conv, [128, 3, 2]],
109
+ [[-1, -3, 63], 1, Concat, [1]],
110
+
111
+ [-1, 1, Conv, [256, 1, 1]],
112
+ [-2, 1, Conv, [256, 1, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [-1, 1, Conv, [128, 3, 1]],
115
+ [-1, 1, Conv, [128, 3, 1]],
116
+ [-1, 1, Conv, [128, 3, 1]],
117
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
118
+ [-1, 1, Conv, [256, 1, 1]], # 88
119
+
120
+ [-1, 1, MP, []],
121
+ [-1, 1, Conv, [256, 1, 1]],
122
+ [-3, 1, Conv, [256, 1, 1]],
123
+ [-1, 1, Conv, [256, 3, 2]],
124
+ [[-1, -3, 51], 1, Concat, [1]],
125
+
126
+ [-1, 1, Conv, [512, 1, 1]],
127
+ [-2, 1, Conv, [512, 1, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [-1, 1, Conv, [256, 3, 1]],
130
+ [-1, 1, Conv, [256, 3, 1]],
131
+ [-1, 1, Conv, [256, 3, 1]],
132
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
133
+ [-1, 1, Conv, [512, 1, 1]], # 101
134
+
135
+ [75, 1, RepConv, [256, 3, 1]],
136
+ [88, 1, RepConv, [512, 3, 1]],
137
+ [101, 1, RepConv, [1024, 3, 1]],
138
+
139
+ [[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
140
+ ]
cfg/training/yolov7d6.yaml ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [96, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [192]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [-1, 1, Conv, [64, 3, 1]],
29
+ [-1, 1, Conv, [64, 3, 1]],
30
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
31
+ [-1, 1, Conv, [192, 1, 1]], # 14
32
+
33
+ [-1, 1, DownC, [384]], # 15-P3/8
34
+ [-1, 1, Conv, [128, 1, 1]],
35
+ [-2, 1, Conv, [128, 1, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [-1, 1, Conv, [128, 3, 1]],
42
+ [-1, 1, Conv, [128, 3, 1]],
43
+ [-1, 1, Conv, [128, 3, 1]],
44
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
45
+ [-1, 1, Conv, [384, 1, 1]], # 27
46
+
47
+ [-1, 1, DownC, [768]], # 28-P4/16
48
+ [-1, 1, Conv, [256, 1, 1]],
49
+ [-2, 1, Conv, [256, 1, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [-1, 1, Conv, [256, 3, 1]],
53
+ [-1, 1, Conv, [256, 3, 1]],
54
+ [-1, 1, Conv, [256, 3, 1]],
55
+ [-1, 1, Conv, [256, 3, 1]],
56
+ [-1, 1, Conv, [256, 3, 1]],
57
+ [-1, 1, Conv, [256, 3, 1]],
58
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
59
+ [-1, 1, Conv, [768, 1, 1]], # 40
60
+
61
+ [-1, 1, DownC, [1152]], # 41-P5/32
62
+ [-1, 1, Conv, [384, 1, 1]],
63
+ [-2, 1, Conv, [384, 1, 1]],
64
+ [-1, 1, Conv, [384, 3, 1]],
65
+ [-1, 1, Conv, [384, 3, 1]],
66
+ [-1, 1, Conv, [384, 3, 1]],
67
+ [-1, 1, Conv, [384, 3, 1]],
68
+ [-1, 1, Conv, [384, 3, 1]],
69
+ [-1, 1, Conv, [384, 3, 1]],
70
+ [-1, 1, Conv, [384, 3, 1]],
71
+ [-1, 1, Conv, [384, 3, 1]],
72
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
73
+ [-1, 1, Conv, [1152, 1, 1]], # 53
74
+
75
+ [-1, 1, DownC, [1536]], # 54-P6/64
76
+ [-1, 1, Conv, [512, 1, 1]],
77
+ [-2, 1, Conv, [512, 1, 1]],
78
+ [-1, 1, Conv, [512, 3, 1]],
79
+ [-1, 1, Conv, [512, 3, 1]],
80
+ [-1, 1, Conv, [512, 3, 1]],
81
+ [-1, 1, Conv, [512, 3, 1]],
82
+ [-1, 1, Conv, [512, 3, 1]],
83
+ [-1, 1, Conv, [512, 3, 1]],
84
+ [-1, 1, Conv, [512, 3, 1]],
85
+ [-1, 1, Conv, [512, 3, 1]],
86
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
87
+ [-1, 1, Conv, [1536, 1, 1]], # 66
88
+ ]
89
+
90
+ # yolov7 head
91
+ head:
92
+ [[-1, 1, SPPCSPC, [768]], # 67
93
+
94
+ [-1, 1, Conv, [576, 1, 1]],
95
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
96
+ [53, 1, Conv, [576, 1, 1]], # route backbone P5
97
+ [[-1, -2], 1, Concat, [1]],
98
+
99
+ [-1, 1, Conv, [384, 1, 1]],
100
+ [-2, 1, Conv, [384, 1, 1]],
101
+ [-1, 1, Conv, [192, 3, 1]],
102
+ [-1, 1, Conv, [192, 3, 1]],
103
+ [-1, 1, Conv, [192, 3, 1]],
104
+ [-1, 1, Conv, [192, 3, 1]],
105
+ [-1, 1, Conv, [192, 3, 1]],
106
+ [-1, 1, Conv, [192, 3, 1]],
107
+ [-1, 1, Conv, [192, 3, 1]],
108
+ [-1, 1, Conv, [192, 3, 1]],
109
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
110
+ [-1, 1, Conv, [576, 1, 1]], # 83
111
+
112
+ [-1, 1, Conv, [384, 1, 1]],
113
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
114
+ [40, 1, Conv, [384, 1, 1]], # route backbone P4
115
+ [[-1, -2], 1, Concat, [1]],
116
+
117
+ [-1, 1, Conv, [256, 1, 1]],
118
+ [-2, 1, Conv, [256, 1, 1]],
119
+ [-1, 1, Conv, [128, 3, 1]],
120
+ [-1, 1, Conv, [128, 3, 1]],
121
+ [-1, 1, Conv, [128, 3, 1]],
122
+ [-1, 1, Conv, [128, 3, 1]],
123
+ [-1, 1, Conv, [128, 3, 1]],
124
+ [-1, 1, Conv, [128, 3, 1]],
125
+ [-1, 1, Conv, [128, 3, 1]],
126
+ [-1, 1, Conv, [128, 3, 1]],
127
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
128
+ [-1, 1, Conv, [384, 1, 1]], # 99
129
+
130
+ [-1, 1, Conv, [192, 1, 1]],
131
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
132
+ [27, 1, Conv, [192, 1, 1]], # route backbone P3
133
+ [[-1, -2], 1, Concat, [1]],
134
+
135
+ [-1, 1, Conv, [128, 1, 1]],
136
+ [-2, 1, Conv, [128, 1, 1]],
137
+ [-1, 1, Conv, [64, 3, 1]],
138
+ [-1, 1, Conv, [64, 3, 1]],
139
+ [-1, 1, Conv, [64, 3, 1]],
140
+ [-1, 1, Conv, [64, 3, 1]],
141
+ [-1, 1, Conv, [64, 3, 1]],
142
+ [-1, 1, Conv, [64, 3, 1]],
143
+ [-1, 1, Conv, [64, 3, 1]],
144
+ [-1, 1, Conv, [64, 3, 1]],
145
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
146
+ [-1, 1, Conv, [192, 1, 1]], # 115
147
+
148
+ [-1, 1, DownC, [384]],
149
+ [[-1, 99], 1, Concat, [1]],
150
+
151
+ [-1, 1, Conv, [256, 1, 1]],
152
+ [-2, 1, Conv, [256, 1, 1]],
153
+ [-1, 1, Conv, [128, 3, 1]],
154
+ [-1, 1, Conv, [128, 3, 1]],
155
+ [-1, 1, Conv, [128, 3, 1]],
156
+ [-1, 1, Conv, [128, 3, 1]],
157
+ [-1, 1, Conv, [128, 3, 1]],
158
+ [-1, 1, Conv, [128, 3, 1]],
159
+ [-1, 1, Conv, [128, 3, 1]],
160
+ [-1, 1, Conv, [128, 3, 1]],
161
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
162
+ [-1, 1, Conv, [384, 1, 1]], # 129
163
+
164
+ [-1, 1, DownC, [576]],
165
+ [[-1, 83], 1, Concat, [1]],
166
+
167
+ [-1, 1, Conv, [384, 1, 1]],
168
+ [-2, 1, Conv, [384, 1, 1]],
169
+ [-1, 1, Conv, [192, 3, 1]],
170
+ [-1, 1, Conv, [192, 3, 1]],
171
+ [-1, 1, Conv, [192, 3, 1]],
172
+ [-1, 1, Conv, [192, 3, 1]],
173
+ [-1, 1, Conv, [192, 3, 1]],
174
+ [-1, 1, Conv, [192, 3, 1]],
175
+ [-1, 1, Conv, [192, 3, 1]],
176
+ [-1, 1, Conv, [192, 3, 1]],
177
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
178
+ [-1, 1, Conv, [576, 1, 1]], # 143
179
+
180
+ [-1, 1, DownC, [768]],
181
+ [[-1, 67], 1, Concat, [1]],
182
+
183
+ [-1, 1, Conv, [512, 1, 1]],
184
+ [-2, 1, Conv, [512, 1, 1]],
185
+ [-1, 1, Conv, [256, 3, 1]],
186
+ [-1, 1, Conv, [256, 3, 1]],
187
+ [-1, 1, Conv, [256, 3, 1]],
188
+ [-1, 1, Conv, [256, 3, 1]],
189
+ [-1, 1, Conv, [256, 3, 1]],
190
+ [-1, 1, Conv, [256, 3, 1]],
191
+ [-1, 1, Conv, [256, 3, 1]],
192
+ [-1, 1, Conv, [256, 3, 1]],
193
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
194
+ [-1, 1, Conv, [768, 1, 1]], # 157
195
+
196
+ [115, 1, Conv, [384, 3, 1]],
197
+ [129, 1, Conv, [768, 3, 1]],
198
+ [143, 1, Conv, [1152, 3, 1]],
199
+ [157, 1, Conv, [1536, 3, 1]],
200
+
201
+ [115, 1, Conv, [384, 3, 1]],
202
+ [99, 1, Conv, [768, 3, 1]],
203
+ [83, 1, Conv, [1152, 3, 1]],
204
+ [67, 1, Conv, [1536, 3, 1]],
205
+
206
+ [[158,159,160,161,162,163,164,165], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
207
+ ]
cfg/training/yolov7e6.yaml ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [160]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29
+ [-1, 1, Conv, [160, 1, 1]], # 12
30
+
31
+ [-1, 1, DownC, [320]], # 13-P3/8
32
+ [-1, 1, Conv, [128, 1, 1]],
33
+ [-2, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
41
+ [-1, 1, Conv, [320, 1, 1]], # 23
42
+
43
+ [-1, 1, DownC, [640]], # 24-P4/16
44
+ [-1, 1, Conv, [256, 1, 1]],
45
+ [-2, 1, Conv, [256, 1, 1]],
46
+ [-1, 1, Conv, [256, 3, 1]],
47
+ [-1, 1, Conv, [256, 3, 1]],
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-1, 1, Conv, [256, 3, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
53
+ [-1, 1, Conv, [640, 1, 1]], # 34
54
+
55
+ [-1, 1, DownC, [960]], # 35-P5/32
56
+ [-1, 1, Conv, [384, 1, 1]],
57
+ [-2, 1, Conv, [384, 1, 1]],
58
+ [-1, 1, Conv, [384, 3, 1]],
59
+ [-1, 1, Conv, [384, 3, 1]],
60
+ [-1, 1, Conv, [384, 3, 1]],
61
+ [-1, 1, Conv, [384, 3, 1]],
62
+ [-1, 1, Conv, [384, 3, 1]],
63
+ [-1, 1, Conv, [384, 3, 1]],
64
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
65
+ [-1, 1, Conv, [960, 1, 1]], # 45
66
+
67
+ [-1, 1, DownC, [1280]], # 46-P6/64
68
+ [-1, 1, Conv, [512, 1, 1]],
69
+ [-2, 1, Conv, [512, 1, 1]],
70
+ [-1, 1, Conv, [512, 3, 1]],
71
+ [-1, 1, Conv, [512, 3, 1]],
72
+ [-1, 1, Conv, [512, 3, 1]],
73
+ [-1, 1, Conv, [512, 3, 1]],
74
+ [-1, 1, Conv, [512, 3, 1]],
75
+ [-1, 1, Conv, [512, 3, 1]],
76
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
77
+ [-1, 1, Conv, [1280, 1, 1]], # 56
78
+ ]
79
+
80
+ # yolov7 head
81
+ head:
82
+ [[-1, 1, SPPCSPC, [640]], # 57
83
+
84
+ [-1, 1, Conv, [480, 1, 1]],
85
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
86
+ [45, 1, Conv, [480, 1, 1]], # route backbone P5
87
+ [[-1, -2], 1, Concat, [1]],
88
+
89
+ [-1, 1, Conv, [384, 1, 1]],
90
+ [-2, 1, Conv, [384, 1, 1]],
91
+ [-1, 1, Conv, [192, 3, 1]],
92
+ [-1, 1, Conv, [192, 3, 1]],
93
+ [-1, 1, Conv, [192, 3, 1]],
94
+ [-1, 1, Conv, [192, 3, 1]],
95
+ [-1, 1, Conv, [192, 3, 1]],
96
+ [-1, 1, Conv, [192, 3, 1]],
97
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
98
+ [-1, 1, Conv, [480, 1, 1]], # 71
99
+
100
+ [-1, 1, Conv, [320, 1, 1]],
101
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
102
+ [34, 1, Conv, [320, 1, 1]], # route backbone P4
103
+ [[-1, -2], 1, Concat, [1]],
104
+
105
+ [-1, 1, Conv, [256, 1, 1]],
106
+ [-2, 1, Conv, [256, 1, 1]],
107
+ [-1, 1, Conv, [128, 3, 1]],
108
+ [-1, 1, Conv, [128, 3, 1]],
109
+ [-1, 1, Conv, [128, 3, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
114
+ [-1, 1, Conv, [320, 1, 1]], # 85
115
+
116
+ [-1, 1, Conv, [160, 1, 1]],
117
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
118
+ [23, 1, Conv, [160, 1, 1]], # route backbone P3
119
+ [[-1, -2], 1, Concat, [1]],
120
+
121
+ [-1, 1, Conv, [128, 1, 1]],
122
+ [-2, 1, Conv, [128, 1, 1]],
123
+ [-1, 1, Conv, [64, 3, 1]],
124
+ [-1, 1, Conv, [64, 3, 1]],
125
+ [-1, 1, Conv, [64, 3, 1]],
126
+ [-1, 1, Conv, [64, 3, 1]],
127
+ [-1, 1, Conv, [64, 3, 1]],
128
+ [-1, 1, Conv, [64, 3, 1]],
129
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
130
+ [-1, 1, Conv, [160, 1, 1]], # 99
131
+
132
+ [-1, 1, DownC, [320]],
133
+ [[-1, 85], 1, Concat, [1]],
134
+
135
+ [-1, 1, Conv, [256, 1, 1]],
136
+ [-2, 1, Conv, [256, 1, 1]],
137
+ [-1, 1, Conv, [128, 3, 1]],
138
+ [-1, 1, Conv, [128, 3, 1]],
139
+ [-1, 1, Conv, [128, 3, 1]],
140
+ [-1, 1, Conv, [128, 3, 1]],
141
+ [-1, 1, Conv, [128, 3, 1]],
142
+ [-1, 1, Conv, [128, 3, 1]],
143
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
144
+ [-1, 1, Conv, [320, 1, 1]], # 111
145
+
146
+ [-1, 1, DownC, [480]],
147
+ [[-1, 71], 1, Concat, [1]],
148
+
149
+ [-1, 1, Conv, [384, 1, 1]],
150
+ [-2, 1, Conv, [384, 1, 1]],
151
+ [-1, 1, Conv, [192, 3, 1]],
152
+ [-1, 1, Conv, [192, 3, 1]],
153
+ [-1, 1, Conv, [192, 3, 1]],
154
+ [-1, 1, Conv, [192, 3, 1]],
155
+ [-1, 1, Conv, [192, 3, 1]],
156
+ [-1, 1, Conv, [192, 3, 1]],
157
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
158
+ [-1, 1, Conv, [480, 1, 1]], # 123
159
+
160
+ [-1, 1, DownC, [640]],
161
+ [[-1, 57], 1, Concat, [1]],
162
+
163
+ [-1, 1, Conv, [512, 1, 1]],
164
+ [-2, 1, Conv, [512, 1, 1]],
165
+ [-1, 1, Conv, [256, 3, 1]],
166
+ [-1, 1, Conv, [256, 3, 1]],
167
+ [-1, 1, Conv, [256, 3, 1]],
168
+ [-1, 1, Conv, [256, 3, 1]],
169
+ [-1, 1, Conv, [256, 3, 1]],
170
+ [-1, 1, Conv, [256, 3, 1]],
171
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
172
+ [-1, 1, Conv, [640, 1, 1]], # 135
173
+
174
+ [99, 1, Conv, [320, 3, 1]],
175
+ [111, 1, Conv, [640, 3, 1]],
176
+ [123, 1, Conv, [960, 3, 1]],
177
+ [135, 1, Conv, [1280, 3, 1]],
178
+
179
+ [99, 1, Conv, [320, 3, 1]],
180
+ [85, 1, Conv, [640, 3, 1]],
181
+ [71, 1, Conv, [960, 3, 1]],
182
+ [57, 1, Conv, [1280, 3, 1]],
183
+
184
+ [[136,137,138,139,140,141,142,143], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
185
+ ]
cfg/training/yolov7e6e.yaml ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [160]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29
+ [-1, 1, Conv, [160, 1, 1]], # 12
30
+ [-11, 1, Conv, [64, 1, 1]],
31
+ [-12, 1, Conv, [64, 1, 1]],
32
+ [-1, 1, Conv, [64, 3, 1]],
33
+ [-1, 1, Conv, [64, 3, 1]],
34
+ [-1, 1, Conv, [64, 3, 1]],
35
+ [-1, 1, Conv, [64, 3, 1]],
36
+ [-1, 1, Conv, [64, 3, 1]],
37
+ [-1, 1, Conv, [64, 3, 1]],
38
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
39
+ [-1, 1, Conv, [160, 1, 1]], # 22
40
+ [[-1, -11], 1, Shortcut, [1]], # 23
41
+
42
+ [-1, 1, DownC, [320]], # 24-P3/8
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, Conv, [128, 3, 1]],
46
+ [-1, 1, Conv, [128, 3, 1]],
47
+ [-1, 1, Conv, [128, 3, 1]],
48
+ [-1, 1, Conv, [128, 3, 1]],
49
+ [-1, 1, Conv, [128, 3, 1]],
50
+ [-1, 1, Conv, [128, 3, 1]],
51
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
52
+ [-1, 1, Conv, [320, 1, 1]], # 34
53
+ [-11, 1, Conv, [128, 1, 1]],
54
+ [-12, 1, Conv, [128, 1, 1]],
55
+ [-1, 1, Conv, [128, 3, 1]],
56
+ [-1, 1, Conv, [128, 3, 1]],
57
+ [-1, 1, Conv, [128, 3, 1]],
58
+ [-1, 1, Conv, [128, 3, 1]],
59
+ [-1, 1, Conv, [128, 3, 1]],
60
+ [-1, 1, Conv, [128, 3, 1]],
61
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62
+ [-1, 1, Conv, [320, 1, 1]], # 44
63
+ [[-1, -11], 1, Shortcut, [1]], # 45
64
+
65
+ [-1, 1, DownC, [640]], # 46-P4/16
66
+ [-1, 1, Conv, [256, 1, 1]],
67
+ [-2, 1, Conv, [256, 1, 1]],
68
+ [-1, 1, Conv, [256, 3, 1]],
69
+ [-1, 1, Conv, [256, 3, 1]],
70
+ [-1, 1, Conv, [256, 3, 1]],
71
+ [-1, 1, Conv, [256, 3, 1]],
72
+ [-1, 1, Conv, [256, 3, 1]],
73
+ [-1, 1, Conv, [256, 3, 1]],
74
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
75
+ [-1, 1, Conv, [640, 1, 1]], # 56
76
+ [-11, 1, Conv, [256, 1, 1]],
77
+ [-12, 1, Conv, [256, 1, 1]],
78
+ [-1, 1, Conv, [256, 3, 1]],
79
+ [-1, 1, Conv, [256, 3, 1]],
80
+ [-1, 1, Conv, [256, 3, 1]],
81
+ [-1, 1, Conv, [256, 3, 1]],
82
+ [-1, 1, Conv, [256, 3, 1]],
83
+ [-1, 1, Conv, [256, 3, 1]],
84
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
85
+ [-1, 1, Conv, [640, 1, 1]], # 66
86
+ [[-1, -11], 1, Shortcut, [1]], # 67
87
+
88
+ [-1, 1, DownC, [960]], # 68-P5/32
89
+ [-1, 1, Conv, [384, 1, 1]],
90
+ [-2, 1, Conv, [384, 1, 1]],
91
+ [-1, 1, Conv, [384, 3, 1]],
92
+ [-1, 1, Conv, [384, 3, 1]],
93
+ [-1, 1, Conv, [384, 3, 1]],
94
+ [-1, 1, Conv, [384, 3, 1]],
95
+ [-1, 1, Conv, [384, 3, 1]],
96
+ [-1, 1, Conv, [384, 3, 1]],
97
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
98
+ [-1, 1, Conv, [960, 1, 1]], # 78
99
+ [-11, 1, Conv, [384, 1, 1]],
100
+ [-12, 1, Conv, [384, 1, 1]],
101
+ [-1, 1, Conv, [384, 3, 1]],
102
+ [-1, 1, Conv, [384, 3, 1]],
103
+ [-1, 1, Conv, [384, 3, 1]],
104
+ [-1, 1, Conv, [384, 3, 1]],
105
+ [-1, 1, Conv, [384, 3, 1]],
106
+ [-1, 1, Conv, [384, 3, 1]],
107
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
108
+ [-1, 1, Conv, [960, 1, 1]], # 88
109
+ [[-1, -11], 1, Shortcut, [1]], # 89
110
+
111
+ [-1, 1, DownC, [1280]], # 90-P6/64
112
+ [-1, 1, Conv, [512, 1, 1]],
113
+ [-2, 1, Conv, [512, 1, 1]],
114
+ [-1, 1, Conv, [512, 3, 1]],
115
+ [-1, 1, Conv, [512, 3, 1]],
116
+ [-1, 1, Conv, [512, 3, 1]],
117
+ [-1, 1, Conv, [512, 3, 1]],
118
+ [-1, 1, Conv, [512, 3, 1]],
119
+ [-1, 1, Conv, [512, 3, 1]],
120
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
121
+ [-1, 1, Conv, [1280, 1, 1]], # 100
122
+ [-11, 1, Conv, [512, 1, 1]],
123
+ [-12, 1, Conv, [512, 1, 1]],
124
+ [-1, 1, Conv, [512, 3, 1]],
125
+ [-1, 1, Conv, [512, 3, 1]],
126
+ [-1, 1, Conv, [512, 3, 1]],
127
+ [-1, 1, Conv, [512, 3, 1]],
128
+ [-1, 1, Conv, [512, 3, 1]],
129
+ [-1, 1, Conv, [512, 3, 1]],
130
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
131
+ [-1, 1, Conv, [1280, 1, 1]], # 110
132
+ [[-1, -11], 1, Shortcut, [1]], # 111
133
+ ]
134
+
135
+ # yolov7 head
136
+ head:
137
+ [[-1, 1, SPPCSPC, [640]], # 112
138
+
139
+ [-1, 1, Conv, [480, 1, 1]],
140
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
141
+ [89, 1, Conv, [480, 1, 1]], # route backbone P5
142
+ [[-1, -2], 1, Concat, [1]],
143
+
144
+ [-1, 1, Conv, [384, 1, 1]],
145
+ [-2, 1, Conv, [384, 1, 1]],
146
+ [-1, 1, Conv, [192, 3, 1]],
147
+ [-1, 1, Conv, [192, 3, 1]],
148
+ [-1, 1, Conv, [192, 3, 1]],
149
+ [-1, 1, Conv, [192, 3, 1]],
150
+ [-1, 1, Conv, [192, 3, 1]],
151
+ [-1, 1, Conv, [192, 3, 1]],
152
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
153
+ [-1, 1, Conv, [480, 1, 1]], # 126
154
+ [-11, 1, Conv, [384, 1, 1]],
155
+ [-12, 1, Conv, [384, 1, 1]],
156
+ [-1, 1, Conv, [192, 3, 1]],
157
+ [-1, 1, Conv, [192, 3, 1]],
158
+ [-1, 1, Conv, [192, 3, 1]],
159
+ [-1, 1, Conv, [192, 3, 1]],
160
+ [-1, 1, Conv, [192, 3, 1]],
161
+ [-1, 1, Conv, [192, 3, 1]],
162
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
163
+ [-1, 1, Conv, [480, 1, 1]], # 136
164
+ [[-1, -11], 1, Shortcut, [1]], # 137
165
+
166
+ [-1, 1, Conv, [320, 1, 1]],
167
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
168
+ [67, 1, Conv, [320, 1, 1]], # route backbone P4
169
+ [[-1, -2], 1, Concat, [1]],
170
+
171
+ [-1, 1, Conv, [256, 1, 1]],
172
+ [-2, 1, Conv, [256, 1, 1]],
173
+ [-1, 1, Conv, [128, 3, 1]],
174
+ [-1, 1, Conv, [128, 3, 1]],
175
+ [-1, 1, Conv, [128, 3, 1]],
176
+ [-1, 1, Conv, [128, 3, 1]],
177
+ [-1, 1, Conv, [128, 3, 1]],
178
+ [-1, 1, Conv, [128, 3, 1]],
179
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
180
+ [-1, 1, Conv, [320, 1, 1]], # 151
181
+ [-11, 1, Conv, [256, 1, 1]],
182
+ [-12, 1, Conv, [256, 1, 1]],
183
+ [-1, 1, Conv, [128, 3, 1]],
184
+ [-1, 1, Conv, [128, 3, 1]],
185
+ [-1, 1, Conv, [128, 3, 1]],
186
+ [-1, 1, Conv, [128, 3, 1]],
187
+ [-1, 1, Conv, [128, 3, 1]],
188
+ [-1, 1, Conv, [128, 3, 1]],
189
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
190
+ [-1, 1, Conv, [320, 1, 1]], # 161
191
+ [[-1, -11], 1, Shortcut, [1]], # 162
192
+
193
+ [-1, 1, Conv, [160, 1, 1]],
194
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
195
+ [45, 1, Conv, [160, 1, 1]], # route backbone P3
196
+ [[-1, -2], 1, Concat, [1]],
197
+
198
+ [-1, 1, Conv, [128, 1, 1]],
199
+ [-2, 1, Conv, [128, 1, 1]],
200
+ [-1, 1, Conv, [64, 3, 1]],
201
+ [-1, 1, Conv, [64, 3, 1]],
202
+ [-1, 1, Conv, [64, 3, 1]],
203
+ [-1, 1, Conv, [64, 3, 1]],
204
+ [-1, 1, Conv, [64, 3, 1]],
205
+ [-1, 1, Conv, [64, 3, 1]],
206
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
207
+ [-1, 1, Conv, [160, 1, 1]], # 176
208
+ [-11, 1, Conv, [128, 1, 1]],
209
+ [-12, 1, Conv, [128, 1, 1]],
210
+ [-1, 1, Conv, [64, 3, 1]],
211
+ [-1, 1, Conv, [64, 3, 1]],
212
+ [-1, 1, Conv, [64, 3, 1]],
213
+ [-1, 1, Conv, [64, 3, 1]],
214
+ [-1, 1, Conv, [64, 3, 1]],
215
+ [-1, 1, Conv, [64, 3, 1]],
216
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
217
+ [-1, 1, Conv, [160, 1, 1]], # 186
218
+ [[-1, -11], 1, Shortcut, [1]], # 187
219
+
220
+ [-1, 1, DownC, [320]],
221
+ [[-1, 162], 1, Concat, [1]],
222
+
223
+ [-1, 1, Conv, [256, 1, 1]],
224
+ [-2, 1, Conv, [256, 1, 1]],
225
+ [-1, 1, Conv, [128, 3, 1]],
226
+ [-1, 1, Conv, [128, 3, 1]],
227
+ [-1, 1, Conv, [128, 3, 1]],
228
+ [-1, 1, Conv, [128, 3, 1]],
229
+ [-1, 1, Conv, [128, 3, 1]],
230
+ [-1, 1, Conv, [128, 3, 1]],
231
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
232
+ [-1, 1, Conv, [320, 1, 1]], # 199
233
+ [-11, 1, Conv, [256, 1, 1]],
234
+ [-12, 1, Conv, [256, 1, 1]],
235
+ [-1, 1, Conv, [128, 3, 1]],
236
+ [-1, 1, Conv, [128, 3, 1]],
237
+ [-1, 1, Conv, [128, 3, 1]],
238
+ [-1, 1, Conv, [128, 3, 1]],
239
+ [-1, 1, Conv, [128, 3, 1]],
240
+ [-1, 1, Conv, [128, 3, 1]],
241
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
242
+ [-1, 1, Conv, [320, 1, 1]], # 209
243
+ [[-1, -11], 1, Shortcut, [1]], # 210
244
+
245
+ [-1, 1, DownC, [480]],
246
+ [[-1, 137], 1, Concat, [1]],
247
+
248
+ [-1, 1, Conv, [384, 1, 1]],
249
+ [-2, 1, Conv, [384, 1, 1]],
250
+ [-1, 1, Conv, [192, 3, 1]],
251
+ [-1, 1, Conv, [192, 3, 1]],
252
+ [-1, 1, Conv, [192, 3, 1]],
253
+ [-1, 1, Conv, [192, 3, 1]],
254
+ [-1, 1, Conv, [192, 3, 1]],
255
+ [-1, 1, Conv, [192, 3, 1]],
256
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
257
+ [-1, 1, Conv, [480, 1, 1]], # 222
258
+ [-11, 1, Conv, [384, 1, 1]],
259
+ [-12, 1, Conv, [384, 1, 1]],
260
+ [-1, 1, Conv, [192, 3, 1]],
261
+ [-1, 1, Conv, [192, 3, 1]],
262
+ [-1, 1, Conv, [192, 3, 1]],
263
+ [-1, 1, Conv, [192, 3, 1]],
264
+ [-1, 1, Conv, [192, 3, 1]],
265
+ [-1, 1, Conv, [192, 3, 1]],
266
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
267
+ [-1, 1, Conv, [480, 1, 1]], # 232
268
+ [[-1, -11], 1, Shortcut, [1]], # 233
269
+
270
+ [-1, 1, DownC, [640]],
271
+ [[-1, 112], 1, Concat, [1]],
272
+
273
+ [-1, 1, Conv, [512, 1, 1]],
274
+ [-2, 1, Conv, [512, 1, 1]],
275
+ [-1, 1, Conv, [256, 3, 1]],
276
+ [-1, 1, Conv, [256, 3, 1]],
277
+ [-1, 1, Conv, [256, 3, 1]],
278
+ [-1, 1, Conv, [256, 3, 1]],
279
+ [-1, 1, Conv, [256, 3, 1]],
280
+ [-1, 1, Conv, [256, 3, 1]],
281
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
282
+ [-1, 1, Conv, [640, 1, 1]], # 245
283
+ [-11, 1, Conv, [512, 1, 1]],
284
+ [-12, 1, Conv, [512, 1, 1]],
285
+ [-1, 1, Conv, [256, 3, 1]],
286
+ [-1, 1, Conv, [256, 3, 1]],
287
+ [-1, 1, Conv, [256, 3, 1]],
288
+ [-1, 1, Conv, [256, 3, 1]],
289
+ [-1, 1, Conv, [256, 3, 1]],
290
+ [-1, 1, Conv, [256, 3, 1]],
291
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
292
+ [-1, 1, Conv, [640, 1, 1]], # 255
293
+ [[-1, -11], 1, Shortcut, [1]], # 256
294
+
295
+ [187, 1, Conv, [320, 3, 1]],
296
+ [210, 1, Conv, [640, 3, 1]],
297
+ [233, 1, Conv, [960, 3, 1]],
298
+ [256, 1, Conv, [1280, 3, 1]],
299
+
300
+ [186, 1, Conv, [320, 3, 1]],
301
+ [161, 1, Conv, [640, 3, 1]],
302
+ [136, 1, Conv, [960, 3, 1]],
303
+ [112, 1, Conv, [1280, 3, 1]],
304
+
305
+ [[257,258,259,260,261,262,263,264], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
306
+ ]
cfg/training/yolov7w6.yaml ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [[-1, -3, -5, -6], 1, Concat, [1]],
27
+ [-1, 1, Conv, [128, 1, 1]], # 10
28
+
29
+ [-1, 1, Conv, [256, 3, 2]], # 11-P3/8
30
+ [-1, 1, Conv, [128, 1, 1]],
31
+ [-2, 1, Conv, [128, 1, 1]],
32
+ [-1, 1, Conv, [128, 3, 1]],
33
+ [-1, 1, Conv, [128, 3, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [[-1, -3, -5, -6], 1, Concat, [1]],
37
+ [-1, 1, Conv, [256, 1, 1]], # 19
38
+
39
+ [-1, 1, Conv, [512, 3, 2]], # 20-P4/16
40
+ [-1, 1, Conv, [256, 1, 1]],
41
+ [-2, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [256, 3, 1]],
43
+ [-1, 1, Conv, [256, 3, 1]],
44
+ [-1, 1, Conv, [256, 3, 1]],
45
+ [-1, 1, Conv, [256, 3, 1]],
46
+ [[-1, -3, -5, -6], 1, Concat, [1]],
47
+ [-1, 1, Conv, [512, 1, 1]], # 28
48
+
49
+ [-1, 1, Conv, [768, 3, 2]], # 29-P5/32
50
+ [-1, 1, Conv, [384, 1, 1]],
51
+ [-2, 1, Conv, [384, 1, 1]],
52
+ [-1, 1, Conv, [384, 3, 1]],
53
+ [-1, 1, Conv, [384, 3, 1]],
54
+ [-1, 1, Conv, [384, 3, 1]],
55
+ [-1, 1, Conv, [384, 3, 1]],
56
+ [[-1, -3, -5, -6], 1, Concat, [1]],
57
+ [-1, 1, Conv, [768, 1, 1]], # 37
58
+
59
+ [-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
60
+ [-1, 1, Conv, [512, 1, 1]],
61
+ [-2, 1, Conv, [512, 1, 1]],
62
+ [-1, 1, Conv, [512, 3, 1]],
63
+ [-1, 1, Conv, [512, 3, 1]],
64
+ [-1, 1, Conv, [512, 3, 1]],
65
+ [-1, 1, Conv, [512, 3, 1]],
66
+ [[-1, -3, -5, -6], 1, Concat, [1]],
67
+ [-1, 1, Conv, [1024, 1, 1]], # 46
68
+ ]
69
+
70
+ # yolov7 head
71
+ head:
72
+ [[-1, 1, SPPCSPC, [512]], # 47
73
+
74
+ [-1, 1, Conv, [384, 1, 1]],
75
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
76
+ [37, 1, Conv, [384, 1, 1]], # route backbone P5
77
+ [[-1, -2], 1, Concat, [1]],
78
+
79
+ [-1, 1, Conv, [384, 1, 1]],
80
+ [-2, 1, Conv, [384, 1, 1]],
81
+ [-1, 1, Conv, [192, 3, 1]],
82
+ [-1, 1, Conv, [192, 3, 1]],
83
+ [-1, 1, Conv, [192, 3, 1]],
84
+ [-1, 1, Conv, [192, 3, 1]],
85
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
86
+ [-1, 1, Conv, [384, 1, 1]], # 59
87
+
88
+ [-1, 1, Conv, [256, 1, 1]],
89
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
90
+ [28, 1, Conv, [256, 1, 1]], # route backbone P4
91
+ [[-1, -2], 1, Concat, [1]],
92
+
93
+ [-1, 1, Conv, [256, 1, 1]],
94
+ [-2, 1, Conv, [256, 1, 1]],
95
+ [-1, 1, Conv, [128, 3, 1]],
96
+ [-1, 1, Conv, [128, 3, 1]],
97
+ [-1, 1, Conv, [128, 3, 1]],
98
+ [-1, 1, Conv, [128, 3, 1]],
99
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
100
+ [-1, 1, Conv, [256, 1, 1]], # 71
101
+
102
+ [-1, 1, Conv, [128, 1, 1]],
103
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
104
+ [19, 1, Conv, [128, 1, 1]], # route backbone P3
105
+ [[-1, -2], 1, Concat, [1]],
106
+
107
+ [-1, 1, Conv, [128, 1, 1]],
108
+ [-2, 1, Conv, [128, 1, 1]],
109
+ [-1, 1, Conv, [64, 3, 1]],
110
+ [-1, 1, Conv, [64, 3, 1]],
111
+ [-1, 1, Conv, [64, 3, 1]],
112
+ [-1, 1, Conv, [64, 3, 1]],
113
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
114
+ [-1, 1, Conv, [128, 1, 1]], # 83
115
+
116
+ [-1, 1, Conv, [256, 3, 2]],
117
+ [[-1, 71], 1, Concat, [1]], # cat
118
+
119
+ [-1, 1, Conv, [256, 1, 1]],
120
+ [-2, 1, Conv, [256, 1, 1]],
121
+ [-1, 1, Conv, [128, 3, 1]],
122
+ [-1, 1, Conv, [128, 3, 1]],
123
+ [-1, 1, Conv, [128, 3, 1]],
124
+ [-1, 1, Conv, [128, 3, 1]],
125
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
126
+ [-1, 1, Conv, [256, 1, 1]], # 93
127
+
128
+ [-1, 1, Conv, [384, 3, 2]],
129
+ [[-1, 59], 1, Concat, [1]], # cat
130
+
131
+ [-1, 1, Conv, [384, 1, 1]],
132
+ [-2, 1, Conv, [384, 1, 1]],
133
+ [-1, 1, Conv, [192, 3, 1]],
134
+ [-1, 1, Conv, [192, 3, 1]],
135
+ [-1, 1, Conv, [192, 3, 1]],
136
+ [-1, 1, Conv, [192, 3, 1]],
137
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
138
+ [-1, 1, Conv, [384, 1, 1]], # 103
139
+
140
+ [-1, 1, Conv, [512, 3, 2]],
141
+ [[-1, 47], 1, Concat, [1]], # cat
142
+
143
+ [-1, 1, Conv, [512, 1, 1]],
144
+ [-2, 1, Conv, [512, 1, 1]],
145
+ [-1, 1, Conv, [256, 3, 1]],
146
+ [-1, 1, Conv, [256, 3, 1]],
147
+ [-1, 1, Conv, [256, 3, 1]],
148
+ [-1, 1, Conv, [256, 3, 1]],
149
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
150
+ [-1, 1, Conv, [512, 1, 1]], # 113
151
+
152
+ [83, 1, Conv, [256, 3, 1]],
153
+ [93, 1, Conv, [512, 3, 1]],
154
+ [103, 1, Conv, [768, 3, 1]],
155
+ [113, 1, Conv, [1024, 3, 1]],
156
+
157
+ [83, 1, Conv, [320, 3, 1]],
158
+ [71, 1, Conv, [640, 3, 1]],
159
+ [59, 1, Conv, [960, 3, 1]],
160
+ [47, 1, Conv, [1280, 3, 1]],
161
+
162
+ [[114,115,116,117,118,119,120,121], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
163
+ ]
cfg/training/yolov7x.yaml ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # yolov7 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [40, 3, 1]], # 0
16
+
17
+ [-1, 1, Conv, [80, 3, 2]], # 1-P1/2
18
+ [-1, 1, Conv, [80, 3, 1]],
19
+
20
+ [-1, 1, Conv, [160, 3, 2]], # 3-P2/4
21
+ [-1, 1, Conv, [64, 1, 1]],
22
+ [-2, 1, Conv, [64, 1, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [-1, 1, Conv, [64, 3, 1]],
29
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
30
+ [-1, 1, Conv, [320, 1, 1]], # 13
31
+
32
+ [-1, 1, MP, []],
33
+ [-1, 1, Conv, [160, 1, 1]],
34
+ [-3, 1, Conv, [160, 1, 1]],
35
+ [-1, 1, Conv, [160, 3, 2]],
36
+ [[-1, -3], 1, Concat, [1]], # 18-P3/8
37
+ [-1, 1, Conv, [128, 1, 1]],
38
+ [-2, 1, Conv, [128, 1, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [-1, 1, Conv, [128, 3, 1]],
42
+ [-1, 1, Conv, [128, 3, 1]],
43
+ [-1, 1, Conv, [128, 3, 1]],
44
+ [-1, 1, Conv, [128, 3, 1]],
45
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
46
+ [-1, 1, Conv, [640, 1, 1]], # 28
47
+
48
+ [-1, 1, MP, []],
49
+ [-1, 1, Conv, [320, 1, 1]],
50
+ [-3, 1, Conv, [320, 1, 1]],
51
+ [-1, 1, Conv, [320, 3, 2]],
52
+ [[-1, -3], 1, Concat, [1]], # 33-P4/16
53
+ [-1, 1, Conv, [256, 1, 1]],
54
+ [-2, 1, Conv, [256, 1, 1]],
55
+ [-1, 1, Conv, [256, 3, 1]],
56
+ [-1, 1, Conv, [256, 3, 1]],
57
+ [-1, 1, Conv, [256, 3, 1]],
58
+ [-1, 1, Conv, [256, 3, 1]],
59
+ [-1, 1, Conv, [256, 3, 1]],
60
+ [-1, 1, Conv, [256, 3, 1]],
61
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62
+ [-1, 1, Conv, [1280, 1, 1]], # 43
63
+
64
+ [-1, 1, MP, []],
65
+ [-1, 1, Conv, [640, 1, 1]],
66
+ [-3, 1, Conv, [640, 1, 1]],
67
+ [-1, 1, Conv, [640, 3, 2]],
68
+ [[-1, -3], 1, Concat, [1]], # 48-P5/32
69
+ [-1, 1, Conv, [256, 1, 1]],
70
+ [-2, 1, Conv, [256, 1, 1]],
71
+ [-1, 1, Conv, [256, 3, 1]],
72
+ [-1, 1, Conv, [256, 3, 1]],
73
+ [-1, 1, Conv, [256, 3, 1]],
74
+ [-1, 1, Conv, [256, 3, 1]],
75
+ [-1, 1, Conv, [256, 3, 1]],
76
+ [-1, 1, Conv, [256, 3, 1]],
77
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
78
+ [-1, 1, Conv, [1280, 1, 1]], # 58
79
+ ]
80
+
81
+ # yolov7 head
82
+ head:
83
+ [[-1, 1, SPPCSPC, [640]], # 59
84
+
85
+ [-1, 1, Conv, [320, 1, 1]],
86
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
87
+ [43, 1, Conv, [320, 1, 1]], # route backbone P4
88
+ [[-1, -2], 1, Concat, [1]],
89
+
90
+ [-1, 1, Conv, [256, 1, 1]],
91
+ [-2, 1, Conv, [256, 1, 1]],
92
+ [-1, 1, Conv, [256, 3, 1]],
93
+ [-1, 1, Conv, [256, 3, 1]],
94
+ [-1, 1, Conv, [256, 3, 1]],
95
+ [-1, 1, Conv, [256, 3, 1]],
96
+ [-1, 1, Conv, [256, 3, 1]],
97
+ [-1, 1, Conv, [256, 3, 1]],
98
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
99
+ [-1, 1, Conv, [320, 1, 1]], # 73
100
+
101
+ [-1, 1, Conv, [160, 1, 1]],
102
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
103
+ [28, 1, Conv, [160, 1, 1]], # route backbone P3
104
+ [[-1, -2], 1, Concat, [1]],
105
+
106
+ [-1, 1, Conv, [128, 1, 1]],
107
+ [-2, 1, Conv, [128, 1, 1]],
108
+ [-1, 1, Conv, [128, 3, 1]],
109
+ [-1, 1, Conv, [128, 3, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
115
+ [-1, 1, Conv, [160, 1, 1]], # 87
116
+
117
+ [-1, 1, MP, []],
118
+ [-1, 1, Conv, [160, 1, 1]],
119
+ [-3, 1, Conv, [160, 1, 1]],
120
+ [-1, 1, Conv, [160, 3, 2]],
121
+ [[-1, -3, 73], 1, Concat, [1]],
122
+
123
+ [-1, 1, Conv, [256, 1, 1]],
124
+ [-2, 1, Conv, [256, 1, 1]],
125
+ [-1, 1, Conv, [256, 3, 1]],
126
+ [-1, 1, Conv, [256, 3, 1]],
127
+ [-1, 1, Conv, [256, 3, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [-1, 1, Conv, [256, 3, 1]],
130
+ [-1, 1, Conv, [256, 3, 1]],
131
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
132
+ [-1, 1, Conv, [320, 1, 1]], # 102
133
+
134
+ [-1, 1, MP, []],
135
+ [-1, 1, Conv, [320, 1, 1]],
136
+ [-3, 1, Conv, [320, 1, 1]],
137
+ [-1, 1, Conv, [320, 3, 2]],
138
+ [[-1, -3, 59], 1, Concat, [1]],
139
+
140
+ [-1, 1, Conv, [512, 1, 1]],
141
+ [-2, 1, Conv, [512, 1, 1]],
142
+ [-1, 1, Conv, [512, 3, 1]],
143
+ [-1, 1, Conv, [512, 3, 1]],
144
+ [-1, 1, Conv, [512, 3, 1]],
145
+ [-1, 1, Conv, [512, 3, 1]],
146
+ [-1, 1, Conv, [512, 3, 1]],
147
+ [-1, 1, Conv, [512, 3, 1]],
148
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
149
+ [-1, 1, Conv, [640, 1, 1]], # 117
150
+
151
+ [87, 1, Conv, [320, 3, 1]],
152
+ [102, 1, Conv, [640, 3, 1]],
153
+ [117, 1, Conv, [1280, 3, 1]],
154
+
155
+ [[118,119,120], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
156
+ ]
data/coco.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # COCO 2017 dataset http://cocodataset.org
2
+
3
+ # download command/URL (optional)
4
+ download: bash ./scripts/get_coco.sh
5
+
6
+ # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
7
+ train: ./coco/train2017.txt # 118287 images
8
+ val: ./coco/val2017.txt # 5000 images
9
+ test: ./coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
10
+
11
+ # number of classes
12
+ nc: 80
13
+
14
+ # class names
15
+ names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
16
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
17
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
18
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
19
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
20
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
21
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
22
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
23
+ 'hair drier', 'toothbrush' ]
data/hyp.scratch.p5.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.3 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 0.7 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
16
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
17
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
18
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
19
+ degrees: 0.0 # image rotation (+/- deg)
20
+ translate: 0.2 # image translation (+/- fraction)
21
+ scale: 0.9 # image scale (+/- gain)
22
+ shear: 0.0 # image shear (+/- deg)
23
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
24
+ flipud: 0.0 # image flip up-down (probability)
25
+ fliplr: 0.5 # image flip left-right (probability)
26
+ mosaic: 1.0 # image mosaic (probability)
27
+ mixup: 0.15 # image mixup (probability)
28
+ copy_paste: 0.0 # image copy paste (probability)
29
+ paste_in: 0.15 # image copy paste (probability)
data/hyp.scratch.p6.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.3 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 0.7 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
16
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
17
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
18
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
19
+ degrees: 0.0 # image rotation (+/- deg)
20
+ translate: 0.2 # image translation (+/- fraction)
21
+ scale: 0.9 # image scale (+/- gain)
22
+ shear: 0.0 # image shear (+/- deg)
23
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
24
+ flipud: 0.0 # image flip up-down (probability)
25
+ fliplr: 0.5 # image flip left-right (probability)
26
+ mosaic: 1.0 # image mosaic (probability)
27
+ mixup: 0.15 # image mixup (probability)
28
+ copy_paste: 0.0 # image copy paste (probability)
29
+ paste_in: 0.15 # image copy paste (probability)
data/hyp.scratch.tiny.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.5 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 1.0 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
16
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
17
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
18
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
19
+ degrees: 0.0 # image rotation (+/- deg)
20
+ translate: 0.1 # image translation (+/- fraction)
21
+ scale: 0.5 # image scale (+/- gain)
22
+ shear: 0.0 # image shear (+/- deg)
23
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
24
+ flipud: 0.0 # image flip up-down (probability)
25
+ fliplr: 0.5 # image flip left-right (probability)
26
+ mosaic: 1.0 # image mosaic (probability)
27
+ mixup: 0.05 # image mixup (probability)
28
+ copy_paste: 0.0 # image copy paste (probability)
29
+ paste_in: 0.05 # image copy paste (probability)
detect.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import time
3
+ from pathlib import Path
4
+
5
+ import cv2
6
+ import torch
7
+ import torch.backends.cudnn as cudnn
8
+ from numpy import random
9
+
10
+ from models.experimental import attempt_load
11
+ from utils.datasets import LoadStreams, LoadImages
12
+ from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13
+ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
14
+ from utils.plots import plot_one_box
15
+ from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
16
+
17
+
18
+ def detect(save_img=False):
19
+ source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
20
+ save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21
+ webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22
+ ('rtsp://', 'rtmp://', 'http://', 'https://'))
23
+
24
+ # Directories
25
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
26
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27
+
28
+ # Initialize
29
+ set_logging()
30
+ device = select_device(opt.device)
31
+ half = device.type != 'cpu' # half precision only supported on CUDA
32
+
33
+ # Load model
34
+ model = attempt_load(weights, map_location=device) # load FP32 model
35
+ stride = int(model.stride.max()) # model stride
36
+ imgsz = check_img_size(imgsz, s=stride) # check img_size
37
+
38
+ if trace:
39
+ model = TracedModel(model, device, opt.img_size)
40
+
41
+ if half:
42
+ model.half() # to FP16
43
+
44
+ # Second-stage classifier
45
+ classify = False
46
+ if classify:
47
+ modelc = load_classifier(name='resnet101', n=2) # initialize
48
+ modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
49
+
50
+ # Set Dataloader
51
+ vid_path, vid_writer = None, None
52
+ if webcam:
53
+ view_img = check_imshow()
54
+ cudnn.benchmark = True # set True to speed up constant image size inference
55
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride)
56
+ else:
57
+ dataset = LoadImages(source, img_size=imgsz, stride=stride)
58
+
59
+ # Get names and colors
60
+ names = model.module.names if hasattr(model, 'module') else model.names
61
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
62
+
63
+ # Run inference
64
+ if device.type != 'cpu':
65
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
66
+ t0 = time.time()
67
+ for path, img, im0s, vid_cap in dataset:
68
+ img = torch.from_numpy(img).to(device)
69
+ img = img.half() if half else img.float() # uint8 to fp16/32
70
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
71
+ if img.ndimension() == 3:
72
+ img = img.unsqueeze(0)
73
+
74
+ # Inference
75
+ t1 = time_synchronized()
76
+ pred = model(img, augment=opt.augment)[0]
77
+
78
+ # Apply NMS
79
+ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
80
+ t2 = time_synchronized()
81
+
82
+ # Apply Classifier
83
+ if classify:
84
+ pred = apply_classifier(pred, modelc, img, im0s)
85
+
86
+ # Process detections
87
+ for i, det in enumerate(pred): # detections per image
88
+ if webcam: # batch_size >= 1
89
+ p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
90
+ else:
91
+ p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
92
+
93
+ p = Path(p) # to Path
94
+ save_path = str(save_dir / p.name) # img.jpg
95
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
96
+ s += '%gx%g ' % img.shape[2:] # print string
97
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
98
+ if len(det):
99
+ # Rescale boxes from img_size to im0 size
100
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
101
+
102
+ # Print results
103
+ for c in det[:, -1].unique():
104
+ n = (det[:, -1] == c).sum() # detections per class
105
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
106
+
107
+ # Write results
108
+ for *xyxy, conf, cls in reversed(det):
109
+ if save_txt: # Write to file
110
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
111
+ line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
112
+ with open(txt_path + '.txt', 'a') as f:
113
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
114
+
115
+ if save_img or view_img: # Add bbox to image
116
+ label = f'{names[int(cls)]} {conf:.2f}'
117
+ plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
118
+
119
+ # Print time (inference + NMS)
120
+ #print(f'{s}Done. ({t2 - t1:.3f}s)')
121
+
122
+ # Stream results
123
+ if view_img:
124
+ cv2.imshow(str(p), im0)
125
+ cv2.waitKey(1) # 1 millisecond
126
+
127
+ # Save results (image with detections)
128
+ if save_img:
129
+ if dataset.mode == 'image':
130
+ cv2.imwrite(save_path, im0)
131
+ else: # 'video' or 'stream'
132
+ if vid_path != save_path: # new video
133
+ vid_path = save_path
134
+ if isinstance(vid_writer, cv2.VideoWriter):
135
+ vid_writer.release() # release previous video writer
136
+ if vid_cap: # video
137
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
138
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
139
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
140
+ else: # stream
141
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
142
+ save_path += '.mp4'
143
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
144
+ vid_writer.write(im0)
145
+
146
+ if save_txt or save_img:
147
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
148
+ #print(f"Results saved to {save_dir}{s}")
149
+
150
+ print(f'Done. ({time.time() - t0:.3f}s)')
151
+
152
+
153
+ if __name__ == '__main__':
154
+ parser = argparse.ArgumentParser()
155
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
156
+ parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
157
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
158
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
159
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
160
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
161
+ parser.add_argument('--view-img', action='store_true', help='display results')
162
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
163
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
164
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
165
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
166
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
167
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
168
+ parser.add_argument('--update', action='store_true', help='update all models')
169
+ parser.add_argument('--project', default='runs/detect', help='save results to project/name')
170
+ parser.add_argument('--name', default='exp', help='save results to project/name')
171
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
172
+ parser.add_argument('--trace', action='store_true', help='trace model')
173
+ opt = parser.parse_args()
174
+ print(opt)
175
+ #check_requirements(exclude=('pycocotools', 'thop'))
176
+
177
+ with torch.no_grad():
178
+ if opt.update: # update all models (to fix SourceChangeWarning)
179
+ for opt.weights in ['yolov7.pt']:
180
+ detect()
181
+ strip_optimizer(opt.weights)
182
+ else:
183
+ detect()
figure/performance.png ADDED
hubconf.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """PyTorch Hub models
2
+
3
+ Usage:
4
+ import torch
5
+ model = torch.hub.load('repo', 'model')
6
+ """
7
+
8
+ from pathlib import Path
9
+
10
+ import torch
11
+
12
+ from models.yolo import Model
13
+ from utils.general import check_requirements, set_logging
14
+ from utils.google_utils import attempt_download
15
+ from utils.torch_utils import select_device
16
+
17
+ dependencies = ['torch', 'yaml']
18
+ check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
19
+ set_logging()
20
+
21
+
22
+ def create(name, pretrained, channels, classes, autoshape):
23
+ """Creates a specified model
24
+
25
+ Arguments:
26
+ name (str): name of model, i.e. 'yolov7'
27
+ pretrained (bool): load pretrained weights into the model
28
+ channels (int): number of input channels
29
+ classes (int): number of model classes
30
+
31
+ Returns:
32
+ pytorch model
33
+ """
34
+ try:
35
+ cfg = list((Path(__file__).parent / 'cfg').rglob(f'{name}.yaml'))[0] # model.yaml path
36
+ model = Model(cfg, channels, classes)
37
+ if pretrained:
38
+ fname = f'{name}.pt' # checkpoint filename
39
+ attempt_download(fname) # download if not found locally
40
+ ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
41
+ msd = model.state_dict() # model state_dict
42
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
43
+ csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
44
+ model.load_state_dict(csd, strict=False) # load
45
+ if len(ckpt['model'].names) == classes:
46
+ model.names = ckpt['model'].names # set class names attribute
47
+ if autoshape:
48
+ model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
49
+ device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
50
+ return model.to(device)
51
+
52
+ except Exception as e:
53
+ s = 'Cache maybe be out of date, try force_reload=True.'
54
+ raise Exception(s) from e
55
+
56
+
57
+ def custom(path_or_model='path/to/model.pt', autoshape=True):
58
+ """custom mode
59
+
60
+ Arguments (3 options):
61
+ path_or_model (str): 'path/to/model.pt'
62
+ path_or_model (dict): torch.load('path/to/model.pt')
63
+ path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
64
+
65
+ Returns:
66
+ pytorch model
67
+ """
68
+ model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
69
+ if isinstance(model, dict):
70
+ model = model['ema' if model.get('ema') else 'model'] # load model
71
+
72
+ hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
73
+ hub_model.load_state_dict(model.float().state_dict()) # load state_dict
74
+ hub_model.names = model.names # class names
75
+ if autoshape:
76
+ hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
77
+ device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
78
+ return hub_model.to(device)
79
+
80
+
81
+ def yolov7(pretrained=True, channels=3, classes=80, autoshape=True):
82
+ return create('yolov7', pretrained, channels, classes, autoshape)
83
+
84
+
85
+ if __name__ == '__main__':
86
+ model = custom(path_or_model='yolov7.pt') # custom example
87
+ # model = create(name='yolov7', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
88
+
89
+ # Verify inference
90
+ import numpy as np
91
+ from PIL import Image
92
+
93
+ imgs = [np.zeros((640, 480, 3))]
94
+
95
+ results = model(imgs) # batched inference
96
+ results.print()
97
+ results.save()
inference/images/horses.jpg ADDED
models/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # init
models/common.py ADDED
@@ -0,0 +1,2019 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from copy import copy
3
+ from pathlib import Path
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ import requests
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from torchvision.ops import DeformConv2d
12
+ from PIL import Image
13
+ from torch.cuda import amp
14
+
15
+ from utils.datasets import letterbox
16
+ from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh
17
+ from utils.plots import color_list, plot_one_box
18
+ from utils.torch_utils import time_synchronized
19
+
20
+
21
+ ##### basic ####
22
+
23
+ def autopad(k, p=None): # kernel, padding
24
+ # Pad to 'same'
25
+ if p is None:
26
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
27
+ return p
28
+
29
+
30
+ class MP(nn.Module):
31
+ def __init__(self, k=2):
32
+ super(MP, self).__init__()
33
+ self.m = nn.MaxPool2d(kernel_size=k, stride=k)
34
+
35
+ def forward(self, x):
36
+ return self.m(x)
37
+
38
+
39
+ class SP(nn.Module):
40
+ def __init__(self, k=3, s=1):
41
+ super(SP, self).__init__()
42
+ self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
43
+
44
+ def forward(self, x):
45
+ return self.m(x)
46
+
47
+
48
+ class ReOrg(nn.Module):
49
+ def __init__(self):
50
+ super(ReOrg, self).__init__()
51
+
52
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
53
+ return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
54
+
55
+
56
+ class Concat(nn.Module):
57
+ def __init__(self, dimension=1):
58
+ super(Concat, self).__init__()
59
+ self.d = dimension
60
+
61
+ def forward(self, x):
62
+ return torch.cat(x, self.d)
63
+
64
+
65
+ class Chuncat(nn.Module):
66
+ def __init__(self, dimension=1):
67
+ super(Chuncat, self).__init__()
68
+ self.d = dimension
69
+
70
+ def forward(self, x):
71
+ x1 = []
72
+ x2 = []
73
+ for xi in x:
74
+ xi1, xi2 = xi.chunk(2, self.d)
75
+ x1.append(xi1)
76
+ x2.append(xi2)
77
+ return torch.cat(x1+x2, self.d)
78
+
79
+
80
+ class Shortcut(nn.Module):
81
+ def __init__(self, dimension=0):
82
+ super(Shortcut, self).__init__()
83
+ self.d = dimension
84
+
85
+ def forward(self, x):
86
+ return x[0]+x[1]
87
+
88
+
89
+ class Foldcut(nn.Module):
90
+ def __init__(self, dimension=0):
91
+ super(Foldcut, self).__init__()
92
+ self.d = dimension
93
+
94
+ def forward(self, x):
95
+ x1, x2 = x.chunk(2, self.d)
96
+ return x1+x2
97
+
98
+
99
+ class Conv(nn.Module):
100
+ # Standard convolution
101
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
102
+ super(Conv, self).__init__()
103
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
104
+ self.bn = nn.BatchNorm2d(c2)
105
+ self.act = nn.LeakyReLU(0.1, inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
106
+
107
+ def forward(self, x):
108
+ return self.act(self.bn(self.conv(x)))
109
+
110
+ def fuseforward(self, x):
111
+ return self.act(self.conv(x))
112
+
113
+
114
+ class RobustConv(nn.Module):
115
+ # Robust convolution (use high kernel size 7-11 for: downsampling and other layers). Train for 300 - 450 epochs.
116
+ def __init__(self, c1, c2, k=7, s=1, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
117
+ super(RobustConv, self).__init__()
118
+ self.conv_dw = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
119
+ self.conv1x1 = nn.Conv2d(c1, c2, 1, 1, 0, groups=1, bias=True)
120
+ self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
121
+
122
+ def forward(self, x):
123
+ x = x.to(memory_format=torch.channels_last)
124
+ x = self.conv1x1(self.conv_dw(x))
125
+ if self.gamma is not None:
126
+ x = x.mul(self.gamma.reshape(1, -1, 1, 1))
127
+ return x
128
+
129
+
130
+ class RobustConv2(nn.Module):
131
+ # Robust convolution 2 (use [32, 5, 2] or [32, 7, 4] or [32, 11, 8] for one of the paths in CSP).
132
+ def __init__(self, c1, c2, k=7, s=4, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
133
+ super(RobustConv2, self).__init__()
134
+ self.conv_strided = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
135
+ self.conv_deconv = nn.ConvTranspose2d(in_channels=c1, out_channels=c2, kernel_size=s, stride=s,
136
+ padding=0, bias=True, dilation=1, groups=1
137
+ )
138
+ self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
139
+
140
+ def forward(self, x):
141
+ x = self.conv_deconv(self.conv_strided(x))
142
+ if self.gamma is not None:
143
+ x = x.mul(self.gamma.reshape(1, -1, 1, 1))
144
+ return x
145
+
146
+
147
+ def DWConv(c1, c2, k=1, s=1, act=True):
148
+ # Depthwise convolution
149
+ return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
150
+
151
+
152
+ class GhostConv(nn.Module):
153
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
154
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
155
+ super(GhostConv, self).__init__()
156
+ c_ = c2 // 2 # hidden channels
157
+ self.cv1 = Conv(c1, c_, k, s, None, g, act)
158
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
159
+
160
+ def forward(self, x):
161
+ y = self.cv1(x)
162
+ return torch.cat([y, self.cv2(y)], 1)
163
+
164
+
165
+ class Stem(nn.Module):
166
+ # Stem
167
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
168
+ super(Stem, self).__init__()
169
+ c_ = int(c2/2) # hidden channels
170
+ self.cv1 = Conv(c1, c_, 3, 2)
171
+ self.cv2 = Conv(c_, c_, 1, 1)
172
+ self.cv3 = Conv(c_, c_, 3, 2)
173
+ self.pool = torch.nn.MaxPool2d(2, stride=2)
174
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
175
+
176
+ def forward(self, x):
177
+ x = self.cv1(x)
178
+ return self.cv4(torch.cat((self.cv3(self.cv2(x)), self.pool(x)), dim=1))
179
+
180
+
181
+ class DownC(nn.Module):
182
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
183
+ def __init__(self, c1, c2, n=1, k=2):
184
+ super(DownC, self).__init__()
185
+ c_ = int(c1) # hidden channels
186
+ self.cv1 = Conv(c1, c_, 1, 1)
187
+ self.cv2 = Conv(c_, c2//2, 3, k)
188
+ self.cv3 = Conv(c1, c2//2, 1, 1)
189
+ self.mp = nn.MaxPool2d(kernel_size=k, stride=k)
190
+
191
+ def forward(self, x):
192
+ return torch.cat((self.cv2(self.cv1(x)), self.cv3(self.mp(x))), dim=1)
193
+
194
+
195
+ class SPP(nn.Module):
196
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
197
+ def __init__(self, c1, c2, k=(5, 9, 13)):
198
+ super(SPP, self).__init__()
199
+ c_ = c1 // 2 # hidden channels
200
+ self.cv1 = Conv(c1, c_, 1, 1)
201
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
202
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
203
+
204
+ def forward(self, x):
205
+ x = self.cv1(x)
206
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
207
+
208
+
209
+ class Bottleneck(nn.Module):
210
+ # Darknet bottleneck
211
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
212
+ super(Bottleneck, self).__init__()
213
+ c_ = int(c2 * e) # hidden channels
214
+ self.cv1 = Conv(c1, c_, 1, 1)
215
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
216
+ self.add = shortcut and c1 == c2
217
+
218
+ def forward(self, x):
219
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
220
+
221
+
222
+ class Res(nn.Module):
223
+ # ResNet bottleneck
224
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
225
+ super(Res, self).__init__()
226
+ c_ = int(c2 * e) # hidden channels
227
+ self.cv1 = Conv(c1, c_, 1, 1)
228
+ self.cv2 = Conv(c_, c_, 3, 1, g=g)
229
+ self.cv3 = Conv(c_, c2, 1, 1)
230
+ self.add = shortcut and c1 == c2
231
+
232
+ def forward(self, x):
233
+ return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
234
+
235
+
236
+ class ResX(Res):
237
+ # ResNet bottleneck
238
+ def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
239
+ super().__init__(c1, c2, shortcu, g, e)
240
+ c_ = int(c2 * e) # hidden channels
241
+
242
+
243
+ class Ghost(nn.Module):
244
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
245
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
246
+ super(Ghost, self).__init__()
247
+ c_ = c2 // 2
248
+ self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
249
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
250
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
251
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
252
+ Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
253
+
254
+ def forward(self, x):
255
+ return self.conv(x) + self.shortcut(x)
256
+
257
+ ##### end of basic #####
258
+
259
+
260
+ ##### cspnet #####
261
+
262
+ class SPPCSPC(nn.Module):
263
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
264
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
265
+ super(SPPCSPC, self).__init__()
266
+ c_ = int(2 * c2 * e) # hidden channels
267
+ self.cv1 = Conv(c1, c_, 1, 1)
268
+ self.cv2 = Conv(c1, c_, 1, 1)
269
+ self.cv3 = Conv(c_, c_, 3, 1)
270
+ self.cv4 = Conv(c_, c_, 1, 1)
271
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
272
+ self.cv5 = Conv(4 * c_, c_, 1, 1)
273
+ self.cv6 = Conv(c_, c_, 3, 1)
274
+ self.cv7 = Conv(2 * c_, c2, 1, 1)
275
+
276
+ def forward(self, x):
277
+ x1 = self.cv4(self.cv3(self.cv1(x)))
278
+ y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
279
+ y2 = self.cv2(x)
280
+ return self.cv7(torch.cat((y1, y2), dim=1))
281
+
282
+ class GhostSPPCSPC(SPPCSPC):
283
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
284
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
285
+ super().__init__(c1, c2, n, shortcut, g, e, k)
286
+ c_ = int(2 * c2 * e) # hidden channels
287
+ self.cv1 = GhostConv(c1, c_, 1, 1)
288
+ self.cv2 = GhostConv(c1, c_, 1, 1)
289
+ self.cv3 = GhostConv(c_, c_, 3, 1)
290
+ self.cv4 = GhostConv(c_, c_, 1, 1)
291
+ self.cv5 = GhostConv(4 * c_, c_, 1, 1)
292
+ self.cv6 = GhostConv(c_, c_, 3, 1)
293
+ self.cv7 = GhostConv(2 * c_, c2, 1, 1)
294
+
295
+
296
+ class GhostStem(Stem):
297
+ # Stem
298
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
299
+ super().__init__(c1, c2, k, s, p, g, act)
300
+ c_ = int(c2/2) # hidden channels
301
+ self.cv1 = GhostConv(c1, c_, 3, 2)
302
+ self.cv2 = GhostConv(c_, c_, 1, 1)
303
+ self.cv3 = GhostConv(c_, c_, 3, 2)
304
+ self.cv4 = GhostConv(2 * c_, c2, 1, 1)
305
+
306
+
307
+ class BottleneckCSPA(nn.Module):
308
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
309
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
310
+ super(BottleneckCSPA, self).__init__()
311
+ c_ = int(c2 * e) # hidden channels
312
+ self.cv1 = Conv(c1, c_, 1, 1)
313
+ self.cv2 = Conv(c1, c_, 1, 1)
314
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
315
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
316
+
317
+ def forward(self, x):
318
+ y1 = self.m(self.cv1(x))
319
+ y2 = self.cv2(x)
320
+ return self.cv3(torch.cat((y1, y2), dim=1))
321
+
322
+
323
+ class BottleneckCSPB(nn.Module):
324
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
325
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
326
+ super(BottleneckCSPB, self).__init__()
327
+ c_ = int(c2) # hidden channels
328
+ self.cv1 = Conv(c1, c_, 1, 1)
329
+ self.cv2 = Conv(c_, c_, 1, 1)
330
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
331
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
332
+
333
+ def forward(self, x):
334
+ x1 = self.cv1(x)
335
+ y1 = self.m(x1)
336
+ y2 = self.cv2(x1)
337
+ return self.cv3(torch.cat((y1, y2), dim=1))
338
+
339
+
340
+ class BottleneckCSPC(nn.Module):
341
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
342
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
343
+ super(BottleneckCSPC, self).__init__()
344
+ c_ = int(c2 * e) # hidden channels
345
+ self.cv1 = Conv(c1, c_, 1, 1)
346
+ self.cv2 = Conv(c1, c_, 1, 1)
347
+ self.cv3 = Conv(c_, c_, 1, 1)
348
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
349
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
350
+
351
+ def forward(self, x):
352
+ y1 = self.cv3(self.m(self.cv1(x)))
353
+ y2 = self.cv2(x)
354
+ return self.cv4(torch.cat((y1, y2), dim=1))
355
+
356
+
357
+ class ResCSPA(BottleneckCSPA):
358
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
359
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
360
+ super().__init__(c1, c2, n, shortcut, g, e)
361
+ c_ = int(c2 * e) # hidden channels
362
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
363
+
364
+
365
+ class ResCSPB(BottleneckCSPB):
366
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
367
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
368
+ super().__init__(c1, c2, n, shortcut, g, e)
369
+ c_ = int(c2) # hidden channels
370
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
371
+
372
+
373
+ class ResCSPC(BottleneckCSPC):
374
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
375
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
376
+ super().__init__(c1, c2, n, shortcut, g, e)
377
+ c_ = int(c2 * e) # hidden channels
378
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
379
+
380
+
381
+ class ResXCSPA(ResCSPA):
382
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
383
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
384
+ super().__init__(c1, c2, n, shortcut, g, e)
385
+ c_ = int(c2 * e) # hidden channels
386
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
387
+
388
+
389
+ class ResXCSPB(ResCSPB):
390
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
391
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
392
+ super().__init__(c1, c2, n, shortcut, g, e)
393
+ c_ = int(c2) # hidden channels
394
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
395
+
396
+
397
+ class ResXCSPC(ResCSPC):
398
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
399
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
400
+ super().__init__(c1, c2, n, shortcut, g, e)
401
+ c_ = int(c2 * e) # hidden channels
402
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
403
+
404
+
405
+ class GhostCSPA(BottleneckCSPA):
406
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
407
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
408
+ super().__init__(c1, c2, n, shortcut, g, e)
409
+ c_ = int(c2 * e) # hidden channels
410
+ self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
411
+
412
+
413
+ class GhostCSPB(BottleneckCSPB):
414
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
415
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
416
+ super().__init__(c1, c2, n, shortcut, g, e)
417
+ c_ = int(c2) # hidden channels
418
+ self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
419
+
420
+
421
+ class GhostCSPC(BottleneckCSPC):
422
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
423
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
424
+ super().__init__(c1, c2, n, shortcut, g, e)
425
+ c_ = int(c2 * e) # hidden channels
426
+ self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
427
+
428
+ ##### end of cspnet #####
429
+
430
+
431
+ ##### yolor #####
432
+
433
+ class ImplicitA(nn.Module):
434
+ def __init__(self, channel, mean=0., std=.02):
435
+ super(ImplicitA, self).__init__()
436
+ self.channel = channel
437
+ self.mean = mean
438
+ self.std = std
439
+ self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
440
+ nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
441
+
442
+ def forward(self, x):
443
+ return self.implicit + x
444
+
445
+
446
+ class ImplicitM(nn.Module):
447
+ def __init__(self, channel, mean=0., std=.02):
448
+ super(ImplicitM, self).__init__()
449
+ self.channel = channel
450
+ self.mean = mean
451
+ self.std = std
452
+ self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
453
+ nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
454
+
455
+ def forward(self, x):
456
+ return self.implicit * x
457
+
458
+ ##### end of yolor #####
459
+
460
+
461
+ ##### repvgg #####
462
+
463
+ class RepConv(nn.Module):
464
+ # Represented convolution
465
+ # https://arxiv.org/abs/2101.03697
466
+
467
+ def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):
468
+ super(RepConv, self).__init__()
469
+
470
+ self.deploy = deploy
471
+ self.groups = g
472
+ self.in_channels = c1
473
+ self.out_channels = c2
474
+
475
+ assert k == 3
476
+ assert autopad(k, p) == 1
477
+
478
+ padding_11 = autopad(k, p) - k // 2
479
+
480
+ self.act = nn.LeakyReLU(0.1, inplace=True) if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
481
+
482
+ if deploy:
483
+ self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)
484
+
485
+ else:
486
+ self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)
487
+
488
+ self.rbr_dense = nn.Sequential(
489
+ nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),
490
+ nn.BatchNorm2d(num_features=c2),
491
+ )
492
+
493
+ self.rbr_1x1 = nn.Sequential(
494
+ nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),
495
+ nn.BatchNorm2d(num_features=c2),
496
+ )
497
+
498
+ def forward(self, inputs):
499
+ if hasattr(self, "rbr_reparam"):
500
+ return self.act(self.rbr_reparam(inputs))
501
+
502
+ if self.rbr_identity is None:
503
+ id_out = 0
504
+ else:
505
+ id_out = self.rbr_identity(inputs)
506
+
507
+ return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
508
+
509
+ def get_equivalent_kernel_bias(self):
510
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
511
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
512
+ kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
513
+ return (
514
+ kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
515
+ bias3x3 + bias1x1 + biasid,
516
+ )
517
+
518
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
519
+ if kernel1x1 is None:
520
+ return 0
521
+ else:
522
+ return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
523
+
524
+ def _fuse_bn_tensor(self, branch):
525
+ if branch is None:
526
+ return 0, 0
527
+ if isinstance(branch, nn.Sequential):
528
+ kernel = branch[0].weight
529
+ running_mean = branch[1].running_mean
530
+ running_var = branch[1].running_var
531
+ gamma = branch[1].weight
532
+ beta = branch[1].bias
533
+ eps = branch[1].eps
534
+ else:
535
+ assert isinstance(branch, nn.BatchNorm2d)
536
+ if not hasattr(self, "id_tensor"):
537
+ input_dim = self.in_channels // self.groups
538
+ kernel_value = np.zeros(
539
+ (self.in_channels, input_dim, 3, 3), dtype=np.float32
540
+ )
541
+ for i in range(self.in_channels):
542
+ kernel_value[i, i % input_dim, 1, 1] = 1
543
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
544
+ kernel = self.id_tensor
545
+ running_mean = branch.running_mean
546
+ running_var = branch.running_var
547
+ gamma = branch.weight
548
+ beta = branch.bias
549
+ eps = branch.eps
550
+ std = (running_var + eps).sqrt()
551
+ t = (gamma / std).reshape(-1, 1, 1, 1)
552
+ return kernel * t, beta - running_mean * gamma / std
553
+
554
+ def repvgg_convert(self):
555
+ kernel, bias = self.get_equivalent_kernel_bias()
556
+ return (
557
+ kernel.detach().cpu().numpy(),
558
+ bias.detach().cpu().numpy(),
559
+ )
560
+
561
+ def fuse_conv_bn(self, conv, bn):
562
+
563
+ std = (bn.running_var + bn.eps).sqrt()
564
+ bias = bn.bias - bn.running_mean * bn.weight / std
565
+
566
+ t = (bn.weight / std).reshape(-1, 1, 1, 1)
567
+ weights = conv.weight * t
568
+
569
+ bn = nn.Identity()
570
+ conv = nn.Conv2d(in_channels = conv.in_channels,
571
+ out_channels = conv.out_channels,
572
+ kernel_size = conv.kernel_size,
573
+ stride=conv.stride,
574
+ padding = conv.padding,
575
+ dilation = conv.dilation,
576
+ groups = conv.groups,
577
+ bias = True,
578
+ padding_mode = conv.padding_mode)
579
+
580
+ conv.weight = torch.nn.Parameter(weights)
581
+ conv.bias = torch.nn.Parameter(bias)
582
+ return conv
583
+
584
+ def fuse_repvgg_block(self):
585
+ if self.deploy:
586
+ return
587
+ print(f"RepConv.fuse_repvgg_block")
588
+
589
+ self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])
590
+
591
+ self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
592
+ rbr_1x1_bias = self.rbr_1x1.bias
593
+ weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])
594
+
595
+ # Fuse self.rbr_identity
596
+ if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):
597
+ # print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")
598
+ identity_conv_1x1 = nn.Conv2d(
599
+ in_channels=self.in_channels,
600
+ out_channels=self.out_channels,
601
+ kernel_size=1,
602
+ stride=1,
603
+ padding=0,
604
+ groups=self.groups,
605
+ bias=False)
606
+ identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
607
+ identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
608
+ # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
609
+ identity_conv_1x1.weight.data.fill_(0.0)
610
+ identity_conv_1x1.weight.data.fill_diagonal_(1.0)
611
+ identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
612
+ # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
613
+
614
+ identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
615
+ bias_identity_expanded = identity_conv_1x1.bias
616
+ weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])
617
+ else:
618
+ # print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")
619
+ bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )
620
+ weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )
621
+
622
+
623
+ #print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")
624
+ #print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")
625
+ #print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")
626
+
627
+ self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
628
+ self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)
629
+
630
+ self.rbr_reparam = self.rbr_dense
631
+ self.deploy = True
632
+
633
+ if self.rbr_identity is not None:
634
+ del self.rbr_identity
635
+ self.rbr_identity = None
636
+
637
+ if self.rbr_1x1 is not None:
638
+ del self.rbr_1x1
639
+ self.rbr_1x1 = None
640
+
641
+ if self.rbr_dense is not None:
642
+ del self.rbr_dense
643
+ self.rbr_dense = None
644
+
645
+
646
+ class RepBottleneck(Bottleneck):
647
+ # Standard bottleneck
648
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
649
+ super().__init__(c1, c2, shortcut=True, g=1, e=0.5)
650
+ c_ = int(c2 * e) # hidden channels
651
+ self.cv2 = RepConv(c_, c2, 3, 1, g=g)
652
+
653
+
654
+ class RepBottleneckCSPA(BottleneckCSPA):
655
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
656
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
657
+ super().__init__(c1, c2, n, shortcut, g, e)
658
+ c_ = int(c2 * e) # hidden channels
659
+ self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
660
+
661
+
662
+ class RepBottleneckCSPB(BottleneckCSPB):
663
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
664
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
665
+ super().__init__(c1, c2, n, shortcut, g, e)
666
+ c_ = int(c2) # hidden channels
667
+ self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
668
+
669
+
670
+ class RepBottleneckCSPC(BottleneckCSPC):
671
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
672
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
673
+ super().__init__(c1, c2, n, shortcut, g, e)
674
+ c_ = int(c2 * e) # hidden channels
675
+ self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
676
+
677
+
678
+ class RepRes(Res):
679
+ # Standard bottleneck
680
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
681
+ super().__init__(c1, c2, shortcut, g, e)
682
+ c_ = int(c2 * e) # hidden channels
683
+ self.cv2 = RepConv(c_, c_, 3, 1, g=g)
684
+
685
+
686
+ class RepResCSPA(ResCSPA):
687
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
688
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
689
+ super().__init__(c1, c2, n, shortcut, g, e)
690
+ c_ = int(c2 * e) # hidden channels
691
+ self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
692
+
693
+
694
+ class RepResCSPB(ResCSPB):
695
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
696
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
697
+ super().__init__(c1, c2, n, shortcut, g, e)
698
+ c_ = int(c2) # hidden channels
699
+ self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
700
+
701
+
702
+ class RepResCSPC(ResCSPC):
703
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
704
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
705
+ super().__init__(c1, c2, n, shortcut, g, e)
706
+ c_ = int(c2 * e) # hidden channels
707
+ self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
708
+
709
+
710
+ class RepResX(ResX):
711
+ # Standard bottleneck
712
+ def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
713
+ super().__init__(c1, c2, shortcut, g, e)
714
+ c_ = int(c2 * e) # hidden channels
715
+ self.cv2 = RepConv(c_, c_, 3, 1, g=g)
716
+
717
+
718
+ class RepResXCSPA(ResXCSPA):
719
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
720
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
721
+ super().__init__(c1, c2, n, shortcut, g, e)
722
+ c_ = int(c2 * e) # hidden channels
723
+ self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
724
+
725
+
726
+ class RepResXCSPB(ResXCSPB):
727
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
728
+ def __init__(self, c1, c2, n=1, shortcut=False, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
729
+ super().__init__(c1, c2, n, shortcut, g, e)
730
+ c_ = int(c2) # hidden channels
731
+ self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
732
+
733
+
734
+ class RepResXCSPC(ResXCSPC):
735
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
736
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
737
+ super().__init__(c1, c2, n, shortcut, g, e)
738
+ c_ = int(c2 * e) # hidden channels
739
+ self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
740
+
741
+ ##### end of repvgg #####
742
+
743
+
744
+ ##### transformer #####
745
+
746
+ class TransformerLayer(nn.Module):
747
+ # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
748
+ def __init__(self, c, num_heads):
749
+ super().__init__()
750
+ self.q = nn.Linear(c, c, bias=False)
751
+ self.k = nn.Linear(c, c, bias=False)
752
+ self.v = nn.Linear(c, c, bias=False)
753
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
754
+ self.fc1 = nn.Linear(c, c, bias=False)
755
+ self.fc2 = nn.Linear(c, c, bias=False)
756
+
757
+ def forward(self, x):
758
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
759
+ x = self.fc2(self.fc1(x)) + x
760
+ return x
761
+
762
+
763
+ class TransformerBlock(nn.Module):
764
+ # Vision Transformer https://arxiv.org/abs/2010.11929
765
+ def __init__(self, c1, c2, num_heads, num_layers):
766
+ super().__init__()
767
+ self.conv = None
768
+ if c1 != c2:
769
+ self.conv = Conv(c1, c2)
770
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
771
+ self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
772
+ self.c2 = c2
773
+
774
+ def forward(self, x):
775
+ if self.conv is not None:
776
+ x = self.conv(x)
777
+ b, _, w, h = x.shape
778
+ p = x.flatten(2)
779
+ p = p.unsqueeze(0)
780
+ p = p.transpose(0, 3)
781
+ p = p.squeeze(3)
782
+ e = self.linear(p)
783
+ x = p + e
784
+
785
+ x = self.tr(x)
786
+ x = x.unsqueeze(3)
787
+ x = x.transpose(0, 3)
788
+ x = x.reshape(b, self.c2, w, h)
789
+ return x
790
+
791
+ ##### end of transformer #####
792
+
793
+
794
+ ##### yolov5 #####
795
+
796
+ class Focus(nn.Module):
797
+ # Focus wh information into c-space
798
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
799
+ super(Focus, self).__init__()
800
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
801
+ # self.contract = Contract(gain=2)
802
+
803
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
804
+ return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
805
+ # return self.conv(self.contract(x))
806
+
807
+
808
+ class SPPF(nn.Module):
809
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
810
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
811
+ super().__init__()
812
+ c_ = c1 // 2 # hidden channels
813
+ self.cv1 = Conv(c1, c_, 1, 1)
814
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
815
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
816
+
817
+ def forward(self, x):
818
+ x = self.cv1(x)
819
+ y1 = self.m(x)
820
+ y2 = self.m(y1)
821
+ return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
822
+
823
+
824
+ class Contract(nn.Module):
825
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
826
+ def __init__(self, gain=2):
827
+ super().__init__()
828
+ self.gain = gain
829
+
830
+ def forward(self, x):
831
+ N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
832
+ s = self.gain
833
+ x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
834
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
835
+ return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
836
+
837
+
838
+ class Expand(nn.Module):
839
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
840
+ def __init__(self, gain=2):
841
+ super().__init__()
842
+ self.gain = gain
843
+
844
+ def forward(self, x):
845
+ N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
846
+ s = self.gain
847
+ x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
848
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
849
+ return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
850
+
851
+
852
+ class NMS(nn.Module):
853
+ # Non-Maximum Suppression (NMS) module
854
+ conf = 0.25 # confidence threshold
855
+ iou = 0.45 # IoU threshold
856
+ classes = None # (optional list) filter by class
857
+
858
+ def __init__(self):
859
+ super(NMS, self).__init__()
860
+
861
+ def forward(self, x):
862
+ return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
863
+
864
+
865
+ class autoShape(nn.Module):
866
+ # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
867
+ conf = 0.25 # NMS confidence threshold
868
+ iou = 0.45 # NMS IoU threshold
869
+ classes = None # (optional list) filter by class
870
+
871
+ def __init__(self, model):
872
+ super(autoShape, self).__init__()
873
+ self.model = model.eval()
874
+
875
+ def autoshape(self):
876
+ print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
877
+ return self
878
+
879
+ @torch.no_grad()
880
+ def forward(self, imgs, size=640, augment=False, profile=False):
881
+ # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
882
+ # filename: imgs = 'data/samples/zidane.jpg'
883
+ # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
884
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
885
+ # PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
886
+ # numpy: = np.zeros((640,1280,3)) # HWC
887
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
888
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
889
+
890
+ t = [time_synchronized()]
891
+ p = next(self.model.parameters()) # for device and type
892
+ if isinstance(imgs, torch.Tensor): # torch
893
+ with amp.autocast(enabled=p.device.type != 'cpu'):
894
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
895
+
896
+ # Pre-process
897
+ n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
898
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
899
+ for i, im in enumerate(imgs):
900
+ f = f'image{i}' # filename
901
+ if isinstance(im, str): # filename or uri
902
+ im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
903
+ elif isinstance(im, Image.Image): # PIL Image
904
+ im, f = np.asarray(im), getattr(im, 'filename', f) or f
905
+ files.append(Path(f).with_suffix('.jpg').name)
906
+ if im.shape[0] < 5: # image in CHW
907
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
908
+ im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
909
+ s = im.shape[:2] # HWC
910
+ shape0.append(s) # image shape
911
+ g = (size / max(s)) # gain
912
+ shape1.append([y * g for y in s])
913
+ imgs[i] = im # update
914
+ shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
915
+ x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
916
+ x = np.stack(x, 0) if n > 1 else x[0][None] # stack
917
+ x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
918
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
919
+ t.append(time_synchronized())
920
+
921
+ with amp.autocast(enabled=p.device.type != 'cpu'):
922
+ # Inference
923
+ y = self.model(x, augment, profile)[0] # forward
924
+ t.append(time_synchronized())
925
+
926
+ # Post-process
927
+ y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
928
+ for i in range(n):
929
+ scale_coords(shape1, y[i][:, :4], shape0[i])
930
+
931
+ t.append(time_synchronized())
932
+ return Detections(imgs, y, files, t, self.names, x.shape)
933
+
934
+
935
+ class Detections:
936
+ # detections class for YOLOv5 inference results
937
+ def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
938
+ super(Detections, self).__init__()
939
+ d = pred[0].device # device
940
+ gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
941
+ self.imgs = imgs # list of images as numpy arrays
942
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
943
+ self.names = names # class names
944
+ self.files = files # image filenames
945
+ self.xyxy = pred # xyxy pixels
946
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
947
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
948
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
949
+ self.n = len(self.pred) # number of images (batch size)
950
+ self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
951
+ self.s = shape # inference BCHW shape
952
+
953
+ def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
954
+ colors = color_list()
955
+ for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
956
+ str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
957
+ if pred is not None:
958
+ for c in pred[:, -1].unique():
959
+ n = (pred[:, -1] == c).sum() # detections per class
960
+ str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
961
+ if show or save or render:
962
+ for *box, conf, cls in pred: # xyxy, confidence, class
963
+ label = f'{self.names[int(cls)]} {conf:.2f}'
964
+ plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
965
+ img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
966
+ if pprint:
967
+ print(str.rstrip(', '))
968
+ if show:
969
+ img.show(self.files[i]) # show
970
+ if save:
971
+ f = self.files[i]
972
+ img.save(Path(save_dir) / f) # save
973
+ print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
974
+ if render:
975
+ self.imgs[i] = np.asarray(img)
976
+
977
+ def print(self):
978
+ self.display(pprint=True) # print results
979
+ print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
980
+
981
+ def show(self):
982
+ self.display(show=True) # show results
983
+
984
+ def save(self, save_dir='runs/hub/exp'):
985
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir
986
+ Path(save_dir).mkdir(parents=True, exist_ok=True)
987
+ self.display(save=True, save_dir=save_dir) # save results
988
+
989
+ def render(self):
990
+ self.display(render=True) # render results
991
+ return self.imgs
992
+
993
+ def pandas(self):
994
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
995
+ new = copy(self) # return copy
996
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
997
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
998
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
999
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
1000
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
1001
+ return new
1002
+
1003
+ def tolist(self):
1004
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
1005
+ x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
1006
+ for d in x:
1007
+ for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
1008
+ setattr(d, k, getattr(d, k)[0]) # pop out of list
1009
+ return x
1010
+
1011
+ def __len__(self):
1012
+ return self.n
1013
+
1014
+
1015
+ class Classify(nn.Module):
1016
+ # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
1017
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
1018
+ super(Classify, self).__init__()
1019
+ self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
1020
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
1021
+ self.flat = nn.Flatten()
1022
+
1023
+ def forward(self, x):
1024
+ z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
1025
+ return self.flat(self.conv(z)) # flatten to x(b,c2)
1026
+
1027
+ ##### end of yolov5 ######
1028
+
1029
+
1030
+ ##### orepa #####
1031
+
1032
+ def transI_fusebn(kernel, bn):
1033
+ gamma = bn.weight
1034
+ std = (bn.running_var + bn.eps).sqrt()
1035
+ return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std
1036
+
1037
+
1038
+ class ConvBN(nn.Module):
1039
+ def __init__(self, in_channels, out_channels, kernel_size,
1040
+ stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
1041
+ super().__init__()
1042
+ if nonlinear is None:
1043
+ self.nonlinear = nn.Identity()
1044
+ else:
1045
+ self.nonlinear = nonlinear
1046
+ if deploy:
1047
+ self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1048
+ stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
1049
+ else:
1050
+ self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1051
+ stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
1052
+ self.bn = nn.BatchNorm2d(num_features=out_channels)
1053
+
1054
+ def forward(self, x):
1055
+ if hasattr(self, 'bn'):
1056
+ return self.nonlinear(self.bn(self.conv(x)))
1057
+ else:
1058
+ return self.nonlinear(self.conv(x))
1059
+
1060
+ def switch_to_deploy(self):
1061
+ kernel, bias = transI_fusebn(self.conv.weight, self.bn)
1062
+ conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
1063
+ stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
1064
+ conv.weight.data = kernel
1065
+ conv.bias.data = bias
1066
+ for para in self.parameters():
1067
+ para.detach_()
1068
+ self.__delattr__('conv')
1069
+ self.__delattr__('bn')
1070
+ self.conv = conv
1071
+
1072
+ class OREPA_3x3_RepConv(nn.Module):
1073
+
1074
+ def __init__(self, in_channels, out_channels, kernel_size,
1075
+ stride=1, padding=0, dilation=1, groups=1,
1076
+ internal_channels_1x1_3x3=None,
1077
+ deploy=False, nonlinear=None, single_init=False):
1078
+ super(OREPA_3x3_RepConv, self).__init__()
1079
+ self.deploy = deploy
1080
+
1081
+ if nonlinear is None:
1082
+ self.nonlinear = nn.Identity()
1083
+ else:
1084
+ self.nonlinear = nonlinear
1085
+
1086
+ self.kernel_size = kernel_size
1087
+ self.in_channels = in_channels
1088
+ self.out_channels = out_channels
1089
+ self.groups = groups
1090
+ assert padding == kernel_size // 2
1091
+
1092
+ self.stride = stride
1093
+ self.padding = padding
1094
+ self.dilation = dilation
1095
+
1096
+ self.branch_counter = 0
1097
+
1098
+ self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
1099
+ nn.init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
1100
+ self.branch_counter += 1
1101
+
1102
+
1103
+ if groups < out_channels:
1104
+ self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1105
+ self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1106
+ nn.init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
1107
+ nn.init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
1108
+ self.weight_rbr_avg_conv.data
1109
+ self.weight_rbr_pfir_conv.data
1110
+ self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
1111
+ self.branch_counter += 1
1112
+
1113
+ else:
1114
+ raise NotImplementedError
1115
+ self.branch_counter += 1
1116
+
1117
+ if internal_channels_1x1_3x3 is None:
1118
+ internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels
1119
+
1120
+ if internal_channels_1x1_3x3 == in_channels:
1121
+ self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
1122
+ id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
1123
+ for i in range(in_channels):
1124
+ id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
1125
+ id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
1126
+ self.register_buffer('id_tensor', id_tensor)
1127
+
1128
+ else:
1129
+ self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
1130
+ nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
1131
+ self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
1132
+ nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
1133
+ self.branch_counter += 1
1134
+
1135
+ expand_ratio = 8
1136
+ self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
1137
+ self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
1138
+ nn.init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
1139
+ nn.init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
1140
+ self.branch_counter += 1
1141
+
1142
+ if out_channels == in_channels and stride == 1:
1143
+ self.branch_counter += 1
1144
+
1145
+ self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
1146
+ self.bn = nn.BatchNorm2d(out_channels)
1147
+
1148
+ self.fre_init()
1149
+
1150
+ nn.init.constant_(self.vector[0, :], 0.25) #origin
1151
+ nn.init.constant_(self.vector[1, :], 0.25) #avg
1152
+ nn.init.constant_(self.vector[2, :], 0.0) #prior
1153
+ nn.init.constant_(self.vector[3, :], 0.5) #1x1_kxk
1154
+ nn.init.constant_(self.vector[4, :], 0.5) #dws_conv
1155
+
1156
+
1157
+ def fre_init(self):
1158
+ prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
1159
+ half_fg = self.out_channels/2
1160
+ for i in range(self.out_channels):
1161
+ for h in range(3):
1162
+ for w in range(3):
1163
+ if i < half_fg:
1164
+ prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
1165
+ else:
1166
+ prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)
1167
+
1168
+ self.register_buffer('weight_rbr_prior', prior_tensor)
1169
+
1170
+ def weight_gen(self):
1171
+
1172
+ weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])
1173
+
1174
+ weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
1175
+
1176
+ weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])
1177
+
1178
+ weight_rbr_1x1_kxk_conv1 = None
1179
+ if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
1180
+ weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
1181
+ elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
1182
+ weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
1183
+ else:
1184
+ raise NotImplementedError
1185
+ weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2
1186
+
1187
+ if self.groups > 1:
1188
+ g = self.groups
1189
+ t, ig = weight_rbr_1x1_kxk_conv1.size()
1190
+ o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
1191
+ weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
1192
+ weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
1193
+ weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
1194
+ else:
1195
+ weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)
1196
+
1197
+ weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])
1198
+
1199
+ weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
1200
+ weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])
1201
+
1202
+ weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv
1203
+
1204
+ return weight
1205
+
1206
+ def dwsc2full(self, weight_dw, weight_pw, groups):
1207
+
1208
+ t, ig, h, w = weight_dw.size()
1209
+ o, _, _, _ = weight_pw.size()
1210
+ tg = int(t/groups)
1211
+ i = int(ig*groups)
1212
+ weight_dw = weight_dw.view(groups, tg, ig, h, w)
1213
+ weight_pw = weight_pw.squeeze().view(o, groups, tg)
1214
+
1215
+ weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
1216
+ return weight_dsc.view(o, i, h, w)
1217
+
1218
+ def forward(self, inputs):
1219
+ weight = self.weight_gen()
1220
+ out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
1221
+
1222
+ return self.nonlinear(self.bn(out))
1223
+
1224
+ class RepConv_OREPA(nn.Module):
1225
+
1226
+ def __init__(self, c1, c2, k=3, s=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False, nonlinear=nn.SiLU()):
1227
+ super(RepConv_OREPA, self).__init__()
1228
+ self.deploy = deploy
1229
+ self.groups = groups
1230
+ self.in_channels = c1
1231
+ self.out_channels = c2
1232
+
1233
+ self.padding = padding
1234
+ self.dilation = dilation
1235
+ self.groups = groups
1236
+
1237
+ assert k == 3
1238
+ assert padding == 1
1239
+
1240
+ padding_11 = padding - k // 2
1241
+
1242
+ if nonlinear is None:
1243
+ self.nonlinearity = nn.Identity()
1244
+ else:
1245
+ self.nonlinearity = nonlinear
1246
+
1247
+ if use_se:
1248
+ self.se = SEBlock(self.out_channels, internal_neurons=self.out_channels // 16)
1249
+ else:
1250
+ self.se = nn.Identity()
1251
+
1252
+ if deploy:
1253
+ self.rbr_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s,
1254
+ padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
1255
+
1256
+ else:
1257
+ self.rbr_identity = nn.BatchNorm2d(num_features=self.in_channels) if self.out_channels == self.in_channels and s == 1 else None
1258
+ self.rbr_dense = OREPA_3x3_RepConv(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s, padding=padding, groups=groups, dilation=1)
1259
+ self.rbr_1x1 = ConvBN(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=1, stride=s, padding=padding_11, groups=groups, dilation=1)
1260
+ print('RepVGG Block, identity = ', self.rbr_identity)
1261
+
1262
+
1263
+ def forward(self, inputs):
1264
+ if hasattr(self, 'rbr_reparam'):
1265
+ return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
1266
+
1267
+ if self.rbr_identity is None:
1268
+ id_out = 0
1269
+ else:
1270
+ id_out = self.rbr_identity(inputs)
1271
+
1272
+ out1 = self.rbr_dense(inputs)
1273
+ out2 = self.rbr_1x1(inputs)
1274
+ out3 = id_out
1275
+ out = out1 + out2 + out3
1276
+
1277
+ return self.nonlinearity(self.se(out))
1278
+
1279
+
1280
+ # Optional. This improves the accuracy and facilitates quantization.
1281
+ # 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
1282
+ # 2. Use like this.
1283
+ # loss = criterion(....)
1284
+ # for every RepVGGBlock blk:
1285
+ # loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
1286
+ # optimizer.zero_grad()
1287
+ # loss.backward()
1288
+
1289
+ # Not used for OREPA
1290
+ def get_custom_L2(self):
1291
+ K3 = self.rbr_dense.weight_gen()
1292
+ K1 = self.rbr_1x1.conv.weight
1293
+ t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1294
+ t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1295
+
1296
+ l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
1297
+ eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel.
1298
+ l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2.
1299
+ return l2_loss_eq_kernel + l2_loss_circle
1300
+
1301
+ def get_equivalent_kernel_bias(self):
1302
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
1303
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
1304
+ kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
1305
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
1306
+
1307
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
1308
+ if kernel1x1 is None:
1309
+ return 0
1310
+ else:
1311
+ return torch.nn.functional.pad(kernel1x1, [1,1,1,1])
1312
+
1313
+ def _fuse_bn_tensor(self, branch):
1314
+ if branch is None:
1315
+ return 0, 0
1316
+ if not isinstance(branch, nn.BatchNorm2d):
1317
+ if isinstance(branch, OREPA_3x3_RepConv):
1318
+ kernel = branch.weight_gen()
1319
+ elif isinstance(branch, ConvBN):
1320
+ kernel = branch.conv.weight
1321
+ else:
1322
+ raise NotImplementedError
1323
+ running_mean = branch.bn.running_mean
1324
+ running_var = branch.bn.running_var
1325
+ gamma = branch.bn.weight
1326
+ beta = branch.bn.bias
1327
+ eps = branch.bn.eps
1328
+ else:
1329
+ if not hasattr(self, 'id_tensor'):
1330
+ input_dim = self.in_channels // self.groups
1331
+ kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
1332
+ for i in range(self.in_channels):
1333
+ kernel_value[i, i % input_dim, 1, 1] = 1
1334
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
1335
+ kernel = self.id_tensor
1336
+ running_mean = branch.running_mean
1337
+ running_var = branch.running_var
1338
+ gamma = branch.weight
1339
+ beta = branch.bias
1340
+ eps = branch.eps
1341
+ std = (running_var + eps).sqrt()
1342
+ t = (gamma / std).reshape(-1, 1, 1, 1)
1343
+ return kernel * t, beta - running_mean * gamma / std
1344
+
1345
+ def switch_to_deploy(self):
1346
+ if hasattr(self, 'rbr_reparam'):
1347
+ return
1348
+ print(f"RepConv_OREPA.switch_to_deploy")
1349
+ kernel, bias = self.get_equivalent_kernel_bias()
1350
+ self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
1351
+ kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
1352
+ padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
1353
+ self.rbr_reparam.weight.data = kernel
1354
+ self.rbr_reparam.bias.data = bias
1355
+ for para in self.parameters():
1356
+ para.detach_()
1357
+ self.__delattr__('rbr_dense')
1358
+ self.__delattr__('rbr_1x1')
1359
+ if hasattr(self, 'rbr_identity'):
1360
+ self.__delattr__('rbr_identity')
1361
+
1362
+ ##### end of orepa #####
1363
+
1364
+
1365
+ ##### swin transformer #####
1366
+
1367
+ class WindowAttention(nn.Module):
1368
+
1369
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
1370
+
1371
+ super().__init__()
1372
+ self.dim = dim
1373
+ self.window_size = window_size # Wh, Ww
1374
+ self.num_heads = num_heads
1375
+ head_dim = dim // num_heads
1376
+ self.scale = qk_scale or head_dim ** -0.5
1377
+
1378
+ # define a parameter table of relative position bias
1379
+ self.relative_position_bias_table = nn.Parameter(
1380
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
1381
+
1382
+ # get pair-wise relative position index for each token inside the window
1383
+ coords_h = torch.arange(self.window_size[0])
1384
+ coords_w = torch.arange(self.window_size[1])
1385
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1386
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1387
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1388
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1389
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1390
+ relative_coords[:, :, 1] += self.window_size[1] - 1
1391
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1392
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1393
+ self.register_buffer("relative_position_index", relative_position_index)
1394
+
1395
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
1396
+ self.attn_drop = nn.Dropout(attn_drop)
1397
+ self.proj = nn.Linear(dim, dim)
1398
+ self.proj_drop = nn.Dropout(proj_drop)
1399
+
1400
+ nn.init.normal_(self.relative_position_bias_table, std=.02)
1401
+ self.softmax = nn.Softmax(dim=-1)
1402
+
1403
+ def forward(self, x, mask=None):
1404
+
1405
+ B_, N, C = x.shape
1406
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
1407
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1408
+
1409
+ q = q * self.scale
1410
+ attn = (q @ k.transpose(-2, -1))
1411
+
1412
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
1413
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1414
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1415
+ attn = attn + relative_position_bias.unsqueeze(0)
1416
+
1417
+ if mask is not None:
1418
+ nW = mask.shape[0]
1419
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1420
+ attn = attn.view(-1, self.num_heads, N, N)
1421
+ attn = self.softmax(attn)
1422
+ else:
1423
+ attn = self.softmax(attn)
1424
+
1425
+ attn = self.attn_drop(attn)
1426
+
1427
+ # print(attn.dtype, v.dtype)
1428
+ try:
1429
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1430
+ except:
1431
+ #print(attn.dtype, v.dtype)
1432
+ x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1433
+ x = self.proj(x)
1434
+ x = self.proj_drop(x)
1435
+ return x
1436
+
1437
+ class Mlp(nn.Module):
1438
+
1439
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1440
+ super().__init__()
1441
+ out_features = out_features or in_features
1442
+ hidden_features = hidden_features or in_features
1443
+ self.fc1 = nn.Linear(in_features, hidden_features)
1444
+ self.act = act_layer()
1445
+ self.fc2 = nn.Linear(hidden_features, out_features)
1446
+ self.drop = nn.Dropout(drop)
1447
+
1448
+ def forward(self, x):
1449
+ x = self.fc1(x)
1450
+ x = self.act(x)
1451
+ x = self.drop(x)
1452
+ x = self.fc2(x)
1453
+ x = self.drop(x)
1454
+ return x
1455
+
1456
+ def window_partition(x, window_size):
1457
+
1458
+ B, H, W, C = x.shape
1459
+ assert H % window_size == 0, 'feature map h and w can not divide by window size'
1460
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1461
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1462
+ return windows
1463
+
1464
+ def window_reverse(windows, window_size, H, W):
1465
+
1466
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
1467
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1468
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1469
+ return x
1470
+
1471
+
1472
+ class SwinTransformerLayer(nn.Module):
1473
+
1474
+ def __init__(self, dim, num_heads, window_size=8, shift_size=0,
1475
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
1476
+ act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
1477
+ super().__init__()
1478
+ self.dim = dim
1479
+ self.num_heads = num_heads
1480
+ self.window_size = window_size
1481
+ self.shift_size = shift_size
1482
+ self.mlp_ratio = mlp_ratio
1483
+ # if min(self.input_resolution) <= self.window_size:
1484
+ # # if window size is larger than input resolution, we don't partition windows
1485
+ # self.shift_size = 0
1486
+ # self.window_size = min(self.input_resolution)
1487
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1488
+
1489
+ self.norm1 = norm_layer(dim)
1490
+ self.attn = WindowAttention(
1491
+ dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1492
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
1493
+
1494
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1495
+ self.norm2 = norm_layer(dim)
1496
+ mlp_hidden_dim = int(dim * mlp_ratio)
1497
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1498
+
1499
+ def create_mask(self, H, W):
1500
+ # calculate attention mask for SW-MSA
1501
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1502
+ h_slices = (slice(0, -self.window_size),
1503
+ slice(-self.window_size, -self.shift_size),
1504
+ slice(-self.shift_size, None))
1505
+ w_slices = (slice(0, -self.window_size),
1506
+ slice(-self.window_size, -self.shift_size),
1507
+ slice(-self.shift_size, None))
1508
+ cnt = 0
1509
+ for h in h_slices:
1510
+ for w in w_slices:
1511
+ img_mask[:, h, w, :] = cnt
1512
+ cnt += 1
1513
+
1514
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1515
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1516
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1517
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1518
+
1519
+ return attn_mask
1520
+
1521
+ def forward(self, x):
1522
+ # reshape x[b c h w] to x[b l c]
1523
+ _, _, H_, W_ = x.shape
1524
+
1525
+ Padding = False
1526
+ if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1527
+ Padding = True
1528
+ # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1529
+ pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1530
+ pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1531
+ x = F.pad(x, (0, pad_r, 0, pad_b))
1532
+
1533
+ # print('2', x.shape)
1534
+ B, C, H, W = x.shape
1535
+ L = H * W
1536
+ x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1537
+
1538
+ # create mask from init to forward
1539
+ if self.shift_size > 0:
1540
+ attn_mask = self.create_mask(H, W).to(x.device)
1541
+ else:
1542
+ attn_mask = None
1543
+
1544
+ shortcut = x
1545
+ x = self.norm1(x)
1546
+ x = x.view(B, H, W, C)
1547
+
1548
+ # cyclic shift
1549
+ if self.shift_size > 0:
1550
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1551
+ else:
1552
+ shifted_x = x
1553
+
1554
+ # partition windows
1555
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1556
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1557
+
1558
+ # W-MSA/SW-MSA
1559
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1560
+
1561
+ # merge windows
1562
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1563
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
1564
+
1565
+ # reverse cyclic shift
1566
+ if self.shift_size > 0:
1567
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1568
+ else:
1569
+ x = shifted_x
1570
+ x = x.view(B, H * W, C)
1571
+
1572
+ # FFN
1573
+ x = shortcut + self.drop_path(x)
1574
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
1575
+
1576
+ x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1577
+
1578
+ if Padding:
1579
+ x = x[:, :, :H_, :W_] # reverse padding
1580
+
1581
+ return x
1582
+
1583
+
1584
+ class SwinTransformerBlock(nn.Module):
1585
+ def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
1586
+ super().__init__()
1587
+ self.conv = None
1588
+ if c1 != c2:
1589
+ self.conv = Conv(c1, c2)
1590
+
1591
+ # remove input_resolution
1592
+ self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
1593
+ shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1594
+
1595
+ def forward(self, x):
1596
+ if self.conv is not None:
1597
+ x = self.conv(x)
1598
+ x = self.blocks(x)
1599
+ return x
1600
+
1601
+
1602
+ class STCSPA(nn.Module):
1603
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1604
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1605
+ super(STCSPA, self).__init__()
1606
+ c_ = int(c2 * e) # hidden channels
1607
+ self.cv1 = Conv(c1, c_, 1, 1)
1608
+ self.cv2 = Conv(c1, c_, 1, 1)
1609
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
1610
+ num_heads = c_ // 32
1611
+ self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1612
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1613
+
1614
+ def forward(self, x):
1615
+ y1 = self.m(self.cv1(x))
1616
+ y2 = self.cv2(x)
1617
+ return self.cv3(torch.cat((y1, y2), dim=1))
1618
+
1619
+
1620
+ class STCSPB(nn.Module):
1621
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1622
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1623
+ super(STCSPB, self).__init__()
1624
+ c_ = int(c2) # hidden channels
1625
+ self.cv1 = Conv(c1, c_, 1, 1)
1626
+ self.cv2 = Conv(c_, c_, 1, 1)
1627
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
1628
+ num_heads = c_ // 32
1629
+ self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1630
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1631
+
1632
+ def forward(self, x):
1633
+ x1 = self.cv1(x)
1634
+ y1 = self.m(x1)
1635
+ y2 = self.cv2(x1)
1636
+ return self.cv3(torch.cat((y1, y2), dim=1))
1637
+
1638
+
1639
+ class STCSPC(nn.Module):
1640
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1641
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1642
+ super(STCSPC, self).__init__()
1643
+ c_ = int(c2 * e) # hidden channels
1644
+ self.cv1 = Conv(c1, c_, 1, 1)
1645
+ self.cv2 = Conv(c1, c_, 1, 1)
1646
+ self.cv3 = Conv(c_, c_, 1, 1)
1647
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
1648
+ num_heads = c_ // 32
1649
+ self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1650
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1651
+
1652
+ def forward(self, x):
1653
+ y1 = self.cv3(self.m(self.cv1(x)))
1654
+ y2 = self.cv2(x)
1655
+ return self.cv4(torch.cat((y1, y2), dim=1))
1656
+
1657
+ ##### end of swin transformer #####
1658
+
1659
+
1660
+ ##### swin transformer v2 #####
1661
+
1662
+ class WindowAttention_v2(nn.Module):
1663
+
1664
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
1665
+ pretrained_window_size=[0, 0]):
1666
+
1667
+ super().__init__()
1668
+ self.dim = dim
1669
+ self.window_size = window_size # Wh, Ww
1670
+ self.pretrained_window_size = pretrained_window_size
1671
+ self.num_heads = num_heads
1672
+
1673
+ self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
1674
+
1675
+ # mlp to generate continuous relative position bias
1676
+ self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
1677
+ nn.ReLU(inplace=True),
1678
+ nn.Linear(512, num_heads, bias=False))
1679
+
1680
+ # get relative_coords_table
1681
+ relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
1682
+ relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
1683
+ relative_coords_table = torch.stack(
1684
+ torch.meshgrid([relative_coords_h,
1685
+ relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
1686
+ if pretrained_window_size[0] > 0:
1687
+ relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
1688
+ relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
1689
+ else:
1690
+ relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
1691
+ relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
1692
+ relative_coords_table *= 8 # normalize to -8, 8
1693
+ relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
1694
+ torch.abs(relative_coords_table) + 1.0) / np.log2(8)
1695
+
1696
+ self.register_buffer("relative_coords_table", relative_coords_table)
1697
+
1698
+ # get pair-wise relative position index for each token inside the window
1699
+ coords_h = torch.arange(self.window_size[0])
1700
+ coords_w = torch.arange(self.window_size[1])
1701
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1702
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1703
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1704
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1705
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1706
+ relative_coords[:, :, 1] += self.window_size[1] - 1
1707
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1708
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1709
+ self.register_buffer("relative_position_index", relative_position_index)
1710
+
1711
+ self.qkv = nn.Linear(dim, dim * 3, bias=False)
1712
+ if qkv_bias:
1713
+ self.q_bias = nn.Parameter(torch.zeros(dim))
1714
+ self.v_bias = nn.Parameter(torch.zeros(dim))
1715
+ else:
1716
+ self.q_bias = None
1717
+ self.v_bias = None
1718
+ self.attn_drop = nn.Dropout(attn_drop)
1719
+ self.proj = nn.Linear(dim, dim)
1720
+ self.proj_drop = nn.Dropout(proj_drop)
1721
+ self.softmax = nn.Softmax(dim=-1)
1722
+
1723
+ def forward(self, x, mask=None):
1724
+
1725
+ B_, N, C = x.shape
1726
+ qkv_bias = None
1727
+ if self.q_bias is not None:
1728
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
1729
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
1730
+ qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
1731
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1732
+
1733
+ # cosine attention
1734
+ attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
1735
+ logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
1736
+ attn = attn * logit_scale
1737
+
1738
+ relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
1739
+ relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
1740
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1741
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1742
+ relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
1743
+ attn = attn + relative_position_bias.unsqueeze(0)
1744
+
1745
+ if mask is not None:
1746
+ nW = mask.shape[0]
1747
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1748
+ attn = attn.view(-1, self.num_heads, N, N)
1749
+ attn = self.softmax(attn)
1750
+ else:
1751
+ attn = self.softmax(attn)
1752
+
1753
+ attn = self.attn_drop(attn)
1754
+
1755
+ try:
1756
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1757
+ except:
1758
+ x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1759
+
1760
+ x = self.proj(x)
1761
+ x = self.proj_drop(x)
1762
+ return x
1763
+
1764
+ def extra_repr(self) -> str:
1765
+ return f'dim={self.dim}, window_size={self.window_size}, ' \
1766
+ f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
1767
+
1768
+ def flops(self, N):
1769
+ # calculate flops for 1 window with token length of N
1770
+ flops = 0
1771
+ # qkv = self.qkv(x)
1772
+ flops += N * self.dim * 3 * self.dim
1773
+ # attn = (q @ k.transpose(-2, -1))
1774
+ flops += self.num_heads * N * (self.dim // self.num_heads) * N
1775
+ # x = (attn @ v)
1776
+ flops += self.num_heads * N * N * (self.dim // self.num_heads)
1777
+ # x = self.proj(x)
1778
+ flops += N * self.dim * self.dim
1779
+ return flops
1780
+
1781
+ class Mlp_v2(nn.Module):
1782
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1783
+ super().__init__()
1784
+ out_features = out_features or in_features
1785
+ hidden_features = hidden_features or in_features
1786
+ self.fc1 = nn.Linear(in_features, hidden_features)
1787
+ self.act = act_layer()
1788
+ self.fc2 = nn.Linear(hidden_features, out_features)
1789
+ self.drop = nn.Dropout(drop)
1790
+
1791
+ def forward(self, x):
1792
+ x = self.fc1(x)
1793
+ x = self.act(x)
1794
+ x = self.drop(x)
1795
+ x = self.fc2(x)
1796
+ x = self.drop(x)
1797
+ return x
1798
+
1799
+
1800
+ def window_partition_v2(x, window_size):
1801
+
1802
+ B, H, W, C = x.shape
1803
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1804
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1805
+ return windows
1806
+
1807
+
1808
+ def window_reverse_v2(windows, window_size, H, W):
1809
+
1810
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
1811
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1812
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1813
+ return x
1814
+
1815
+
1816
+ class SwinTransformerLayer_v2(nn.Module):
1817
+
1818
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
1819
+ mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
1820
+ act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
1821
+ super().__init__()
1822
+ self.dim = dim
1823
+ #self.input_resolution = input_resolution
1824
+ self.num_heads = num_heads
1825
+ self.window_size = window_size
1826
+ self.shift_size = shift_size
1827
+ self.mlp_ratio = mlp_ratio
1828
+ #if min(self.input_resolution) <= self.window_size:
1829
+ # # if window size is larger than input resolution, we don't partition windows
1830
+ # self.shift_size = 0
1831
+ # self.window_size = min(self.input_resolution)
1832
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1833
+
1834
+ self.norm1 = norm_layer(dim)
1835
+ self.attn = WindowAttention_v2(
1836
+ dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1837
+ qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
1838
+ pretrained_window_size=(pretrained_window_size, pretrained_window_size))
1839
+
1840
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1841
+ self.norm2 = norm_layer(dim)
1842
+ mlp_hidden_dim = int(dim * mlp_ratio)
1843
+ self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1844
+
1845
+ def create_mask(self, H, W):
1846
+ # calculate attention mask for SW-MSA
1847
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1848
+ h_slices = (slice(0, -self.window_size),
1849
+ slice(-self.window_size, -self.shift_size),
1850
+ slice(-self.shift_size, None))
1851
+ w_slices = (slice(0, -self.window_size),
1852
+ slice(-self.window_size, -self.shift_size),
1853
+ slice(-self.shift_size, None))
1854
+ cnt = 0
1855
+ for h in h_slices:
1856
+ for w in w_slices:
1857
+ img_mask[:, h, w, :] = cnt
1858
+ cnt += 1
1859
+
1860
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1861
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1862
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1863
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1864
+
1865
+ return attn_mask
1866
+
1867
+ def forward(self, x):
1868
+ # reshape x[b c h w] to x[b l c]
1869
+ _, _, H_, W_ = x.shape
1870
+
1871
+ Padding = False
1872
+ if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1873
+ Padding = True
1874
+ # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1875
+ pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1876
+ pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1877
+ x = F.pad(x, (0, pad_r, 0, pad_b))
1878
+
1879
+ # print('2', x.shape)
1880
+ B, C, H, W = x.shape
1881
+ L = H * W
1882
+ x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1883
+
1884
+ # create mask from init to forward
1885
+ if self.shift_size > 0:
1886
+ attn_mask = self.create_mask(H, W).to(x.device)
1887
+ else:
1888
+ attn_mask = None
1889
+
1890
+ shortcut = x
1891
+ x = x.view(B, H, W, C)
1892
+
1893
+ # cyclic shift
1894
+ if self.shift_size > 0:
1895
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1896
+ else:
1897
+ shifted_x = x
1898
+
1899
+ # partition windows
1900
+ x_windows = window_partition_v2(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1901
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1902
+
1903
+ # W-MSA/SW-MSA
1904
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1905
+
1906
+ # merge windows
1907
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1908
+ shifted_x = window_reverse_v2(attn_windows, self.window_size, H, W) # B H' W' C
1909
+
1910
+ # reverse cyclic shift
1911
+ if self.shift_size > 0:
1912
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1913
+ else:
1914
+ x = shifted_x
1915
+ x = x.view(B, H * W, C)
1916
+ x = shortcut + self.drop_path(self.norm1(x))
1917
+
1918
+ # FFN
1919
+ x = x + self.drop_path(self.norm2(self.mlp(x)))
1920
+ x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1921
+
1922
+ if Padding:
1923
+ x = x[:, :, :H_, :W_] # reverse padding
1924
+
1925
+ return x
1926
+
1927
+ def extra_repr(self) -> str:
1928
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
1929
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
1930
+
1931
+ def flops(self):
1932
+ flops = 0
1933
+ H, W = self.input_resolution
1934
+ # norm1
1935
+ flops += self.dim * H * W
1936
+ # W-MSA/SW-MSA
1937
+ nW = H * W / self.window_size / self.window_size
1938
+ flops += nW * self.attn.flops(self.window_size * self.window_size)
1939
+ # mlp
1940
+ flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
1941
+ # norm2
1942
+ flops += self.dim * H * W
1943
+ return flops
1944
+
1945
+
1946
+ class SwinTransformer2Block(nn.Module):
1947
+ def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
1948
+ super().__init__()
1949
+ self.conv = None
1950
+ if c1 != c2:
1951
+ self.conv = Conv(c1, c2)
1952
+
1953
+ # remove input_resolution
1954
+ self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
1955
+ shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1956
+
1957
+ def forward(self, x):
1958
+ if self.conv is not None:
1959
+ x = self.conv(x)
1960
+ x = self.blocks(x)
1961
+ return x
1962
+
1963
+
1964
+ class ST2CSPA(nn.Module):
1965
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1966
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1967
+ super(ST2CSPA, self).__init__()
1968
+ c_ = int(c2 * e) # hidden channels
1969
+ self.cv1 = Conv(c1, c_, 1, 1)
1970
+ self.cv2 = Conv(c1, c_, 1, 1)
1971
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
1972
+ num_heads = c_ // 32
1973
+ self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1974
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1975
+
1976
+ def forward(self, x):
1977
+ y1 = self.m(self.cv1(x))
1978
+ y2 = self.cv2(x)
1979
+ return self.cv3(torch.cat((y1, y2), dim=1))
1980
+
1981
+
1982
+ class ST2CSPB(nn.Module):
1983
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1984
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1985
+ super(ST2CSPB, self).__init__()
1986
+ c_ = int(c2) # hidden channels
1987
+ self.cv1 = Conv(c1, c_, 1, 1)
1988
+ self.cv2 = Conv(c_, c_, 1, 1)
1989
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
1990
+ num_heads = c_ // 32
1991
+ self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1992
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1993
+
1994
+ def forward(self, x):
1995
+ x1 = self.cv1(x)
1996
+ y1 = self.m(x1)
1997
+ y2 = self.cv2(x1)
1998
+ return self.cv3(torch.cat((y1, y2), dim=1))
1999
+
2000
+
2001
+ class ST2CSPC(nn.Module):
2002
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
2003
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
2004
+ super(ST2CSPC, self).__init__()
2005
+ c_ = int(c2 * e) # hidden channels
2006
+ self.cv1 = Conv(c1, c_, 1, 1)
2007
+ self.cv2 = Conv(c1, c_, 1, 1)
2008
+ self.cv3 = Conv(c_, c_, 1, 1)
2009
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
2010
+ num_heads = c_ // 32
2011
+ self.m = SwinTransformer2Block(c_, c_, num_heads, n)
2012
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
2013
+
2014
+ def forward(self, x):
2015
+ y1 = self.cv3(self.m(self.cv1(x)))
2016
+ y2 = self.cv2(x)
2017
+ return self.cv4(torch.cat((y1, y2), dim=1))
2018
+
2019
+ ##### end of swin transformer v2 #####
models/experimental.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+
5
+ from models.common import Conv, DWConv
6
+ from utils.google_utils import attempt_download
7
+
8
+
9
+ class CrossConv(nn.Module):
10
+ # Cross Convolution Downsample
11
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
12
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
13
+ super(CrossConv, self).__init__()
14
+ c_ = int(c2 * e) # hidden channels
15
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
16
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
17
+ self.add = shortcut and c1 == c2
18
+
19
+ def forward(self, x):
20
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
21
+
22
+
23
+ class Sum(nn.Module):
24
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
25
+ def __init__(self, n, weight=False): # n: number of inputs
26
+ super(Sum, self).__init__()
27
+ self.weight = weight # apply weights boolean
28
+ self.iter = range(n - 1) # iter object
29
+ if weight:
30
+ self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
31
+
32
+ def forward(self, x):
33
+ y = x[0] # no weight
34
+ if self.weight:
35
+ w = torch.sigmoid(self.w) * 2
36
+ for i in self.iter:
37
+ y = y + x[i + 1] * w[i]
38
+ else:
39
+ for i in self.iter:
40
+ y = y + x[i + 1]
41
+ return y
42
+
43
+
44
+ class MixConv2d(nn.Module):
45
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
46
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
47
+ super(MixConv2d, self).__init__()
48
+ groups = len(k)
49
+ if equal_ch: # equal c_ per group
50
+ i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
51
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
52
+ else: # equal weight.numel() per group
53
+ b = [c2] + [0] * groups
54
+ a = np.eye(groups + 1, groups, k=-1)
55
+ a -= np.roll(a, 1, axis=1)
56
+ a *= np.array(k) ** 2
57
+ a[0] = 1
58
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
59
+
60
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
61
+ self.bn = nn.BatchNorm2d(c2)
62
+ self.act = nn.LeakyReLU(0.1, inplace=True)
63
+
64
+ def forward(self, x):
65
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
66
+
67
+
68
+ class Ensemble(nn.ModuleList):
69
+ # Ensemble of models
70
+ def __init__(self):
71
+ super(Ensemble, self).__init__()
72
+
73
+ def forward(self, x, augment=False):
74
+ y = []
75
+ for module in self:
76
+ y.append(module(x, augment)[0])
77
+ # y = torch.stack(y).max(0)[0] # max ensemble
78
+ # y = torch.stack(y).mean(0) # mean ensemble
79
+ y = torch.cat(y, 1) # nms ensemble
80
+ return y, None # inference, train output
81
+
82
+
83
+ def attempt_load(weights, map_location=None):
84
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
85
+ model = Ensemble()
86
+ for w in weights if isinstance(weights, list) else [weights]:
87
+ attempt_download(w)
88
+ ckpt = torch.load(w, map_location=map_location) # load
89
+ model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
90
+
91
+ # Compatibility updates
92
+ for m in model.modules():
93
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
94
+ m.inplace = True # pytorch 1.7.0 compatibility
95
+ elif type(m) is nn.Upsample:
96
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
97
+ elif type(m) is Conv:
98
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
99
+
100
+ if len(model) == 1:
101
+ return model[-1] # return model
102
+ else:
103
+ print('Ensemble created with %s\n' % weights)
104
+ for k in ['names', 'stride']:
105
+ setattr(model, k, getattr(model[-1], k))
106
+ return model # return ensemble
models/export.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+ import time
4
+
5
+ sys.path.append('./') # to run '$ python *.py' files in subdirectories
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+
10
+ import models
11
+ from models.experimental import attempt_load
12
+ from utils.activations import Hardswish, SiLU
13
+ from utils.general import set_logging, check_img_size
14
+ from utils.torch_utils import select_device
15
+
16
+ if __name__ == '__main__':
17
+ parser = argparse.ArgumentParser()
18
+ parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
19
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
20
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
21
+ parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
22
+ parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
23
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
24
+ opt = parser.parse_args()
25
+ opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
26
+ print(opt)
27
+ set_logging()
28
+ t = time.time()
29
+
30
+ # Load PyTorch model
31
+ device = select_device(opt.device)
32
+ model = attempt_load(opt.weights, map_location=device) # load FP32 model
33
+ labels = model.names
34
+
35
+ # Checks
36
+ gs = int(max(model.stride)) # grid size (max stride)
37
+ opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
38
+
39
+ # Input
40
+ img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
41
+
42
+ # Update model
43
+ for k, m in model.named_modules():
44
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
45
+ if isinstance(m, models.common.Conv): # assign export-friendly activations
46
+ if isinstance(m.act, nn.Hardswish):
47
+ m.act = Hardswish()
48
+ elif isinstance(m.act, nn.SiLU):
49
+ m.act = SiLU()
50
+ # elif isinstance(m, models.yolo.Detect):
51
+ # m.forward = m.forward_export # assign forward (optional)
52
+ model.model[-1].export = not opt.grid # set Detect() layer grid export
53
+ y = model(img) # dry run
54
+
55
+ # TorchScript export
56
+ try:
57
+ print('\nStarting TorchScript export with torch %s...' % torch.__version__)
58
+ f = opt.weights.replace('.pt', '.torchscript.pt') # filename
59
+ ts = torch.jit.trace(model, img, strict=False)
60
+ ts.save(f)
61
+ print('TorchScript export success, saved as %s' % f)
62
+ except Exception as e:
63
+ print('TorchScript export failure: %s' % e)
64
+
65
+ # ONNX export
66
+ try:
67
+ import onnx
68
+
69
+ print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
70
+ f = opt.weights.replace('.pt', '.onnx') # filename
71
+ torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
72
+ output_names=['classes', 'boxes'] if y is None else ['output'],
73
+ dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
74
+ 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
75
+
76
+ # Checks
77
+ onnx_model = onnx.load(f) # load onnx model
78
+ onnx.checker.check_model(onnx_model) # check onnx model
79
+ # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
80
+ print('ONNX export success, saved as %s' % f)
81
+ except Exception as e:
82
+ print('ONNX export failure: %s' % e)
83
+
84
+ # CoreML export
85
+ try:
86
+ import coremltools as ct
87
+
88
+ print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
89
+ # convert model from torchscript and apply pixel scaling as per detect.py
90
+ model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
91
+ f = opt.weights.replace('.pt', '.mlmodel') # filename
92
+ model.save(f)
93
+ print('CoreML export success, saved as %s' % f)
94
+ except Exception as e:
95
+ print('CoreML export failure: %s' % e)
96
+
97
+ # Finish
98
+ print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
models/yolo.py ADDED
@@ -0,0 +1,550 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import sys
4
+ from copy import deepcopy
5
+
6
+ sys.path.append('./') # to run '$ python *.py' files in subdirectories
7
+ logger = logging.getLogger(__name__)
8
+
9
+ from models.common import *
10
+ from models.experimental import *
11
+ from utils.autoanchor import check_anchor_order
12
+ from utils.general import make_divisible, check_file, set_logging
13
+ from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
14
+ select_device, copy_attr
15
+ from utils.loss import SigmoidBin
16
+
17
+ try:
18
+ import thop # for FLOPS computation
19
+ except ImportError:
20
+ thop = None
21
+
22
+
23
+ class Detect(nn.Module):
24
+ stride = None # strides computed during build
25
+ export = False # onnx export
26
+
27
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
28
+ super(Detect, self).__init__()
29
+ self.nc = nc # number of classes
30
+ self.no = nc + 5 # number of outputs per anchor
31
+ self.nl = len(anchors) # number of detection layers
32
+ self.na = len(anchors[0]) // 2 # number of anchors
33
+ self.grid = [torch.zeros(1)] * self.nl # init grid
34
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
35
+ self.register_buffer('anchors', a) # shape(nl,na,2)
36
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
37
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
38
+
39
+ def forward(self, x):
40
+ # x = x.copy() # for profiling
41
+ z = [] # inference output
42
+ self.training |= self.export
43
+ for i in range(self.nl):
44
+ x[i] = self.m[i](x[i]) # conv
45
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
46
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
47
+
48
+ if not self.training: # inference
49
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
50
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
51
+
52
+ y = x[i].sigmoid()
53
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
54
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
55
+ z.append(y.view(bs, -1, self.no))
56
+
57
+ return x if self.training else (torch.cat(z, 1), x)
58
+
59
+ @staticmethod
60
+ def _make_grid(nx=20, ny=20):
61
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
62
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
63
+
64
+
65
+ class IDetect(nn.Module):
66
+ stride = None # strides computed during build
67
+ export = False # onnx export
68
+
69
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
70
+ super(IDetect, self).__init__()
71
+ self.nc = nc # number of classes
72
+ self.no = nc + 5 # number of outputs per anchor
73
+ self.nl = len(anchors) # number of detection layers
74
+ self.na = len(anchors[0]) // 2 # number of anchors
75
+ self.grid = [torch.zeros(1)] * self.nl # init grid
76
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
77
+ self.register_buffer('anchors', a) # shape(nl,na,2)
78
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
79
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
80
+
81
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
82
+ self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
83
+
84
+ def forward(self, x):
85
+ # x = x.copy() # for profiling
86
+ z = [] # inference output
87
+ self.training |= self.export
88
+ for i in range(self.nl):
89
+ x[i] = self.m[i](self.ia[i](x[i])) # conv
90
+ x[i] = self.im[i](x[i])
91
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
92
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
93
+
94
+ if not self.training: # inference
95
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
96
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
97
+
98
+ y = x[i].sigmoid()
99
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
100
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
101
+ z.append(y.view(bs, -1, self.no))
102
+
103
+ return x if self.training else (torch.cat(z, 1), x)
104
+
105
+ @staticmethod
106
+ def _make_grid(nx=20, ny=20):
107
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
108
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
109
+
110
+
111
+ class IAuxDetect(nn.Module):
112
+ stride = None # strides computed during build
113
+ export = False # onnx export
114
+
115
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
116
+ super(IAuxDetect, self).__init__()
117
+ self.nc = nc # number of classes
118
+ self.no = nc + 5 # number of outputs per anchor
119
+ self.nl = len(anchors) # number of detection layers
120
+ self.na = len(anchors[0]) // 2 # number of anchors
121
+ self.grid = [torch.zeros(1)] * self.nl # init grid
122
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
123
+ self.register_buffer('anchors', a) # shape(nl,na,2)
124
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
125
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[:self.nl]) # output conv
126
+ self.m2 = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl:]) # output conv
127
+
128
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch[:self.nl])
129
+ self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[:self.nl])
130
+
131
+ def forward(self, x):
132
+ # x = x.copy() # for profiling
133
+ z = [] # inference output
134
+ self.training |= self.export
135
+ for i in range(self.nl):
136
+ x[i] = self.m[i](self.ia[i](x[i])) # conv
137
+ x[i] = self.im[i](x[i])
138
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
139
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
140
+
141
+ x[i+self.nl] = self.m2[i](x[i+self.nl])
142
+ x[i+self.nl] = x[i+self.nl].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
143
+
144
+ if not self.training: # inference
145
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
146
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
147
+
148
+ y = x[i].sigmoid()
149
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
150
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
151
+ z.append(y.view(bs, -1, self.no))
152
+
153
+ return x if self.training else (torch.cat(z, 1), x[:self.nl])
154
+
155
+ @staticmethod
156
+ def _make_grid(nx=20, ny=20):
157
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
158
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
159
+
160
+
161
+ class IBin(nn.Module):
162
+ stride = None # strides computed during build
163
+ export = False # onnx export
164
+
165
+ def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): # detection layer
166
+ super(IBin, self).__init__()
167
+ self.nc = nc # number of classes
168
+ self.bin_count = bin_count
169
+
170
+ self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
171
+ self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
172
+ # classes, x,y,obj
173
+ self.no = nc + 3 + \
174
+ self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() # w-bce, h-bce
175
+ # + self.x_bin_sigmoid.get_length() + self.y_bin_sigmoid.get_length()
176
+
177
+ self.nl = len(anchors) # number of detection layers
178
+ self.na = len(anchors[0]) // 2 # number of anchors
179
+ self.grid = [torch.zeros(1)] * self.nl # init grid
180
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
181
+ self.register_buffer('anchors', a) # shape(nl,na,2)
182
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
183
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
184
+
185
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
186
+ self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
187
+
188
+ def forward(self, x):
189
+
190
+ #self.x_bin_sigmoid.use_fw_regression = True
191
+ #self.y_bin_sigmoid.use_fw_regression = True
192
+ self.w_bin_sigmoid.use_fw_regression = True
193
+ self.h_bin_sigmoid.use_fw_regression = True
194
+
195
+ # x = x.copy() # for profiling
196
+ z = [] # inference output
197
+ self.training |= self.export
198
+ for i in range(self.nl):
199
+ x[i] = self.m[i](self.ia[i](x[i])) # conv
200
+ x[i] = self.im[i](x[i])
201
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
202
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
203
+
204
+ if not self.training: # inference
205
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
206
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
207
+
208
+ y = x[i].sigmoid()
209
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
210
+ #y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
211
+
212
+
213
+ #px = (self.x_bin_sigmoid.forward(y[..., 0:12]) + self.grid[i][..., 0]) * self.stride[i]
214
+ #py = (self.y_bin_sigmoid.forward(y[..., 12:24]) + self.grid[i][..., 1]) * self.stride[i]
215
+
216
+ pw = self.w_bin_sigmoid.forward(y[..., 2:24]) * self.anchor_grid[i][..., 0]
217
+ ph = self.h_bin_sigmoid.forward(y[..., 24:46]) * self.anchor_grid[i][..., 1]
218
+
219
+ #y[..., 0] = px
220
+ #y[..., 1] = py
221
+ y[..., 2] = pw
222
+ y[..., 3] = ph
223
+
224
+ y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1)
225
+
226
+ z.append(y.view(bs, -1, y.shape[-1]))
227
+
228
+ return x if self.training else (torch.cat(z, 1), x)
229
+
230
+ @staticmethod
231
+ def _make_grid(nx=20, ny=20):
232
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
233
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
234
+
235
+
236
+ class Model(nn.Module):
237
+ def __init__(self, cfg='yolor-csp-c.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
238
+ super(Model, self).__init__()
239
+ self.traced = False
240
+ if isinstance(cfg, dict):
241
+ self.yaml = cfg # model dict
242
+ else: # is *.yaml
243
+ import yaml # for torch hub
244
+ self.yaml_file = Path(cfg).name
245
+ with open(cfg) as f:
246
+ self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
247
+
248
+ # Define model
249
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
250
+ if nc and nc != self.yaml['nc']:
251
+ logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
252
+ self.yaml['nc'] = nc # override yaml value
253
+ if anchors:
254
+ logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
255
+ self.yaml['anchors'] = round(anchors) # override yaml value
256
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
257
+ self.names = [str(i) for i in range(self.yaml['nc'])] # default names
258
+ # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
259
+
260
+ # Build strides, anchors
261
+ m = self.model[-1] # Detect()
262
+ if isinstance(m, Detect):
263
+ s = 256 # 2x min stride
264
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
265
+ m.anchors /= m.stride.view(-1, 1, 1)
266
+ check_anchor_order(m)
267
+ self.stride = m.stride
268
+ self._initialize_biases() # only run once
269
+ # print('Strides: %s' % m.stride.tolist())
270
+ if isinstance(m, IDetect):
271
+ s = 256 # 2x min stride
272
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
273
+ m.anchors /= m.stride.view(-1, 1, 1)
274
+ check_anchor_order(m)
275
+ self.stride = m.stride
276
+ self._initialize_biases() # only run once
277
+ # print('Strides: %s' % m.stride.tolist())
278
+ if isinstance(m, IAuxDetect):
279
+ s = 256 # 2x min stride
280
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward
281
+ #print(m.stride)
282
+ m.anchors /= m.stride.view(-1, 1, 1)
283
+ check_anchor_order(m)
284
+ self.stride = m.stride
285
+ self._initialize_aux_biases() # only run once
286
+ # print('Strides: %s' % m.stride.tolist())
287
+ if isinstance(m, IBin):
288
+ s = 256 # 2x min stride
289
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
290
+ m.anchors /= m.stride.view(-1, 1, 1)
291
+ check_anchor_order(m)
292
+ self.stride = m.stride
293
+ self._initialize_biases_bin() # only run once
294
+ # print('Strides: %s' % m.stride.tolist())
295
+
296
+ # Init weights, biases
297
+ initialize_weights(self)
298
+ self.info()
299
+ logger.info('')
300
+
301
+ def forward(self, x, augment=False, profile=False):
302
+ if augment:
303
+ img_size = x.shape[-2:] # height, width
304
+ s = [1, 0.83, 0.67] # scales
305
+ f = [None, 3, None] # flips (2-ud, 3-lr)
306
+ y = [] # outputs
307
+ for si, fi in zip(s, f):
308
+ xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
309
+ yi = self.forward_once(xi)[0] # forward
310
+ # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
311
+ yi[..., :4] /= si # de-scale
312
+ if fi == 2:
313
+ yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
314
+ elif fi == 3:
315
+ yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
316
+ y.append(yi)
317
+ return torch.cat(y, 1), None # augmented inference, train
318
+ else:
319
+ return self.forward_once(x, profile) # single-scale inference, train
320
+
321
+ def forward_once(self, x, profile=False):
322
+ y, dt = [], [] # outputs
323
+ for m in self.model:
324
+ if m.f != -1: # if not from previous layer
325
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
326
+
327
+ if not hasattr(self, 'traced'):
328
+ self.traced=False
329
+
330
+ if self.traced:
331
+ if isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect):
332
+ break
333
+
334
+ if profile:
335
+ c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin))
336
+ o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
337
+ for _ in range(10):
338
+ m(x.copy() if c else x)
339
+ t = time_synchronized()
340
+ for _ in range(10):
341
+ m(x.copy() if c else x)
342
+ dt.append((time_synchronized() - t) * 100)
343
+ print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
344
+
345
+ x = m(x) # run
346
+
347
+ y.append(x if m.i in self.save else None) # save output
348
+
349
+ if profile:
350
+ print('%.1fms total' % sum(dt))
351
+ return x
352
+
353
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
354
+ # https://arxiv.org/abs/1708.02002 section 3.3
355
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
356
+ m = self.model[-1] # Detect() module
357
+ for mi, s in zip(m.m, m.stride): # from
358
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
359
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
360
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
361
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
362
+
363
+ def _initialize_aux_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
364
+ # https://arxiv.org/abs/1708.02002 section 3.3
365
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
366
+ m = self.model[-1] # Detect() module
367
+ for mi, mi2, s in zip(m.m, m.m2, m.stride): # from
368
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
369
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
370
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
371
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
372
+ b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85)
373
+ b2.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
374
+ b2.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
375
+ mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True)
376
+
377
+ def _initialize_biases_bin(self, cf=None): # initialize biases into Detect(), cf is class frequency
378
+ # https://arxiv.org/abs/1708.02002 section 3.3
379
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
380
+ m = self.model[-1] # Bin() module
381
+ bc = m.bin_count
382
+ for mi, s in zip(m.m, m.stride): # from
383
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
384
+ old = b[:, (0,1,2,bc+3)].data
385
+ obj_idx = 2*bc+4
386
+ b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99))
387
+ b[:, obj_idx].data += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
388
+ b[:, (obj_idx+1):].data += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
389
+ b[:, (0,1,2,bc+3)].data = old
390
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
391
+
392
+ def _print_biases(self):
393
+ m = self.model[-1] # Detect() module
394
+ for mi in m.m: # from
395
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
396
+ print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
397
+
398
+ # def _print_weights(self):
399
+ # for m in self.model.modules():
400
+ # if type(m) is Bottleneck:
401
+ # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
402
+
403
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
404
+ print('Fusing layers... ')
405
+ for m in self.model.modules():
406
+ if isinstance(m, RepConv):
407
+ #print(f" fuse_repvgg_block")
408
+ m.fuse_repvgg_block()
409
+ elif isinstance(m, RepConv_OREPA):
410
+ #print(f" switch_to_deploy")
411
+ m.switch_to_deploy()
412
+ elif type(m) is Conv and hasattr(m, 'bn'):
413
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
414
+ delattr(m, 'bn') # remove batchnorm
415
+ m.forward = m.fuseforward # update forward
416
+ self.info()
417
+ return self
418
+
419
+ def nms(self, mode=True): # add or remove NMS module
420
+ present = type(self.model[-1]) is NMS # last layer is NMS
421
+ if mode and not present:
422
+ print('Adding NMS... ')
423
+ m = NMS() # module
424
+ m.f = -1 # from
425
+ m.i = self.model[-1].i + 1 # index
426
+ self.model.add_module(name='%s' % m.i, module=m) # add
427
+ self.eval()
428
+ elif not mode and present:
429
+ print('Removing NMS... ')
430
+ self.model = self.model[:-1] # remove
431
+ return self
432
+
433
+ def autoshape(self): # add autoShape module
434
+ print('Adding autoShape... ')
435
+ m = autoShape(self) # wrap model
436
+ copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
437
+ return m
438
+
439
+ def info(self, verbose=False, img_size=640): # print model information
440
+ model_info(self, verbose, img_size)
441
+
442
+
443
+ def parse_model(d, ch): # model_dict, input_channels(3)
444
+ logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
445
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
446
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
447
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
448
+
449
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
450
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
451
+ m = eval(m) if isinstance(m, str) else m # eval strings
452
+ for j, a in enumerate(args):
453
+ try:
454
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
455
+ except:
456
+ pass
457
+
458
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
459
+ if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC,
460
+ SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv,
461
+ Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
462
+ RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
463
+ Res, ResCSPA, ResCSPB, ResCSPC,
464
+ RepRes, RepResCSPA, RepResCSPB, RepResCSPC,
465
+ ResX, ResXCSPA, ResXCSPB, ResXCSPC,
466
+ RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC,
467
+ Ghost, GhostCSPA, GhostCSPB, GhostCSPC,
468
+ SwinTransformerBlock, STCSPA, STCSPB, STCSPC,
469
+ SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC]:
470
+ c1, c2 = ch[f], args[0]
471
+ if c2 != no: # if not output
472
+ c2 = make_divisible(c2 * gw, 8)
473
+
474
+ args = [c1, c2, *args[1:]]
475
+ if m in [DownC, SPPCSPC, GhostSPPCSPC,
476
+ BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
477
+ RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
478
+ ResCSPA, ResCSPB, ResCSPC,
479
+ RepResCSPA, RepResCSPB, RepResCSPC,
480
+ ResXCSPA, ResXCSPB, ResXCSPC,
481
+ RepResXCSPA, RepResXCSPB, RepResXCSPC,
482
+ GhostCSPA, GhostCSPB, GhostCSPC,
483
+ STCSPA, STCSPB, STCSPC,
484
+ ST2CSPA, ST2CSPB, ST2CSPC]:
485
+ args.insert(2, n) # number of repeats
486
+ n = 1
487
+ elif m is nn.BatchNorm2d:
488
+ args = [ch[f]]
489
+ elif m is Concat:
490
+ c2 = sum([ch[x] for x in f])
491
+ elif m is Chuncat:
492
+ c2 = sum([ch[x] for x in f])
493
+ elif m is Shortcut:
494
+ c2 = ch[f[0]]
495
+ elif m is Foldcut:
496
+ c2 = ch[f] // 2
497
+ elif m in [Detect, IDetect, IAuxDetect, IBin]:
498
+ args.append([ch[x] for x in f])
499
+ if isinstance(args[1], int): # number of anchors
500
+ args[1] = [list(range(args[1] * 2))] * len(f)
501
+ elif m is ReOrg:
502
+ c2 = ch[f] * 4
503
+ elif m is Contract:
504
+ c2 = ch[f] * args[0] ** 2
505
+ elif m is Expand:
506
+ c2 = ch[f] // args[0] ** 2
507
+ else:
508
+ c2 = ch[f]
509
+
510
+ m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
511
+ t = str(m)[8:-2].replace('__main__.', '') # module type
512
+ np = sum([x.numel() for x in m_.parameters()]) # number params
513
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
514
+ logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
515
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
516
+ layers.append(m_)
517
+ if i == 0:
518
+ ch = []
519
+ ch.append(c2)
520
+ return nn.Sequential(*layers), sorted(save)
521
+
522
+
523
+ if __name__ == '__main__':
524
+ parser = argparse.ArgumentParser()
525
+ parser.add_argument('--cfg', type=str, default='yolor-csp-c.yaml', help='model.yaml')
526
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
527
+ parser.add_argument('--profile', action='store_true', help='profile model speed')
528
+ opt = parser.parse_args()
529
+ opt.cfg = check_file(opt.cfg) # check file
530
+ set_logging()
531
+ device = select_device(opt.device)
532
+
533
+ # Create model
534
+ model = Model(opt.cfg).to(device)
535
+ model.train()
536
+
537
+ if opt.profile:
538
+ img = torch.rand(1, 3, 640, 640).to(device)
539
+ y = model(img, profile=True)
540
+
541
+ # Profile
542
+ # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
543
+ # y = model(img, profile=True)
544
+
545
+ # Tensorboard
546
+ # from torch.utils.tensorboard import SummaryWriter
547
+ # tb_writer = SummaryWriter()
548
+ # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
549
+ # tb_writer.add_graph(model.model, img) # add model to tensorboard
550
+ # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
scripts/get_coco.sh ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # COCO 2017 dataset http://cocodataset.org
3
+ # Download command: bash ./scripts/get_coco.sh
4
+
5
+ # Download/unzip labels
6
+ d='./' # unzip directory
7
+ url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
8
+ f='coco2017labels-segments.zip' # or 'coco2017labels.zip', 68 MB
9
+ echo 'Downloading' $url$f ' ...'
10
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
11
+
12
+ # Download/unzip images
13
+ d='./coco/images' # unzip directory
14
+ url=http://images.cocodataset.org/zips/
15
+ f1='train2017.zip' # 19G, 118k images
16
+ f2='val2017.zip' # 1G, 5k images
17
+ f3='test2017.zip' # 7G, 41k images (optional)
18
+ for f in $f1 $f2 $f3; do
19
+ echo 'Downloading' $url$f '...'
20
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
21
+ done
22
+ wait # finish background tasks
test.py ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+ from pathlib import Path
5
+ from threading import Thread
6
+
7
+ import numpy as np
8
+ import torch
9
+ import yaml
10
+ from tqdm import tqdm
11
+
12
+ from models.experimental import attempt_load
13
+ from utils.datasets import create_dataloader
14
+ from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
15
+ box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
16
+ from utils.metrics import ap_per_class, ConfusionMatrix
17
+ from utils.plots import plot_images, output_to_target, plot_study_txt
18
+ from utils.torch_utils import select_device, time_synchronized, TracedModel
19
+
20
+
21
+ def test(data,
22
+ weights=None,
23
+ batch_size=32,
24
+ imgsz=640,
25
+ conf_thres=0.001,
26
+ iou_thres=0.6, # for NMS
27
+ save_json=False,
28
+ single_cls=False,
29
+ augment=False,
30
+ verbose=False,
31
+ model=None,
32
+ dataloader=None,
33
+ save_dir=Path(''), # for saving images
34
+ save_txt=False, # for auto-labelling
35
+ save_hybrid=False, # for hybrid auto-labelling
36
+ save_conf=False, # save auto-label confidences
37
+ plots=True,
38
+ wandb_logger=None,
39
+ compute_loss=None,
40
+ half_precision=True,
41
+ trace=False,
42
+ is_coco=False):
43
+ # Initialize/load model and set device
44
+ training = model is not None
45
+ if training: # called by train.py
46
+ device = next(model.parameters()).device # get model device
47
+
48
+ else: # called directly
49
+ set_logging()
50
+ device = select_device(opt.device, batch_size=batch_size)
51
+
52
+ # Directories
53
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
54
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
55
+
56
+ # Load model
57
+ model = attempt_load(weights, map_location=device) # load FP32 model
58
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
59
+ imgsz = check_img_size(imgsz, s=gs) # check img_size
60
+
61
+ if trace:
62
+ model = TracedModel(model, device, opt.img_size)
63
+
64
+ # Half
65
+ half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
66
+ if half:
67
+ model.half()
68
+
69
+ # Configure
70
+ model.eval()
71
+ if isinstance(data, str):
72
+ is_coco = data.endswith('coco.yaml')
73
+ with open(data) as f:
74
+ data = yaml.load(f, Loader=yaml.SafeLoader)
75
+ check_dataset(data) # check
76
+ nc = 1 if single_cls else int(data['nc']) # number of classes
77
+ iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
78
+ niou = iouv.numel()
79
+
80
+ # Logging
81
+ log_imgs = 0
82
+ if wandb_logger and wandb_logger.wandb:
83
+ log_imgs = min(wandb_logger.log_imgs, 100)
84
+ # Dataloader
85
+ if not training:
86
+ if device.type != 'cpu':
87
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
88
+ task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
89
+ dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
90
+ prefix=colorstr(f'{task}: '))[0]
91
+
92
+ seen = 0
93
+ confusion_matrix = ConfusionMatrix(nc=nc)
94
+ names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
95
+ coco91class = coco80_to_coco91_class()
96
+ s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
97
+ p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
98
+ loss = torch.zeros(3, device=device)
99
+ jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
100
+ for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
101
+ img = img.to(device, non_blocking=True)
102
+ img = img.half() if half else img.float() # uint8 to fp16/32
103
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
104
+ targets = targets.to(device)
105
+ nb, _, height, width = img.shape # batch size, channels, height, width
106
+
107
+ with torch.no_grad():
108
+ # Run model
109
+ t = time_synchronized()
110
+ out, train_out = model(img, augment=augment) # inference and training outputs
111
+ t0 += time_synchronized() - t
112
+
113
+ # Compute loss
114
+ if compute_loss:
115
+ loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
116
+
117
+ # Run NMS
118
+ targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
119
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
120
+ t = time_synchronized()
121
+ out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
122
+ t1 += time_synchronized() - t
123
+
124
+ # Statistics per image
125
+ for si, pred in enumerate(out):
126
+ labels = targets[targets[:, 0] == si, 1:]
127
+ nl = len(labels)
128
+ tcls = labels[:, 0].tolist() if nl else [] # target class
129
+ path = Path(paths[si])
130
+ seen += 1
131
+
132
+ if len(pred) == 0:
133
+ if nl:
134
+ stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
135
+ continue
136
+
137
+ # Predictions
138
+ predn = pred.clone()
139
+ scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
140
+
141
+ # Append to text file
142
+ if save_txt:
143
+ gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
144
+ for *xyxy, conf, cls in predn.tolist():
145
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
146
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
147
+ with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
148
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
149
+
150
+ # W&B logging - Media Panel Plots
151
+ if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
152
+ if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
153
+ box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
154
+ "class_id": int(cls),
155
+ "box_caption": "%s %.3f" % (names[cls], conf),
156
+ "scores": {"class_score": conf},
157
+ "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
158
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
159
+ wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
160
+ wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
161
+
162
+ # Append to pycocotools JSON dictionary
163
+ if save_json:
164
+ # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
165
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
166
+ box = xyxy2xywh(predn[:, :4]) # xywh
167
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
168
+ for p, b in zip(pred.tolist(), box.tolist()):
169
+ jdict.append({'image_id': image_id,
170
+ 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
171
+ 'bbox': [round(x, 3) for x in b],
172
+ 'score': round(p[4], 5)})
173
+
174
+ # Assign all predictions as incorrect
175
+ correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
176
+ if nl:
177
+ detected = [] # target indices
178
+ tcls_tensor = labels[:, 0]
179
+
180
+ # target boxes
181
+ tbox = xywh2xyxy(labels[:, 1:5])
182
+ scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
183
+ if plots:
184
+ confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
185
+
186
+ # Per target class
187
+ for cls in torch.unique(tcls_tensor):
188
+ ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
189
+ pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
190
+
191
+ # Search for detections
192
+ if pi.shape[0]:
193
+ # Prediction to target ious
194
+ ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
195
+
196
+ # Append detections
197
+ detected_set = set()
198
+ for j in (ious > iouv[0]).nonzero(as_tuple=False):
199
+ d = ti[i[j]] # detected target
200
+ if d.item() not in detected_set:
201
+ detected_set.add(d.item())
202
+ detected.append(d)
203
+ correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
204
+ if len(detected) == nl: # all targets already located in image
205
+ break
206
+
207
+ # Append statistics (correct, conf, pcls, tcls)
208
+ stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
209
+
210
+ # Plot images
211
+ if plots and batch_i < 3:
212
+ f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
213
+ Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
214
+ f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
215
+ Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
216
+
217
+ # Compute statistics
218
+ stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
219
+ if len(stats) and stats[0].any():
220
+ p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
221
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
222
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
223
+ nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
224
+ else:
225
+ nt = torch.zeros(1)
226
+
227
+ # Print results
228
+ pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
229
+ print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
230
+
231
+ # Print results per class
232
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
233
+ for i, c in enumerate(ap_class):
234
+ print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
235
+
236
+ # Print speeds
237
+ t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
238
+ if not training:
239
+ print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
240
+
241
+ # Plots
242
+ if plots:
243
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
244
+ if wandb_logger and wandb_logger.wandb:
245
+ val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
246
+ wandb_logger.log({"Validation": val_batches})
247
+ if wandb_images:
248
+ wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
249
+
250
+ # Save JSON
251
+ if save_json and len(jdict):
252
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
253
+ anno_json = '../coco/annotations/instances_val2017.json' # annotations json
254
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
255
+ print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
256
+ with open(pred_json, 'w') as f:
257
+ json.dump(jdict, f)
258
+
259
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
260
+ from pycocotools.coco import COCO
261
+ from pycocotools.cocoeval import COCOeval
262
+
263
+ anno = COCO(anno_json) # init annotations api
264
+ pred = anno.loadRes(pred_json) # init predictions api
265
+ eval = COCOeval(anno, pred, 'bbox')
266
+ if is_coco:
267
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
268
+ eval.evaluate()
269
+ eval.accumulate()
270
+ eval.summarize()
271
+ map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
272
+ except Exception as e:
273
+ print(f'pycocotools unable to run: {e}')
274
+
275
+ # Return results
276
+ model.float() # for training
277
+ if not training:
278
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
279
+ print(f"Results saved to {save_dir}{s}")
280
+ maps = np.zeros(nc) + map
281
+ for i, c in enumerate(ap_class):
282
+ maps[c] = ap[i]
283
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
284
+
285
+
286
+ if __name__ == '__main__':
287
+ parser = argparse.ArgumentParser(prog='test.py')
288
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
289
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
290
+ parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
291
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
292
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
293
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
294
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
295
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
296
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
297
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
298
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
299
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
300
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
301
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
302
+ parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
303
+ parser.add_argument('--project', default='runs/test', help='save to project/name')
304
+ parser.add_argument('--name', default='exp', help='save to project/name')
305
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
306
+ parser.add_argument('--trace', action='store_true', help='trace model')
307
+ opt = parser.parse_args()
308
+ opt.save_json |= opt.data.endswith('coco.yaml')
309
+ opt.data = check_file(opt.data) # check file
310
+ print(opt)
311
+ #check_requirements()
312
+
313
+ if opt.task in ('train', 'val', 'test'): # run normally
314
+ test(opt.data,
315
+ opt.weights,
316
+ opt.batch_size,
317
+ opt.img_size,
318
+ opt.conf_thres,
319
+ opt.iou_thres,
320
+ opt.save_json,
321
+ opt.single_cls,
322
+ opt.augment,
323
+ opt.verbose,
324
+ save_txt=opt.save_txt | opt.save_hybrid,
325
+ save_hybrid=opt.save_hybrid,
326
+ save_conf=opt.save_conf,
327
+ trace=opt.trace,
328
+ )
329
+
330
+ elif opt.task == 'speed': # speed benchmarks
331
+ for w in opt.weights:
332
+ test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
333
+
334
+ elif opt.task == 'study': # run over a range of settings and save/plot
335
+ # python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
336
+ x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
337
+ for w in opt.weights:
338
+ f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
339
+ y = [] # y axis
340
+ for i in x: # img-size
341
+ print(f'\nRunning {f} point {i}...')
342
+ r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
343
+ plots=False)
344
+ y.append(r + t) # results and times
345
+ np.savetxt(f, y, fmt='%10.4g') # save
346
+ os.system('zip -r study.zip study_*.txt')
347
+ plot_study_txt(x=x) # plot
train.py ADDED
@@ -0,0 +1,691 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import math
4
+ import os
5
+ import random
6
+ import time
7
+ from copy import deepcopy
8
+ from pathlib import Path
9
+ from threading import Thread
10
+
11
+ import numpy as np
12
+ import torch.distributed as dist
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+ import torch.optim as optim
16
+ import torch.optim.lr_scheduler as lr_scheduler
17
+ import torch.utils.data
18
+ import yaml
19
+ from torch.cuda import amp
20
+ from torch.nn.parallel import DistributedDataParallel as DDP
21
+ from torch.utils.tensorboard import SummaryWriter
22
+ from tqdm import tqdm
23
+
24
+ import test # import test.py to get mAP after each epoch
25
+ from models.experimental import attempt_load
26
+ from models.yolo import Model
27
+ from utils.autoanchor import check_anchors
28
+ from utils.datasets import create_dataloader
29
+ from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
30
+ fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
31
+ check_requirements, print_mutation, set_logging, one_cycle, colorstr
32
+ from utils.google_utils import attempt_download
33
+ from utils.loss import ComputeLoss, ComputeLossOTA
34
+ from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
35
+ from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
36
+ from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
37
+
38
+ logger = logging.getLogger(__name__)
39
+
40
+
41
+ def train(hyp, opt, device, tb_writer=None):
42
+ logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
43
+ save_dir, epochs, batch_size, total_batch_size, weights, rank = \
44
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
45
+
46
+ # Directories
47
+ wdir = save_dir / 'weights'
48
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
49
+ last = wdir / 'last.pt'
50
+ best = wdir / 'best.pt'
51
+ results_file = save_dir / 'results.txt'
52
+
53
+ # Save run settings
54
+ with open(save_dir / 'hyp.yaml', 'w') as f:
55
+ yaml.dump(hyp, f, sort_keys=False)
56
+ with open(save_dir / 'opt.yaml', 'w') as f:
57
+ yaml.dump(vars(opt), f, sort_keys=False)
58
+
59
+ # Configure
60
+ plots = not opt.evolve # create plots
61
+ cuda = device.type != 'cpu'
62
+ init_seeds(2 + rank)
63
+ with open(opt.data) as f:
64
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
65
+ is_coco = opt.data.endswith('coco.yaml')
66
+
67
+ # Logging- Doing this before checking the dataset. Might update data_dict
68
+ loggers = {'wandb': None} # loggers dict
69
+ if rank in [-1, 0]:
70
+ opt.hyp = hyp # add hyperparameters
71
+ run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
72
+ wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
73
+ loggers['wandb'] = wandb_logger.wandb
74
+ data_dict = wandb_logger.data_dict
75
+ if wandb_logger.wandb:
76
+ weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
77
+
78
+ nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
79
+ names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
80
+ assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
81
+
82
+ # Model
83
+ pretrained = weights.endswith('.pt')
84
+ if pretrained:
85
+ with torch_distributed_zero_first(rank):
86
+ attempt_download(weights) # download if not found locally
87
+ ckpt = torch.load(weights, map_location=device) # load checkpoint
88
+ model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
89
+ exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
90
+ state_dict = ckpt['model'].float().state_dict() # to FP32
91
+ state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
92
+ model.load_state_dict(state_dict, strict=False) # load
93
+ logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
94
+ else:
95
+ model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
96
+ with torch_distributed_zero_first(rank):
97
+ check_dataset(data_dict) # check
98
+ train_path = data_dict['train']
99
+ test_path = data_dict['val']
100
+
101
+ # Freeze
102
+ freeze = [] # parameter names to freeze (full or partial)
103
+ for k, v in model.named_parameters():
104
+ v.requires_grad = True # train all layers
105
+ if any(x in k for x in freeze):
106
+ print('freezing %s' % k)
107
+ v.requires_grad = False
108
+
109
+ # Optimizer
110
+ nbs = 64 # nominal batch size
111
+ accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
112
+ hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
113
+ logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
114
+
115
+ pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
116
+ for k, v in model.named_modules():
117
+ if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
118
+ pg2.append(v.bias) # biases
119
+ if isinstance(v, nn.BatchNorm2d):
120
+ pg0.append(v.weight) # no decay
121
+ elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
122
+ pg1.append(v.weight) # apply decay
123
+ if hasattr(v, 'im'):
124
+ if hasattr(v.im, 'implicit'):
125
+ pg0.append(v.im.implicit)
126
+ else:
127
+ for iv in v.im:
128
+ pg0.append(iv.implicit)
129
+ if hasattr(v, 'imc'):
130
+ if hasattr(v.imc, 'implicit'):
131
+ pg0.append(v.imc.implicit)
132
+ else:
133
+ for iv in v.imc:
134
+ pg0.append(iv.implicit)
135
+ if hasattr(v, 'imb'):
136
+ if hasattr(v.imb, 'implicit'):
137
+ pg0.append(v.imb.implicit)
138
+ else:
139
+ for iv in v.imb:
140
+ pg0.append(iv.implicit)
141
+ if hasattr(v, 'imo'):
142
+ if hasattr(v.imo, 'implicit'):
143
+ pg0.append(v.imo.implicit)
144
+ else:
145
+ for iv in v.imo:
146
+ pg0.append(iv.implicit)
147
+ if hasattr(v, 'ia'):
148
+ if hasattr(v.ia, 'implicit'):
149
+ pg0.append(v.ia.implicit)
150
+ else:
151
+ for iv in v.ia:
152
+ pg0.append(iv.implicit)
153
+ if hasattr(v, 'attn'):
154
+ if hasattr(v.attn, 'logit_scale'):
155
+ pg0.append(v.attn.logit_scale)
156
+ if hasattr(v.attn, 'q_bias'):
157
+ pg0.append(v.attn.q_bias)
158
+ if hasattr(v.attn, 'v_bias'):
159
+ pg0.append(v.attn.v_bias)
160
+ if hasattr(v.attn, 'relative_position_bias_table'):
161
+ pg0.append(v.attn.relative_position_bias_table)
162
+ if hasattr(v, 'rbr_dense'):
163
+ if hasattr(v.rbr_dense, 'weight_rbr_origin'):
164
+ pg0.append(v.rbr_dense.weight_rbr_origin)
165
+ if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'):
166
+ pg0.append(v.rbr_dense.weight_rbr_avg_conv)
167
+ if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'):
168
+ pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
169
+ if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'):
170
+ pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
171
+ if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'):
172
+ pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
173
+ if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'):
174
+ pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
175
+ if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'):
176
+ pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
177
+ if hasattr(v.rbr_dense, 'vector'):
178
+ pg0.append(v.rbr_dense.vector)
179
+
180
+ if opt.adam:
181
+ optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
182
+ else:
183
+ optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
184
+
185
+ optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
186
+ optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
187
+ logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
188
+ del pg0, pg1, pg2
189
+
190
+ # Scheduler https://arxiv.org/pdf/1812.01187.pdf
191
+ # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
192
+ if opt.linear_lr:
193
+ lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
194
+ else:
195
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
196
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
197
+ # plot_lr_scheduler(optimizer, scheduler, epochs)
198
+
199
+ # EMA
200
+ ema = ModelEMA(model) if rank in [-1, 0] else None
201
+
202
+ # Resume
203
+ start_epoch, best_fitness = 0, 0.0
204
+ if pretrained:
205
+ # Optimizer
206
+ if ckpt['optimizer'] is not None:
207
+ optimizer.load_state_dict(ckpt['optimizer'])
208
+ best_fitness = ckpt['best_fitness']
209
+
210
+ # EMA
211
+ if ema and ckpt.get('ema'):
212
+ ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
213
+ ema.updates = ckpt['updates']
214
+
215
+ # Results
216
+ if ckpt.get('training_results') is not None:
217
+ results_file.write_text(ckpt['training_results']) # write results.txt
218
+
219
+ # Epochs
220
+ start_epoch = ckpt['epoch'] + 1
221
+ if opt.resume:
222
+ assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
223
+ if epochs < start_epoch:
224
+ logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
225
+ (weights, ckpt['epoch'], epochs))
226
+ epochs += ckpt['epoch'] # finetune additional epochs
227
+
228
+ del ckpt, state_dict
229
+
230
+ # Image sizes
231
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
232
+ nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
233
+ imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
234
+
235
+ # DP mode
236
+ if cuda and rank == -1 and torch.cuda.device_count() > 1:
237
+ model = torch.nn.DataParallel(model)
238
+
239
+ # SyncBatchNorm
240
+ if opt.sync_bn and cuda and rank != -1:
241
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
242
+ logger.info('Using SyncBatchNorm()')
243
+
244
+ # Trainloader
245
+ dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
246
+ hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
247
+ world_size=opt.world_size, workers=opt.workers,
248
+ image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
249
+ mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
250
+ nb = len(dataloader) # number of batches
251
+ assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
252
+
253
+ # Process 0
254
+ if rank in [-1, 0]:
255
+ testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
256
+ hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
257
+ world_size=opt.world_size, workers=opt.workers,
258
+ pad=0.5, prefix=colorstr('val: '))[0]
259
+
260
+ if not opt.resume:
261
+ labels = np.concatenate(dataset.labels, 0)
262
+ c = torch.tensor(labels[:, 0]) # classes
263
+ # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
264
+ # model._initialize_biases(cf.to(device))
265
+ if plots:
266
+ #plot_labels(labels, names, save_dir, loggers)
267
+ if tb_writer:
268
+ tb_writer.add_histogram('classes', c, 0)
269
+
270
+ # Anchors
271
+ if not opt.noautoanchor:
272
+ check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
273
+ model.half().float() # pre-reduce anchor precision
274
+
275
+ # DDP mode
276
+ if cuda and rank != -1:
277
+ model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
278
+ # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
279
+ find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
280
+
281
+ # Model parameters
282
+ hyp['box'] *= 3. / nl # scale to layers
283
+ hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
284
+ hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
285
+ hyp['label_smoothing'] = opt.label_smoothing
286
+ model.nc = nc # attach number of classes to model
287
+ model.hyp = hyp # attach hyperparameters to model
288
+ model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
289
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
290
+ model.names = names
291
+
292
+ # Start training
293
+ t0 = time.time()
294
+ nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
295
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
296
+ maps = np.zeros(nc) # mAP per class
297
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
298
+ scheduler.last_epoch = start_epoch - 1 # do not move
299
+ scaler = amp.GradScaler(enabled=cuda)
300
+ compute_loss_ota = ComputeLossOTA(model) # init loss class
301
+ compute_loss = ComputeLoss(model) # init loss class
302
+ logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
303
+ f'Using {dataloader.num_workers} dataloader workers\n'
304
+ f'Logging results to {save_dir}\n'
305
+ f'Starting training for {epochs} epochs...')
306
+ torch.save(model, wdir / 'init.pt')
307
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
308
+ model.train()
309
+
310
+ # Update image weights (optional)
311
+ if opt.image_weights:
312
+ # Generate indices
313
+ if rank in [-1, 0]:
314
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
315
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
316
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
317
+ # Broadcast if DDP
318
+ if rank != -1:
319
+ indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
320
+ dist.broadcast(indices, 0)
321
+ if rank != 0:
322
+ dataset.indices = indices.cpu().numpy()
323
+
324
+ # Update mosaic border
325
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
326
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
327
+
328
+ mloss = torch.zeros(4, device=device) # mean losses
329
+ if rank != -1:
330
+ dataloader.sampler.set_epoch(epoch)
331
+ pbar = enumerate(dataloader)
332
+ logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
333
+ if rank in [-1, 0]:
334
+ pbar = tqdm(pbar, total=nb) # progress bar
335
+ optimizer.zero_grad()
336
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
337
+ ni = i + nb * epoch # number integrated batches (since train start)
338
+ imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
339
+
340
+ # Warmup
341
+ if ni <= nw:
342
+ xi = [0, nw] # x interp
343
+ # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
344
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
345
+ for j, x in enumerate(optimizer.param_groups):
346
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
347
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
348
+ if 'momentum' in x:
349
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
350
+
351
+ # Multi-scale
352
+ if opt.multi_scale:
353
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
354
+ sf = sz / max(imgs.shape[2:]) # scale factor
355
+ if sf != 1:
356
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
357
+ imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
358
+
359
+ # Forward
360
+ with amp.autocast(enabled=cuda):
361
+ pred = model(imgs) # forward
362
+ loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
363
+ if rank != -1:
364
+ loss *= opt.world_size # gradient averaged between devices in DDP mode
365
+ if opt.quad:
366
+ loss *= 4.
367
+
368
+ # Backward
369
+ scaler.scale(loss).backward()
370
+
371
+ # Optimize
372
+ if ni % accumulate == 0:
373
+ scaler.step(optimizer) # optimizer.step
374
+ scaler.update()
375
+ optimizer.zero_grad()
376
+ if ema:
377
+ ema.update(model)
378
+
379
+ # Print
380
+ if rank in [-1, 0]:
381
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
382
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
383
+ s = ('%10s' * 2 + '%10.4g' * 6) % (
384
+ '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
385
+ pbar.set_description(s)
386
+
387
+ # Plot
388
+ if plots and ni < 10:
389
+ f = save_dir / f'train_batch{ni}.jpg' # filename
390
+ Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
391
+ # if tb_writer:
392
+ # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
393
+ # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
394
+ elif plots and ni == 10 and wandb_logger.wandb:
395
+ wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
396
+ save_dir.glob('train*.jpg') if x.exists()]})
397
+
398
+ # end batch ------------------------------------------------------------------------------------------------
399
+ # end epoch ----------------------------------------------------------------------------------------------------
400
+
401
+ # Scheduler
402
+ lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
403
+ scheduler.step()
404
+
405
+ # DDP process 0 or single-GPU
406
+ if rank in [-1, 0]:
407
+ # mAP
408
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
409
+ final_epoch = epoch + 1 == epochs
410
+ if not opt.notest or final_epoch: # Calculate mAP
411
+ wandb_logger.current_epoch = epoch + 1
412
+ results, maps, times = test.test(data_dict,
413
+ batch_size=batch_size * 2,
414
+ imgsz=imgsz_test,
415
+ model=ema.ema,
416
+ single_cls=opt.single_cls,
417
+ dataloader=testloader,
418
+ save_dir=save_dir,
419
+ verbose=nc < 50 and final_epoch,
420
+ plots=plots and final_epoch,
421
+ wandb_logger=wandb_logger,
422
+ compute_loss=compute_loss,
423
+ is_coco=is_coco)
424
+
425
+ # Write
426
+ with open(results_file, 'a') as f:
427
+ f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
428
+ if len(opt.name) and opt.bucket:
429
+ os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
430
+
431
+ # Log
432
+ tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
433
+ 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
434
+ 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
435
+ 'x/lr0', 'x/lr1', 'x/lr2'] # params
436
+ for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
437
+ if tb_writer:
438
+ tb_writer.add_scalar(tag, x, epoch) # tensorboard
439
+ if wandb_logger.wandb:
440
+ wandb_logger.log({tag: x}) # W&B
441
+
442
+ # Update best mAP
443
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
444
+ if fi > best_fitness:
445
+ best_fitness = fi
446
+ wandb_logger.end_epoch(best_result=best_fitness == fi)
447
+
448
+ # Save model
449
+ if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
450
+ ckpt = {'epoch': epoch,
451
+ 'best_fitness': best_fitness,
452
+ 'training_results': results_file.read_text(),
453
+ 'model': deepcopy(model.module if is_parallel(model) else model).half(),
454
+ 'ema': deepcopy(ema.ema).half(),
455
+ 'updates': ema.updates,
456
+ 'optimizer': optimizer.state_dict(),
457
+ 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
458
+
459
+ # Save last, best and delete
460
+ torch.save(ckpt, last)
461
+ if best_fitness == fi:
462
+ torch.save(ckpt, best)
463
+ if (best_fitness == fi) and (epoch >= 200):
464
+ torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
465
+ if epoch == 0:
466
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
467
+ elif ((epoch+1) % 25) == 0:
468
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
469
+ elif epoch >= (epochs-5):
470
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
471
+ if wandb_logger.wandb:
472
+ if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
473
+ wandb_logger.log_model(
474
+ last.parent, opt, epoch, fi, best_model=best_fitness == fi)
475
+ del ckpt
476
+
477
+ # end epoch ----------------------------------------------------------------------------------------------------
478
+ # end training
479
+ if rank in [-1, 0]:
480
+ # Plots
481
+ if plots:
482
+ plot_results(save_dir=save_dir) # save as results.png
483
+ if wandb_logger.wandb:
484
+ files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
485
+ wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
486
+ if (save_dir / f).exists()]})
487
+ # Test best.pt
488
+ logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
489
+ if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
490
+ for m in (last, best) if best.exists() else (last): # speed, mAP tests
491
+ results, _, _ = test.test(opt.data,
492
+ batch_size=batch_size * 2,
493
+ imgsz=imgsz_test,
494
+ conf_thres=0.001,
495
+ iou_thres=0.7,
496
+ model=attempt_load(m, device).half(),
497
+ single_cls=opt.single_cls,
498
+ dataloader=testloader,
499
+ save_dir=save_dir,
500
+ save_json=True,
501
+ plots=False,
502
+ is_coco=is_coco)
503
+
504
+ # Strip optimizers
505
+ final = best if best.exists() else last # final model
506
+ for f in last, best:
507
+ if f.exists():
508
+ strip_optimizer(f) # strip optimizers
509
+ if opt.bucket:
510
+ os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
511
+ if wandb_logger.wandb and not opt.evolve: # Log the stripped model
512
+ wandb_logger.wandb.log_artifact(str(final), type='model',
513
+ name='run_' + wandb_logger.wandb_run.id + '_model',
514
+ aliases=['last', 'best', 'stripped'])
515
+ wandb_logger.finish_run()
516
+ else:
517
+ dist.destroy_process_group()
518
+ torch.cuda.empty_cache()
519
+ return results
520
+
521
+
522
+ if __name__ == '__main__':
523
+ parser = argparse.ArgumentParser()
524
+ parser.add_argument('--weights', type=str, default='yolo7.pt', help='initial weights path')
525
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
526
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
527
+ parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path')
528
+ parser.add_argument('--epochs', type=int, default=300)
529
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
530
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
531
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
532
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
533
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
534
+ parser.add_argument('--notest', action='store_true', help='only test final epoch')
535
+ parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
536
+ parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
537
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
538
+ parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
539
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
540
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
541
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
542
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
543
+ parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
544
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
545
+ parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
546
+ parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
547
+ parser.add_argument('--project', default='runs/train', help='save to project/name')
548
+ parser.add_argument('--entity', default=None, help='W&B entity')
549
+ parser.add_argument('--name', default='exp', help='save to project/name')
550
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
551
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
552
+ parser.add_argument('--linear-lr', action='store_true', help='linear LR')
553
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
554
+ parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
555
+ parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
556
+ parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
557
+ parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
558
+ opt = parser.parse_args()
559
+
560
+ # Set DDP variables
561
+ opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
562
+ opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
563
+ set_logging(opt.global_rank)
564
+ #if opt.global_rank in [-1, 0]:
565
+ # check_git_status()
566
+ # check_requirements()
567
+
568
+ # Resume
569
+ wandb_run = check_wandb_resume(opt)
570
+ if opt.resume and not wandb_run: # resume an interrupted run
571
+ ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
572
+ assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
573
+ apriori = opt.global_rank, opt.local_rank
574
+ with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
575
+ opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
576
+ opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
577
+ logger.info('Resuming training from %s' % ckpt)
578
+ else:
579
+ # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
580
+ opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
581
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
582
+ opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
583
+ opt.name = 'evolve' if opt.evolve else opt.name
584
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
585
+
586
+ # DDP mode
587
+ opt.total_batch_size = opt.batch_size
588
+ device = select_device(opt.device, batch_size=opt.batch_size)
589
+ if opt.local_rank != -1:
590
+ assert torch.cuda.device_count() > opt.local_rank
591
+ torch.cuda.set_device(opt.local_rank)
592
+ device = torch.device('cuda', opt.local_rank)
593
+ dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
594
+ assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
595
+ opt.batch_size = opt.total_batch_size // opt.world_size
596
+
597
+ # Hyperparameters
598
+ with open(opt.hyp) as f:
599
+ hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
600
+
601
+ # Train
602
+ logger.info(opt)
603
+ if not opt.evolve:
604
+ tb_writer = None # init loggers
605
+ if opt.global_rank in [-1, 0]:
606
+ prefix = colorstr('tensorboard: ')
607
+ logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
608
+ tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
609
+ train(hyp, opt, device, tb_writer)
610
+
611
+ # Evolve hyperparameters (optional)
612
+ else:
613
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
614
+ meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
615
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
616
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
617
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
618
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
619
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
620
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
621
+ 'box': (1, 0.02, 0.2), # box loss gain
622
+ 'cls': (1, 0.2, 4.0), # cls loss gain
623
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
624
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
625
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
626
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
627
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
628
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
629
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
630
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
631
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
632
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
633
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
634
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
635
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
636
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
637
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
638
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
639
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
640
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
641
+ 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
642
+
643
+ assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
644
+ opt.notest, opt.nosave = True, True # only test/save final epoch
645
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
646
+ yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
647
+ if opt.bucket:
648
+ os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
649
+
650
+ for _ in range(300): # generations to evolve
651
+ if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
652
+ # Select parent(s)
653
+ parent = 'single' # parent selection method: 'single' or 'weighted'
654
+ x = np.loadtxt('evolve.txt', ndmin=2)
655
+ n = min(5, len(x)) # number of previous results to consider
656
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
657
+ w = fitness(x) - fitness(x).min() # weights
658
+ if parent == 'single' or len(x) == 1:
659
+ # x = x[random.randint(0, n - 1)] # random selection
660
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
661
+ elif parent == 'weighted':
662
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
663
+
664
+ # Mutate
665
+ mp, s = 0.8, 0.2 # mutation probability, sigma
666
+ npr = np.random
667
+ npr.seed(int(time.time()))
668
+ g = np.array([x[0] for x in meta.values()]) # gains 0-1
669
+ ng = len(meta)
670
+ v = np.ones(ng)
671
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
672
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
673
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
674
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
675
+
676
+ # Constrain to limits
677
+ for k, v in meta.items():
678
+ hyp[k] = max(hyp[k], v[1]) # lower limit
679
+ hyp[k] = min(hyp[k], v[2]) # upper limit
680
+ hyp[k] = round(hyp[k], 5) # significant digits
681
+
682
+ # Train mutation
683
+ results = train(hyp.copy(), opt, device)
684
+
685
+ # Write mutation results
686
+ print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
687
+
688
+ # Plot results
689
+ plot_evolution(yaml_file)
690
+ print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
691
+ f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
utils/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # init
utils/activations.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Activation functions
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+
8
+ # SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
9
+ class SiLU(nn.Module): # export-friendly version of nn.SiLU()
10
+ @staticmethod
11
+ def forward(x):
12
+ return x * torch.sigmoid(x)
13
+
14
+
15
+ class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
16
+ @staticmethod
17
+ def forward(x):
18
+ # return x * F.hardsigmoid(x) # for torchscript and CoreML
19
+ return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
20
+
21
+
22
+ class MemoryEfficientSwish(nn.Module):
23
+ class F(torch.autograd.Function):
24
+ @staticmethod
25
+ def forward(ctx, x):
26
+ ctx.save_for_backward(x)
27
+ return x * torch.sigmoid(x)
28
+
29
+ @staticmethod
30
+ def backward(ctx, grad_output):
31
+ x = ctx.saved_tensors[0]
32
+ sx = torch.sigmoid(x)
33
+ return grad_output * (sx * (1 + x * (1 - sx)))
34
+
35
+ def forward(self, x):
36
+ return self.F.apply(x)
37
+
38
+
39
+ # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
40
+ class Mish(nn.Module):
41
+ @staticmethod
42
+ def forward(x):
43
+ return x * F.softplus(x).tanh()
44
+
45
+
46
+ class MemoryEfficientMish(nn.Module):
47
+ class F(torch.autograd.Function):
48
+ @staticmethod
49
+ def forward(ctx, x):
50
+ ctx.save_for_backward(x)
51
+ return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
52
+
53
+ @staticmethod
54
+ def backward(ctx, grad_output):
55
+ x = ctx.saved_tensors[0]
56
+ sx = torch.sigmoid(x)
57
+ fx = F.softplus(x).tanh()
58
+ return grad_output * (fx + x * sx * (1 - fx * fx))
59
+
60
+ def forward(self, x):
61
+ return self.F.apply(x)
62
+
63
+
64
+ # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
65
+ class FReLU(nn.Module):
66
+ def __init__(self, c1, k=3): # ch_in, kernel
67
+ super().__init__()
68
+ self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
69
+ self.bn = nn.BatchNorm2d(c1)
70
+
71
+ def forward(self, x):
72
+ return torch.max(x, self.bn(self.conv(x)))
utils/autoanchor.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Auto-anchor utils
2
+
3
+ import numpy as np
4
+ import torch
5
+ import yaml
6
+ from scipy.cluster.vq import kmeans
7
+ from tqdm import tqdm
8
+
9
+ from utils.general import colorstr
10
+
11
+
12
+ def check_anchor_order(m):
13
+ # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
15
+ da = a[-1] - a[0] # delta a
16
+ ds = m.stride[-1] - m.stride[0] # delta s
17
+ if da.sign() != ds.sign(): # same order
18
+ print('Reversing anchor order')
19
+ m.anchors[:] = m.anchors.flip(0)
20
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
21
+
22
+
23
+ def check_anchors(dataset, model, thr=4.0, imgsz=640):
24
+ # Check anchor fit to data, recompute if necessary
25
+ prefix = colorstr('autoanchor: ')
26
+ print(f'\n{prefix}Analyzing anchors... ', end='')
27
+ m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28
+ shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29
+ scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30
+ wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31
+
32
+ def metric(k): # compute metric
33
+ r = wh[:, None] / k[None]
34
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35
+ best = x.max(1)[0] # best_x
36
+ aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37
+ bpr = (best > 1. / thr).float().mean() # best possible recall
38
+ return bpr, aat
39
+
40
+ anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41
+ bpr, aat = metric(anchors)
42
+ print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43
+ if bpr < 0.98: # threshold to recompute
44
+ print('. Attempting to improve anchors, please wait...')
45
+ na = m.anchor_grid.numel() // 2 # number of anchors
46
+ try:
47
+ anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48
+ except Exception as e:
49
+ print(f'{prefix}ERROR: {e}')
50
+ new_bpr = metric(anchors)[0]
51
+ if new_bpr > bpr: # replace anchors
52
+ anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53
+ m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54
+ m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
55
+ check_anchor_order(m)
56
+ print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57
+ else:
58
+ print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59
+ print('') # newline
60
+
61
+
62
+ def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63
+ """ Creates kmeans-evolved anchors from training dataset
64
+
65
+ Arguments:
66
+ path: path to dataset *.yaml, or a loaded dataset
67
+ n: number of anchors
68
+ img_size: image size used for training
69
+ thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70
+ gen: generations to evolve anchors using genetic algorithm
71
+ verbose: print all results
72
+
73
+ Return:
74
+ k: kmeans evolved anchors
75
+
76
+ Usage:
77
+ from utils.autoanchor import *; _ = kmean_anchors()
78
+ """
79
+ thr = 1. / thr
80
+ prefix = colorstr('autoanchor: ')
81
+
82
+ def metric(k, wh): # compute metrics
83
+ r = wh[:, None] / k[None]
84
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85
+ # x = wh_iou(wh, torch.tensor(k)) # iou metric
86
+ return x, x.max(1)[0] # x, best_x
87
+
88
+ def anchor_fitness(k): # mutation fitness
89
+ _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90
+ return (best * (best > thr).float()).mean() # fitness
91
+
92
+ def print_results(k):
93
+ k = k[np.argsort(k.prod(1))] # sort small to large
94
+ x, best = metric(k, wh0)
95
+ bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96
+ print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97
+ print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98
+ f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99
+ for i, x in enumerate(k):
100
+ print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101
+ return k
102
+
103
+ if isinstance(path, str): # *.yaml file
104
+ with open(path) as f:
105
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106
+ from utils.datasets import LoadImagesAndLabels
107
+ dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108
+ else:
109
+ dataset = path # dataset
110
+
111
+ # Get label wh
112
+ shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113
+ wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114
+
115
+ # Filter
116
+ i = (wh0 < 3.0).any(1).sum()
117
+ if i:
118
+ print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119
+ wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120
+ # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121
+
122
+ # Kmeans calculation
123
+ print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124
+ s = wh.std(0) # sigmas for whitening
125
+ k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126
+ assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127
+ k *= s
128
+ wh = torch.tensor(wh, dtype=torch.float32) # filtered
129
+ wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130
+ k = print_results(k)
131
+
132
+ # Plot
133
+ # k, d = [None] * 20, [None] * 20
134
+ # for i in tqdm(range(1, 21)):
135
+ # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137
+ # ax = ax.ravel()
138
+ # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140
+ # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141
+ # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142
+ # fig.savefig('wh.png', dpi=200)
143
+
144
+ # Evolve
145
+ npr = np.random
146
+ f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147
+ pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148
+ for _ in pbar:
149
+ v = np.ones(sh)
150
+ while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151
+ v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152
+ kg = (k.copy() * v).clip(min=2.0)
153
+ fg = anchor_fitness(kg)
154
+ if fg > f:
155
+ f, k = fg, kg.copy()
156
+ pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157
+ if verbose:
158
+ print_results(k)
159
+
160
+ return print_results(k)
utils/aws/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ #init
utils/aws/mime.sh ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
2
+ # This script will run on every instance restart, not only on first start
3
+ # --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
4
+
5
+ Content-Type: multipart/mixed; boundary="//"
6
+ MIME-Version: 1.0
7
+
8
+ --//
9
+ Content-Type: text/cloud-config; charset="us-ascii"
10
+ MIME-Version: 1.0
11
+ Content-Transfer-Encoding: 7bit
12
+ Content-Disposition: attachment; filename="cloud-config.txt"
13
+
14
+ #cloud-config
15
+ cloud_final_modules:
16
+ - [scripts-user, always]
17
+
18
+ --//
19
+ Content-Type: text/x-shellscript; charset="us-ascii"
20
+ MIME-Version: 1.0
21
+ Content-Transfer-Encoding: 7bit
22
+ Content-Disposition: attachment; filename="userdata.txt"
23
+
24
+ #!/bin/bash
25
+ # --- paste contents of userdata.sh here ---
26
+ --//
utils/aws/resume.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Resume all interrupted trainings in yolor/ dir including DDP trainings
2
+ # Usage: $ python utils/aws/resume.py
3
+
4
+ import os
5
+ import sys
6
+ from pathlib import Path
7
+
8
+ import torch
9
+ import yaml
10
+
11
+ sys.path.append('./') # to run '$ python *.py' files in subdirectories
12
+
13
+ port = 0 # --master_port
14
+ path = Path('').resolve()
15
+ for last in path.rglob('*/**/last.pt'):
16
+ ckpt = torch.load(last)
17
+ if ckpt['optimizer'] is None:
18
+ continue
19
+
20
+ # Load opt.yaml
21
+ with open(last.parent.parent / 'opt.yaml') as f:
22
+ opt = yaml.load(f, Loader=yaml.SafeLoader)
23
+
24
+ # Get device count
25
+ d = opt['device'].split(',') # devices
26
+ nd = len(d) # number of devices
27
+ ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
28
+
29
+ if ddp: # multi-GPU
30
+ port += 1
31
+ cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
32
+ else: # single-GPU
33
+ cmd = f'python train.py --resume {last}'
34
+
35
+ cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
36
+ print(cmd)
37
+ os.system(cmd)
utils/aws/userdata.sh ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
3
+ # This script will run only once on first instance start (for a re-start script see mime.sh)
4
+ # /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
5
+ # Use >300 GB SSD
6
+
7
+ cd home/ubuntu
8
+ if [ ! -d yolor ]; then
9
+ echo "Running first-time script." # install dependencies, download COCO, pull Docker
10
+ git clone -b paper https://github.com/WongKinYiu/yolor && sudo chmod -R 777 yolor
11
+ cd yolor
12
+ bash data/scripts/get_coco.sh && echo "Data done." &
13
+ sudo docker pull nvcr.io/nvidia/pytorch:21.08-py3 && echo "Docker done." &
14
+ python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
15
+ wait && echo "All tasks done." # finish background tasks
16
+ else
17
+ echo "Running re-start script." # resume interrupted runs
18
+ i=0
19
+ list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
20
+ while IFS= read -r id; do
21
+ ((i++))
22
+ echo "restarting container $i: $id"
23
+ sudo docker start $id
24
+ # sudo docker exec -it $id python train.py --resume # single-GPU
25
+ sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
26
+ done <<<"$list"
27
+ fi
utils/datasets.py ADDED
@@ -0,0 +1,1320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dataset utils and dataloaders
2
+
3
+ import glob
4
+ import logging
5
+ import math
6
+ import os
7
+ import random
8
+ import shutil
9
+ import time
10
+ from itertools import repeat
11
+ from multiprocessing.pool import ThreadPool
12
+ from pathlib import Path
13
+ from threading import Thread
14
+
15
+ import cv2
16
+ import numpy as np
17
+ import torch
18
+ import torch.nn.functional as F
19
+ from PIL import Image, ExifTags
20
+ from torch.utils.data import Dataset
21
+ from tqdm import tqdm
22
+
23
+ import pickle
24
+ from copy import deepcopy
25
+ #from pycocotools import mask as maskUtils
26
+ from torchvision.utils import save_image
27
+ from torchvision.ops import roi_pool, roi_align, ps_roi_pool, ps_roi_align
28
+
29
+ from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
30
+ resample_segments, clean_str
31
+ from utils.torch_utils import torch_distributed_zero_first
32
+
33
+ # Parameters
34
+ help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
35
+ img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes
36
+ vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes
37
+ logger = logging.getLogger(__name__)
38
+
39
+ # Get orientation exif tag
40
+ for orientation in ExifTags.TAGS.keys():
41
+ if ExifTags.TAGS[orientation] == 'Orientation':
42
+ break
43
+
44
+
45
+ def get_hash(files):
46
+ # Returns a single hash value of a list of files
47
+ return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
48
+
49
+
50
+ def exif_size(img):
51
+ # Returns exif-corrected PIL size
52
+ s = img.size # (width, height)
53
+ try:
54
+ rotation = dict(img._getexif().items())[orientation]
55
+ if rotation == 6: # rotation 270
56
+ s = (s[1], s[0])
57
+ elif rotation == 8: # rotation 90
58
+ s = (s[1], s[0])
59
+ except:
60
+ pass
61
+
62
+ return s
63
+
64
+
65
+ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
66
+ rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
67
+ # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
68
+ with torch_distributed_zero_first(rank):
69
+ dataset = LoadImagesAndLabels(path, imgsz, batch_size,
70
+ augment=augment, # augment images
71
+ hyp=hyp, # augmentation hyperparameters
72
+ rect=rect, # rectangular training
73
+ cache_images=cache,
74
+ single_cls=opt.single_cls,
75
+ stride=int(stride),
76
+ pad=pad,
77
+ image_weights=image_weights,
78
+ prefix=prefix)
79
+
80
+ batch_size = min(batch_size, len(dataset))
81
+ nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers]) # number of workers
82
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
83
+ loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
84
+ # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
85
+ dataloader = loader(dataset,
86
+ batch_size=batch_size,
87
+ num_workers=nw,
88
+ sampler=sampler,
89
+ pin_memory=True,
90
+ collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
91
+ return dataloader, dataset
92
+
93
+
94
+ class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
95
+ """ Dataloader that reuses workers
96
+
97
+ Uses same syntax as vanilla DataLoader
98
+ """
99
+
100
+ def __init__(self, *args, **kwargs):
101
+ super().__init__(*args, **kwargs)
102
+ object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
103
+ self.iterator = super().__iter__()
104
+
105
+ def __len__(self):
106
+ return len(self.batch_sampler.sampler)
107
+
108
+ def __iter__(self):
109
+ for i in range(len(self)):
110
+ yield next(self.iterator)
111
+
112
+
113
+ class _RepeatSampler(object):
114
+ """ Sampler that repeats forever
115
+
116
+ Args:
117
+ sampler (Sampler)
118
+ """
119
+
120
+ def __init__(self, sampler):
121
+ self.sampler = sampler
122
+
123
+ def __iter__(self):
124
+ while True:
125
+ yield from iter(self.sampler)
126
+
127
+
128
+ class LoadImages: # for inference
129
+ def __init__(self, path, img_size=640, stride=32):
130
+ p = str(Path(path).absolute()) # os-agnostic absolute path
131
+ if '*' in p:
132
+ files = sorted(glob.glob(p, recursive=True)) # glob
133
+ elif os.path.isdir(p):
134
+ files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
135
+ elif os.path.isfile(p):
136
+ files = [p] # files
137
+ else:
138
+ raise Exception(f'ERROR: {p} does not exist')
139
+
140
+ images = [x for x in files if x.split('.')[-1].lower() in img_formats]
141
+ videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
142
+ ni, nv = len(images), len(videos)
143
+
144
+ self.img_size = img_size
145
+ self.stride = stride
146
+ self.files = images + videos
147
+ self.nf = ni + nv # number of files
148
+ self.video_flag = [False] * ni + [True] * nv
149
+ self.mode = 'image'
150
+ if any(videos):
151
+ self.new_video(videos[0]) # new video
152
+ else:
153
+ self.cap = None
154
+ assert self.nf > 0, f'No images or videos found in {p}. ' \
155
+ f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
156
+
157
+ def __iter__(self):
158
+ self.count = 0
159
+ return self
160
+
161
+ def __next__(self):
162
+ if self.count == self.nf:
163
+ raise StopIteration
164
+ path = self.files[self.count]
165
+
166
+ if self.video_flag[self.count]:
167
+ # Read video
168
+ self.mode = 'video'
169
+ ret_val, img0 = self.cap.read()
170
+ if not ret_val:
171
+ self.count += 1
172
+ self.cap.release()
173
+ if self.count == self.nf: # last video
174
+ raise StopIteration
175
+ else:
176
+ path = self.files[self.count]
177
+ self.new_video(path)
178
+ ret_val, img0 = self.cap.read()
179
+
180
+ self.frame += 1
181
+ print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')
182
+
183
+ else:
184
+ # Read image
185
+ self.count += 1
186
+ img0 = cv2.imread(path) # BGR
187
+ assert img0 is not None, 'Image Not Found ' + path
188
+ #print(f'image {self.count}/{self.nf} {path}: ', end='')
189
+
190
+ # Padded resize
191
+ img = letterbox(img0, self.img_size, stride=self.stride)[0]
192
+
193
+ # Convert
194
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
195
+ img = np.ascontiguousarray(img)
196
+
197
+ return path, img, img0, self.cap
198
+
199
+ def new_video(self, path):
200
+ self.frame = 0
201
+ self.cap = cv2.VideoCapture(path)
202
+ self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
203
+
204
+ def __len__(self):
205
+ return self.nf # number of files
206
+
207
+
208
+ class LoadWebcam: # for inference
209
+ def __init__(self, pipe='0', img_size=640, stride=32):
210
+ self.img_size = img_size
211
+ self.stride = stride
212
+
213
+ if pipe.isnumeric():
214
+ pipe = eval(pipe) # local camera
215
+ # pipe = 'rtsp://192.168.1.64/1' # IP camera
216
+ # pipe = 'rtsp://username:password@192.168.1.64/1' # IP camera with login
217
+ # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
218
+
219
+ self.pipe = pipe
220
+ self.cap = cv2.VideoCapture(pipe) # video capture object
221
+ self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
222
+
223
+ def __iter__(self):
224
+ self.count = -1
225
+ return self
226
+
227
+ def __next__(self):
228
+ self.count += 1
229
+ if cv2.waitKey(1) == ord('q'): # q to quit
230
+ self.cap.release()
231
+ cv2.destroyAllWindows()
232
+ raise StopIteration
233
+
234
+ # Read frame
235
+ if self.pipe == 0: # local camera
236
+ ret_val, img0 = self.cap.read()
237
+ img0 = cv2.flip(img0, 1) # flip left-right
238
+ else: # IP camera
239
+ n = 0
240
+ while True:
241
+ n += 1
242
+ self.cap.grab()
243
+ if n % 30 == 0: # skip frames
244
+ ret_val, img0 = self.cap.retrieve()
245
+ if ret_val:
246
+ break
247
+
248
+ # Print
249
+ assert ret_val, f'Camera Error {self.pipe}'
250
+ img_path = 'webcam.jpg'
251
+ print(f'webcam {self.count}: ', end='')
252
+
253
+ # Padded resize
254
+ img = letterbox(img0, self.img_size, stride=self.stride)[0]
255
+
256
+ # Convert
257
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
258
+ img = np.ascontiguousarray(img)
259
+
260
+ return img_path, img, img0, None
261
+
262
+ def __len__(self):
263
+ return 0
264
+
265
+
266
+ class LoadStreams: # multiple IP or RTSP cameras
267
+ def __init__(self, sources='streams.txt', img_size=640, stride=32):
268
+ self.mode = 'stream'
269
+ self.img_size = img_size
270
+ self.stride = stride
271
+
272
+ if os.path.isfile(sources):
273
+ with open(sources, 'r') as f:
274
+ sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
275
+ else:
276
+ sources = [sources]
277
+
278
+ n = len(sources)
279
+ self.imgs = [None] * n
280
+ self.sources = [clean_str(x) for x in sources] # clean source names for later
281
+ for i, s in enumerate(sources):
282
+ # Start the thread to read frames from the video stream
283
+ print(f'{i + 1}/{n}: {s}... ', end='')
284
+ url = eval(s) if s.isnumeric() else s
285
+ if 'youtube.com/' in url or 'youtu.be/' in url: # if source is YouTube video
286
+ check_requirements(('pafy', 'youtube_dl'))
287
+ import pafy
288
+ url = pafy.new(url).getbest(preftype="mp4").url
289
+ cap = cv2.VideoCapture(url)
290
+ assert cap.isOpened(), f'Failed to open {s}'
291
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
292
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
293
+ self.fps = cap.get(cv2.CAP_PROP_FPS) % 100
294
+
295
+ _, self.imgs[i] = cap.read() # guarantee first frame
296
+ thread = Thread(target=self.update, args=([i, cap]), daemon=True)
297
+ print(f' success ({w}x{h} at {self.fps:.2f} FPS).')
298
+ thread.start()
299
+ print('') # newline
300
+
301
+ # check for common shapes
302
+ s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0) # shapes
303
+ self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
304
+ if not self.rect:
305
+ print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
306
+
307
+ def update(self, index, cap):
308
+ # Read next stream frame in a daemon thread
309
+ n = 0
310
+ while cap.isOpened():
311
+ n += 1
312
+ # _, self.imgs[index] = cap.read()
313
+ cap.grab()
314
+ if n == 4: # read every 4th frame
315
+ success, im = cap.retrieve()
316
+ self.imgs[index] = im if success else self.imgs[index] * 0
317
+ n = 0
318
+ time.sleep(1 / self.fps) # wait time
319
+
320
+ def __iter__(self):
321
+ self.count = -1
322
+ return self
323
+
324
+ def __next__(self):
325
+ self.count += 1
326
+ img0 = self.imgs.copy()
327
+ if cv2.waitKey(1) == ord('q'): # q to quit
328
+ cv2.destroyAllWindows()
329
+ raise StopIteration
330
+
331
+ # Letterbox
332
+ img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
333
+
334
+ # Stack
335
+ img = np.stack(img, 0)
336
+
337
+ # Convert
338
+ img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
339
+ img = np.ascontiguousarray(img)
340
+
341
+ return self.sources, img, img0, None
342
+
343
+ def __len__(self):
344
+ return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
345
+
346
+
347
+ def img2label_paths(img_paths):
348
+ # Define label paths as a function of image paths
349
+ sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings
350
+ return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
351
+
352
+
353
+ class LoadImagesAndLabels(Dataset): # for training/testing
354
+ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
355
+ cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
356
+ self.img_size = img_size
357
+ self.augment = augment
358
+ self.hyp = hyp
359
+ self.image_weights = image_weights
360
+ self.rect = False if image_weights else rect
361
+ self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
362
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
363
+ self.stride = stride
364
+ self.path = path
365
+ #self.albumentations = Albumentations() if augment else None
366
+
367
+ try:
368
+ f = [] # image files
369
+ for p in path if isinstance(path, list) else [path]:
370
+ p = Path(p) # os-agnostic
371
+ if p.is_dir(): # dir
372
+ f += glob.glob(str(p / '**' / '*.*'), recursive=True)
373
+ # f = list(p.rglob('**/*.*')) # pathlib
374
+ elif p.is_file(): # file
375
+ with open(p, 'r') as t:
376
+ t = t.read().strip().splitlines()
377
+ parent = str(p.parent) + os.sep
378
+ f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
379
+ # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib)
380
+ else:
381
+ raise Exception(f'{prefix}{p} does not exist')
382
+ self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
383
+ # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib
384
+ assert self.img_files, f'{prefix}No images found'
385
+ except Exception as e:
386
+ raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
387
+
388
+ # Check cache
389
+ self.label_files = img2label_paths(self.img_files) # labels
390
+ cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') # cached labels
391
+ if cache_path.is_file():
392
+ cache, exists = torch.load(cache_path), True # load
393
+ #if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache: # changed
394
+ # cache, exists = self.cache_labels(cache_path, prefix), False # re-cache
395
+ else:
396
+ cache, exists = self.cache_labels(cache_path, prefix), False # cache
397
+
398
+ # Display cache
399
+ nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupted, total
400
+ if exists:
401
+ d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
402
+ tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results
403
+ assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
404
+
405
+ # Read cache
406
+ cache.pop('hash') # remove hash
407
+ cache.pop('version') # remove version
408
+ labels, shapes, self.segments = zip(*cache.values())
409
+ self.labels = list(labels)
410
+ self.shapes = np.array(shapes, dtype=np.float64)
411
+ self.img_files = list(cache.keys()) # update
412
+ self.label_files = img2label_paths(cache.keys()) # update
413
+ if single_cls:
414
+ for x in self.labels:
415
+ x[:, 0] = 0
416
+
417
+ n = len(shapes) # number of images
418
+ bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
419
+ nb = bi[-1] + 1 # number of batches
420
+ self.batch = bi # batch index of image
421
+ self.n = n
422
+ self.indices = range(n)
423
+
424
+ # Rectangular Training
425
+ if self.rect:
426
+ # Sort by aspect ratio
427
+ s = self.shapes # wh
428
+ ar = s[:, 1] / s[:, 0] # aspect ratio
429
+ irect = ar.argsort()
430
+ self.img_files = [self.img_files[i] for i in irect]
431
+ self.label_files = [self.label_files[i] for i in irect]
432
+ self.labels = [self.labels[i] for i in irect]
433
+ self.shapes = s[irect] # wh
434
+ ar = ar[irect]
435
+
436
+ # Set training image shapes
437
+ shapes = [[1, 1]] * nb
438
+ for i in range(nb):
439
+ ari = ar[bi == i]
440
+ mini, maxi = ari.min(), ari.max()
441
+ if maxi < 1:
442
+ shapes[i] = [maxi, 1]
443
+ elif mini > 1:
444
+ shapes[i] = [1, 1 / mini]
445
+
446
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
447
+
448
+ # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
449
+ self.imgs = [None] * n
450
+ if cache_images:
451
+ if cache_images == 'disk':
452
+ self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
453
+ self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
454
+ self.im_cache_dir.mkdir(parents=True, exist_ok=True)
455
+ gb = 0 # Gigabytes of cached images
456
+ self.img_hw0, self.img_hw = [None] * n, [None] * n
457
+ results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
458
+ pbar = tqdm(enumerate(results), total=n)
459
+ for i, x in pbar:
460
+ if cache_images == 'disk':
461
+ if not self.img_npy[i].exists():
462
+ np.save(self.img_npy[i].as_posix(), x[0])
463
+ gb += self.img_npy[i].stat().st_size
464
+ else:
465
+ self.imgs[i], self.img_hw0[i], self.img_hw[i] = x
466
+ gb += self.imgs[i].nbytes
467
+ pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
468
+ pbar.close()
469
+
470
+ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
471
+ # Cache dataset labels, check images and read shapes
472
+ x = {} # dict
473
+ nm, nf, ne, nc = 0, 0, 0, 0 # number missing, found, empty, duplicate
474
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
475
+ for i, (im_file, lb_file) in enumerate(pbar):
476
+ try:
477
+ # verify images
478
+ im = Image.open(im_file)
479
+ im.verify() # PIL verify
480
+ shape = exif_size(im) # image size
481
+ segments = [] # instance segments
482
+ assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
483
+ assert im.format.lower() in img_formats, f'invalid image format {im.format}'
484
+
485
+ # verify labels
486
+ if os.path.isfile(lb_file):
487
+ nf += 1 # label found
488
+ with open(lb_file, 'r') as f:
489
+ l = [x.split() for x in f.read().strip().splitlines()]
490
+ if any([len(x) > 8 for x in l]): # is segment
491
+ classes = np.array([x[0] for x in l], dtype=np.float32)
492
+ segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l] # (cls, xy1...)
493
+ l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
494
+ l = np.array(l, dtype=np.float32)
495
+ if len(l):
496
+ assert l.shape[1] == 5, 'labels require 5 columns each'
497
+ assert (l >= 0).all(), 'negative labels'
498
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
499
+ assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
500
+ else:
501
+ ne += 1 # label empty
502
+ l = np.zeros((0, 5), dtype=np.float32)
503
+ else:
504
+ nm += 1 # label missing
505
+ l = np.zeros((0, 5), dtype=np.float32)
506
+ x[im_file] = [l, shape, segments]
507
+ except Exception as e:
508
+ nc += 1
509
+ print(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
510
+
511
+ pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
512
+ f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
513
+ pbar.close()
514
+
515
+ if nf == 0:
516
+ print(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
517
+
518
+ x['hash'] = get_hash(self.label_files + self.img_files)
519
+ x['results'] = nf, nm, ne, nc, i + 1
520
+ x['version'] = 0.1 # cache version
521
+ torch.save(x, path) # save for next time
522
+ logging.info(f'{prefix}New cache created: {path}')
523
+ return x
524
+
525
+ def __len__(self):
526
+ return len(self.img_files)
527
+
528
+ # def __iter__(self):
529
+ # self.count = -1
530
+ # print('ran dataset iter')
531
+ # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
532
+ # return self
533
+
534
+ def __getitem__(self, index):
535
+ index = self.indices[index] # linear, shuffled, or image_weights
536
+
537
+ hyp = self.hyp
538
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
539
+ if mosaic:
540
+ # Load mosaic
541
+ if random.random() < 0.8:
542
+ img, labels = load_mosaic(self, index)
543
+ else:
544
+ img, labels = load_mosaic9(self, index)
545
+ shapes = None
546
+
547
+ # MixUp https://arxiv.org/pdf/1710.09412.pdf
548
+ if random.random() < hyp['mixup']:
549
+ if random.random() < 0.8:
550
+ img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
551
+ else:
552
+ img2, labels2 = load_mosaic9(self, random.randint(0, len(self.labels) - 1))
553
+ r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
554
+ img = (img * r + img2 * (1 - r)).astype(np.uint8)
555
+ labels = np.concatenate((labels, labels2), 0)
556
+
557
+ else:
558
+ # Load image
559
+ img, (h0, w0), (h, w) = load_image(self, index)
560
+
561
+ # Letterbox
562
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
563
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
564
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
565
+
566
+ labels = self.labels[index].copy()
567
+ if labels.size: # normalized xywh to pixel xyxy format
568
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
569
+
570
+ if self.augment:
571
+ # Augment imagespace
572
+ if not mosaic:
573
+ img, labels = random_perspective(img, labels,
574
+ degrees=hyp['degrees'],
575
+ translate=hyp['translate'],
576
+ scale=hyp['scale'],
577
+ shear=hyp['shear'],
578
+ perspective=hyp['perspective'])
579
+
580
+
581
+ #img, labels = self.albumentations(img, labels)
582
+
583
+ # Augment colorspace
584
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
585
+
586
+ # Apply cutouts
587
+ # if random.random() < 0.9:
588
+ # labels = cutout(img, labels)
589
+
590
+ if random.random() < hyp['paste_in']:
591
+ sample_labels, sample_images, sample_masks = [], [], []
592
+ while len(sample_labels) < 30:
593
+ sample_labels_, sample_images_, sample_masks_ = load_samples(self, random.randint(0, len(self.labels) - 1))
594
+ sample_labels += sample_labels_
595
+ sample_images += sample_images_
596
+ sample_masks += sample_masks_
597
+ #print(len(sample_labels))
598
+ if len(sample_labels) == 0:
599
+ break
600
+ labels = pastein(img, labels, sample_labels, sample_images, sample_masks)
601
+
602
+ nL = len(labels) # number of labels
603
+ if nL:
604
+ labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
605
+ labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
606
+ labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
607
+
608
+ if self.augment:
609
+ # flip up-down
610
+ if random.random() < hyp['flipud']:
611
+ img = np.flipud(img)
612
+ if nL:
613
+ labels[:, 2] = 1 - labels[:, 2]
614
+
615
+ # flip left-right
616
+ if random.random() < hyp['fliplr']:
617
+ img = np.fliplr(img)
618
+ if nL:
619
+ labels[:, 1] = 1 - labels[:, 1]
620
+
621
+ labels_out = torch.zeros((nL, 6))
622
+ if nL:
623
+ labels_out[:, 1:] = torch.from_numpy(labels)
624
+
625
+ # Convert
626
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
627
+ img = np.ascontiguousarray(img)
628
+
629
+ return torch.from_numpy(img), labels_out, self.img_files[index], shapes
630
+
631
+ @staticmethod
632
+ def collate_fn(batch):
633
+ img, label, path, shapes = zip(*batch) # transposed
634
+ for i, l in enumerate(label):
635
+ l[:, 0] = i # add target image index for build_targets()
636
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
637
+
638
+ @staticmethod
639
+ def collate_fn4(batch):
640
+ img, label, path, shapes = zip(*batch) # transposed
641
+ n = len(shapes) // 4
642
+ img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
643
+
644
+ ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
645
+ wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
646
+ s = torch.tensor([[1, 1, .5, .5, .5, .5]]) # scale
647
+ for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
648
+ i *= 4
649
+ if random.random() < 0.5:
650
+ im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
651
+ 0].type(img[i].type())
652
+ l = label[i]
653
+ else:
654
+ im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
655
+ l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
656
+ img4.append(im)
657
+ label4.append(l)
658
+
659
+ for i, l in enumerate(label4):
660
+ l[:, 0] = i # add target image index for build_targets()
661
+
662
+ return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
663
+
664
+
665
+ # Ancillary functions --------------------------------------------------------------------------------------------------
666
+ def load_image(self, index):
667
+ # loads 1 image from dataset, returns img, original hw, resized hw
668
+ img = self.imgs[index]
669
+ if img is None: # not cached
670
+ path = self.img_files[index]
671
+ img = cv2.imread(path) # BGR
672
+ assert img is not None, 'Image Not Found ' + path
673
+ h0, w0 = img.shape[:2] # orig hw
674
+ r = self.img_size / max(h0, w0) # resize image to img_size
675
+ if r != 1: # always resize down, only resize up if training with augmentation
676
+ interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
677
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
678
+ return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
679
+ else:
680
+ return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
681
+
682
+
683
+ def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
684
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
685
+ hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
686
+ dtype = img.dtype # uint8
687
+
688
+ x = np.arange(0, 256, dtype=np.int16)
689
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
690
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
691
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
692
+
693
+ img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
694
+ cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
695
+
696
+
697
+ def hist_equalize(img, clahe=True, bgr=False):
698
+ # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255
699
+ yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
700
+ if clahe:
701
+ c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
702
+ yuv[:, :, 0] = c.apply(yuv[:, :, 0])
703
+ else:
704
+ yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
705
+ return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
706
+
707
+
708
+ def load_mosaic(self, index):
709
+ # loads images in a 4-mosaic
710
+
711
+ labels4, segments4 = [], []
712
+ s = self.img_size
713
+ yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
714
+ indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
715
+ for i, index in enumerate(indices):
716
+ # Load image
717
+ img, _, (h, w) = load_image(self, index)
718
+
719
+ # place img in img4
720
+ if i == 0: # top left
721
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
722
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
723
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
724
+ elif i == 1: # top right
725
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
726
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
727
+ elif i == 2: # bottom left
728
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
729
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
730
+ elif i == 3: # bottom right
731
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
732
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
733
+
734
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
735
+ padw = x1a - x1b
736
+ padh = y1a - y1b
737
+
738
+ # Labels
739
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
740
+ if labels.size:
741
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
742
+ segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
743
+ labels4.append(labels)
744
+ segments4.extend(segments)
745
+
746
+ # Concat/clip labels
747
+ labels4 = np.concatenate(labels4, 0)
748
+ for x in (labels4[:, 1:], *segments4):
749
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
750
+ # img4, labels4 = replicate(img4, labels4) # replicate
751
+
752
+ # Augment
753
+ #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
754
+ #sample_segments(img4, labels4, segments4, probability=self.hyp['copy_paste'])
755
+ img4, labels4, segments4 = copy_paste(img4, labels4, segments4, probability=self.hyp['copy_paste'])
756
+ img4, labels4 = random_perspective(img4, labels4, segments4,
757
+ degrees=self.hyp['degrees'],
758
+ translate=self.hyp['translate'],
759
+ scale=self.hyp['scale'],
760
+ shear=self.hyp['shear'],
761
+ perspective=self.hyp['perspective'],
762
+ border=self.mosaic_border) # border to remove
763
+
764
+ return img4, labels4
765
+
766
+
767
+ def load_mosaic9(self, index):
768
+ # loads images in a 9-mosaic
769
+
770
+ labels9, segments9 = [], []
771
+ s = self.img_size
772
+ indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
773
+ for i, index in enumerate(indices):
774
+ # Load image
775
+ img, _, (h, w) = load_image(self, index)
776
+
777
+ # place img in img9
778
+ if i == 0: # center
779
+ img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
780
+ h0, w0 = h, w
781
+ c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
782
+ elif i == 1: # top
783
+ c = s, s - h, s + w, s
784
+ elif i == 2: # top right
785
+ c = s + wp, s - h, s + wp + w, s
786
+ elif i == 3: # right
787
+ c = s + w0, s, s + w0 + w, s + h
788
+ elif i == 4: # bottom right
789
+ c = s + w0, s + hp, s + w0 + w, s + hp + h
790
+ elif i == 5: # bottom
791
+ c = s + w0 - w, s + h0, s + w0, s + h0 + h
792
+ elif i == 6: # bottom left
793
+ c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
794
+ elif i == 7: # left
795
+ c = s - w, s + h0 - h, s, s + h0
796
+ elif i == 8: # top left
797
+ c = s - w, s + h0 - hp - h, s, s + h0 - hp
798
+
799
+ padx, pady = c[:2]
800
+ x1, y1, x2, y2 = [max(x, 0) for x in c] # allocate coords
801
+
802
+ # Labels
803
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
804
+ if labels.size:
805
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
806
+ segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
807
+ labels9.append(labels)
808
+ segments9.extend(segments)
809
+
810
+ # Image
811
+ img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
812
+ hp, wp = h, w # height, width previous
813
+
814
+ # Offset
815
+ yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border] # mosaic center x, y
816
+ img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
817
+
818
+ # Concat/clip labels
819
+ labels9 = np.concatenate(labels9, 0)
820
+ labels9[:, [1, 3]] -= xc
821
+ labels9[:, [2, 4]] -= yc
822
+ c = np.array([xc, yc]) # centers
823
+ segments9 = [x - c for x in segments9]
824
+
825
+ for x in (labels9[:, 1:], *segments9):
826
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
827
+ # img9, labels9 = replicate(img9, labels9) # replicate
828
+
829
+ # Augment
830
+ #img9, labels9, segments9 = remove_background(img9, labels9, segments9)
831
+ img9, labels9, segments9 = copy_paste(img9, labels9, segments9, probability=self.hyp['copy_paste'])
832
+ img9, labels9 = random_perspective(img9, labels9, segments9,
833
+ degrees=self.hyp['degrees'],
834
+ translate=self.hyp['translate'],
835
+ scale=self.hyp['scale'],
836
+ shear=self.hyp['shear'],
837
+ perspective=self.hyp['perspective'],
838
+ border=self.mosaic_border) # border to remove
839
+
840
+ return img9, labels9
841
+
842
+
843
+ def load_samples(self, index):
844
+ # loads images in a 4-mosaic
845
+
846
+ labels4, segments4 = [], []
847
+ s = self.img_size
848
+ yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border] # mosaic center x, y
849
+ indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
850
+ for i, index in enumerate(indices):
851
+ # Load image
852
+ img, _, (h, w) = load_image(self, index)
853
+
854
+ # place img in img4
855
+ if i == 0: # top left
856
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
857
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
858
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
859
+ elif i == 1: # top right
860
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
861
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
862
+ elif i == 2: # bottom left
863
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
864
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
865
+ elif i == 3: # bottom right
866
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
867
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
868
+
869
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
870
+ padw = x1a - x1b
871
+ padh = y1a - y1b
872
+
873
+ # Labels
874
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
875
+ if labels.size:
876
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
877
+ segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
878
+ labels4.append(labels)
879
+ segments4.extend(segments)
880
+
881
+ # Concat/clip labels
882
+ labels4 = np.concatenate(labels4, 0)
883
+ for x in (labels4[:, 1:], *segments4):
884
+ np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
885
+ # img4, labels4 = replicate(img4, labels4) # replicate
886
+
887
+ # Augment
888
+ #img4, labels4, segments4 = remove_background(img4, labels4, segments4)
889
+ sample_labels, sample_images, sample_masks = sample_segments(img4, labels4, segments4, probability=0.5)
890
+
891
+ return sample_labels, sample_images, sample_masks
892
+
893
+
894
+ def copy_paste(img, labels, segments, probability=0.5):
895
+ # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
896
+ n = len(segments)
897
+ if probability and n:
898
+ h, w, c = img.shape # height, width, channels
899
+ im_new = np.zeros(img.shape, np.uint8)
900
+ for j in random.sample(range(n), k=round(probability * n)):
901
+ l, s = labels[j], segments[j]
902
+ box = w - l[3], l[2], w - l[1], l[4]
903
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
904
+ if (ioa < 0.30).all(): # allow 30% obscuration of existing labels
905
+ labels = np.concatenate((labels, [[l[0], *box]]), 0)
906
+ segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
907
+ cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
908
+
909
+ result = cv2.bitwise_and(src1=img, src2=im_new)
910
+ result = cv2.flip(result, 1) # augment segments (flip left-right)
911
+ i = result > 0 # pixels to replace
912
+ # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch
913
+ img[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
914
+
915
+ return img, labels, segments
916
+
917
+
918
+ def remove_background(img, labels, segments):
919
+ # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
920
+ n = len(segments)
921
+ h, w, c = img.shape # height, width, channels
922
+ im_new = np.zeros(img.shape, np.uint8)
923
+ img_new = np.ones(img.shape, np.uint8) * 114
924
+ for j in range(n):
925
+ cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
926
+
927
+ result = cv2.bitwise_and(src1=img, src2=im_new)
928
+
929
+ i = result > 0 # pixels to replace
930
+ img_new[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
931
+
932
+ return img_new, labels, segments
933
+
934
+
935
+ def sample_segments(img, labels, segments, probability=0.5):
936
+ # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
937
+ n = len(segments)
938
+ sample_labels = []
939
+ sample_images = []
940
+ sample_masks = []
941
+ if probability and n:
942
+ h, w, c = img.shape # height, width, channels
943
+ for j in random.sample(range(n), k=round(probability * n)):
944
+ l, s = labels[j], segments[j]
945
+ box = l[1].astype(int).clip(0,w-1), l[2].astype(int).clip(0,h-1), l[3].astype(int).clip(0,w-1), l[4].astype(int).clip(0,h-1)
946
+
947
+ #print(box)
948
+ if (box[2] <= box[0]) or (box[3] <= box[1]):
949
+ continue
950
+
951
+ sample_labels.append(l[0])
952
+
953
+ mask = np.zeros(img.shape, np.uint8)
954
+
955
+ cv2.drawContours(mask, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
956
+ sample_masks.append(mask[box[1]:box[3],box[0]:box[2],:])
957
+
958
+ result = cv2.bitwise_and(src1=img, src2=mask)
959
+ i = result > 0 # pixels to replace
960
+ mask[i] = result[i] # cv2.imwrite('debug.jpg', img) # debug
961
+ #print(box)
962
+ sample_images.append(mask[box[1]:box[3],box[0]:box[2],:])
963
+
964
+ return sample_labels, sample_images, sample_masks
965
+
966
+
967
+ def replicate(img, labels):
968
+ # Replicate labels
969
+ h, w = img.shape[:2]
970
+ boxes = labels[:, 1:].astype(int)
971
+ x1, y1, x2, y2 = boxes.T
972
+ s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
973
+ for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
974
+ x1b, y1b, x2b, y2b = boxes[i]
975
+ bh, bw = y2b - y1b, x2b - x1b
976
+ yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
977
+ x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
978
+ img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
979
+ labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
980
+
981
+ return img, labels
982
+
983
+
984
+ def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
985
+ # Resize and pad image while meeting stride-multiple constraints
986
+ shape = img.shape[:2] # current shape [height, width]
987
+ if isinstance(new_shape, int):
988
+ new_shape = (new_shape, new_shape)
989
+
990
+ # Scale ratio (new / old)
991
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
992
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
993
+ r = min(r, 1.0)
994
+
995
+ # Compute padding
996
+ ratio = r, r # width, height ratios
997
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
998
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
999
+ if auto: # minimum rectangle
1000
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
1001
+ elif scaleFill: # stretch
1002
+ dw, dh = 0.0, 0.0
1003
+ new_unpad = (new_shape[1], new_shape[0])
1004
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
1005
+
1006
+ dw /= 2 # divide padding into 2 sides
1007
+ dh /= 2
1008
+
1009
+ if shape[::-1] != new_unpad: # resize
1010
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
1011
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
1012
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
1013
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
1014
+ return img, ratio, (dw, dh)
1015
+
1016
+
1017
+ def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
1018
+ border=(0, 0)):
1019
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
1020
+ # targets = [cls, xyxy]
1021
+
1022
+ height = img.shape[0] + border[0] * 2 # shape(h,w,c)
1023
+ width = img.shape[1] + border[1] * 2
1024
+
1025
+ # Center
1026
+ C = np.eye(3)
1027
+ C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
1028
+ C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
1029
+
1030
+ # Perspective
1031
+ P = np.eye(3)
1032
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
1033
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
1034
+
1035
+ # Rotation and Scale
1036
+ R = np.eye(3)
1037
+ a = random.uniform(-degrees, degrees)
1038
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
1039
+ s = random.uniform(1 - scale, 1.1 + scale)
1040
+ # s = 2 ** random.uniform(-scale, scale)
1041
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
1042
+
1043
+ # Shear
1044
+ S = np.eye(3)
1045
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
1046
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
1047
+
1048
+ # Translation
1049
+ T = np.eye(3)
1050
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
1051
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
1052
+
1053
+ # Combined rotation matrix
1054
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
1055
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
1056
+ if perspective:
1057
+ img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
1058
+ else: # affine
1059
+ img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
1060
+
1061
+ # Visualize
1062
+ # import matplotlib.pyplot as plt
1063
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
1064
+ # ax[0].imshow(img[:, :, ::-1]) # base
1065
+ # ax[1].imshow(img2[:, :, ::-1]) # warped
1066
+
1067
+ # Transform label coordinates
1068
+ n = len(targets)
1069
+ if n:
1070
+ use_segments = any(x.any() for x in segments)
1071
+ new = np.zeros((n, 4))
1072
+ if use_segments: # warp segments
1073
+ segments = resample_segments(segments) # upsample
1074
+ for i, segment in enumerate(segments):
1075
+ xy = np.ones((len(segment), 3))
1076
+ xy[:, :2] = segment
1077
+ xy = xy @ M.T # transform
1078
+ xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
1079
+
1080
+ # clip
1081
+ new[i] = segment2box(xy, width, height)
1082
+
1083
+ else: # warp boxes
1084
+ xy = np.ones((n * 4, 3))
1085
+ xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
1086
+ xy = xy @ M.T # transform
1087
+ xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
1088
+
1089
+ # create new boxes
1090
+ x = xy[:, [0, 2, 4, 6]]
1091
+ y = xy[:, [1, 3, 5, 7]]
1092
+ new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
1093
+
1094
+ # clip
1095
+ new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
1096
+ new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
1097
+
1098
+ # filter candidates
1099
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
1100
+ targets = targets[i]
1101
+ targets[:, 1:5] = new[i]
1102
+
1103
+ return img, targets
1104
+
1105
+
1106
+ def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
1107
+ # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
1108
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
1109
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
1110
+ ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
1111
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
1112
+
1113
+
1114
+ def bbox_ioa(box1, box2):
1115
+ # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
1116
+ box2 = box2.transpose()
1117
+
1118
+ # Get the coordinates of bounding boxes
1119
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
1120
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
1121
+
1122
+ # Intersection area
1123
+ inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
1124
+ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
1125
+
1126
+ # box2 area
1127
+ box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
1128
+
1129
+ # Intersection over box2 area
1130
+ return inter_area / box2_area
1131
+
1132
+
1133
+ def cutout(image, labels):
1134
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
1135
+ h, w = image.shape[:2]
1136
+
1137
+ # create random masks
1138
+ scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
1139
+ for s in scales:
1140
+ mask_h = random.randint(1, int(h * s))
1141
+ mask_w = random.randint(1, int(w * s))
1142
+
1143
+ # box
1144
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
1145
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
1146
+ xmax = min(w, xmin + mask_w)
1147
+ ymax = min(h, ymin + mask_h)
1148
+
1149
+ # apply random color mask
1150
+ image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
1151
+
1152
+ # return unobscured labels
1153
+ if len(labels) and s > 0.03:
1154
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
1155
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
1156
+ labels = labels[ioa < 0.60] # remove >60% obscured labels
1157
+
1158
+ return labels
1159
+
1160
+
1161
+ def pastein(image, labels, sample_labels, sample_images, sample_masks):
1162
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
1163
+ h, w = image.shape[:2]
1164
+
1165
+ # create random masks
1166
+ scales = [0.75] * 2 + [0.5] * 4 + [0.25] * 4 + [0.125] * 4 + [0.0625] * 6 # image size fraction
1167
+ for s in scales:
1168
+ if random.random() < 0.2:
1169
+ continue
1170
+ mask_h = random.randint(1, int(h * s))
1171
+ mask_w = random.randint(1, int(w * s))
1172
+
1173
+ # box
1174
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
1175
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
1176
+ xmax = min(w, xmin + mask_w)
1177
+ ymax = min(h, ymin + mask_h)
1178
+
1179
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
1180
+ if len(labels):
1181
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
1182
+ else:
1183
+ ioa = np.zeros(1)
1184
+
1185
+ if (ioa < 0.30).all() and len(sample_labels) and (xmax > xmin+20) and (ymax > ymin+20): # allow 30% obscuration of existing labels
1186
+ sel_ind = random.randint(0, len(sample_labels)-1)
1187
+ #print(len(sample_labels))
1188
+ #print(sel_ind)
1189
+ #print((xmax-xmin, ymax-ymin))
1190
+ #print(image[ymin:ymax, xmin:xmax].shape)
1191
+ #print([[sample_labels[sel_ind], *box]])
1192
+ #print(labels.shape)
1193
+ hs, ws, cs = sample_images[sel_ind].shape
1194
+ r_scale = min((ymax-ymin)/hs, (xmax-xmin)/ws)
1195
+ r_w = int(ws*r_scale)
1196
+ r_h = int(hs*r_scale)
1197
+
1198
+ if (r_w > 10) and (r_h > 10):
1199
+ r_mask = cv2.resize(sample_masks[sel_ind], (r_w, r_h))
1200
+ r_image = cv2.resize(sample_images[sel_ind], (r_w, r_h))
1201
+ temp_crop = image[ymin:ymin+r_h, xmin:xmin+r_w]
1202
+ m_ind = r_mask > 0
1203
+ if m_ind.astype(np.int).sum() > 60:
1204
+ temp_crop[m_ind] = r_image[m_ind]
1205
+ #print(sample_labels[sel_ind])
1206
+ #print(sample_images[sel_ind].shape)
1207
+ #print(temp_crop.shape)
1208
+ box = np.array([xmin, ymin, xmin+r_w, ymin+r_h], dtype=np.float32)
1209
+ if len(labels):
1210
+ labels = np.concatenate((labels, [[sample_labels[sel_ind], *box]]), 0)
1211
+ else:
1212
+ labels = np.array([[sample_labels[sel_ind], *box]])
1213
+
1214
+ image[ymin:ymin+r_h, xmin:xmin+r_w] = temp_crop
1215
+
1216
+ return labels
1217
+
1218
+ class Albumentations:
1219
+ # YOLOv5 Albumentations class (optional, only used if package is installed)
1220
+ def __init__(self):
1221
+ self.transform = None
1222
+ import albumentations as A
1223
+
1224
+ self.transform = A.Compose([
1225
+ A.CLAHE(p=0.01),
1226
+ A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.01),
1227
+ A.RandomGamma(gamma_limit=[80, 120], p=0.01),
1228
+ A.Blur(p=0.01),
1229
+ A.MedianBlur(p=0.01),
1230
+ A.ToGray(p=0.01),
1231
+ A.ImageCompression(quality_lower=75, p=0.01),],
1232
+ bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']))
1233
+
1234
+ #logging.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
1235
+
1236
+ def __call__(self, im, labels, p=1.0):
1237
+ if self.transform and random.random() < p:
1238
+ new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
1239
+ im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
1240
+ return im, labels
1241
+
1242
+
1243
+ def create_folder(path='./new'):
1244
+ # Create folder
1245
+ if os.path.exists(path):
1246
+ shutil.rmtree(path) # delete output folder
1247
+ os.makedirs(path) # make new output folder
1248
+
1249
+
1250
+ def flatten_recursive(path='../coco'):
1251
+ # Flatten a recursive directory by bringing all files to top level
1252
+ new_path = Path(path + '_flat')
1253
+ create_folder(new_path)
1254
+ for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
1255
+ shutil.copyfile(file, new_path / Path(file).name)
1256
+
1257
+
1258
+ def extract_boxes(path='../coco/'): # from utils.datasets import *; extract_boxes('../coco128')
1259
+ # Convert detection dataset into classification dataset, with one directory per class
1260
+
1261
+ path = Path(path) # images dir
1262
+ shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing
1263
+ files = list(path.rglob('*.*'))
1264
+ n = len(files) # number of files
1265
+ for im_file in tqdm(files, total=n):
1266
+ if im_file.suffix[1:] in img_formats:
1267
+ # image
1268
+ im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
1269
+ h, w = im.shape[:2]
1270
+
1271
+ # labels
1272
+ lb_file = Path(img2label_paths([str(im_file)])[0])
1273
+ if Path(lb_file).exists():
1274
+ with open(lb_file, 'r') as f:
1275
+ lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
1276
+
1277
+ for j, x in enumerate(lb):
1278
+ c = int(x[0]) # class
1279
+ f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
1280
+ if not f.parent.is_dir():
1281
+ f.parent.mkdir(parents=True)
1282
+
1283
+ b = x[1:] * [w, h, w, h] # box
1284
+ # b[2:] = b[2:].max() # rectangle to square
1285
+ b[2:] = b[2:] * 1.2 + 3 # pad
1286
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
1287
+
1288
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
1289
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
1290
+ assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
1291
+
1292
+
1293
+ def autosplit(path='../coco', weights=(0.9, 0.1, 0.0), annotated_only=False):
1294
+ """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
1295
+ Usage: from utils.datasets import *; autosplit('../coco')
1296
+ Arguments
1297
+ path: Path to images directory
1298
+ weights: Train, val, test weights (list)
1299
+ annotated_only: Only use images with an annotated txt file
1300
+ """
1301
+ path = Path(path) # images dir
1302
+ files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only
1303
+ n = len(files) # number of files
1304
+ indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
1305
+
1306
+ txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
1307
+ [(path / x).unlink() for x in txt if (path / x).exists()] # remove existing
1308
+
1309
+ print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
1310
+ for i, img in tqdm(zip(indices, files), total=n):
1311
+ if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
1312
+ with open(path / txt[i], 'a') as f:
1313
+ f.write(str(img) + '\n') # add image to txt file
1314
+
1315
+
1316
+ def load_segmentations(self, index):
1317
+ key = '/work/handsomejw66/coco17/' + self.img_files[index]
1318
+ #print(key)
1319
+ # /work/handsomejw66/coco17/
1320
+ return self.segs[key]
utils/general.py ADDED
@@ -0,0 +1,790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # YOLOR general utils
2
+
3
+ import glob
4
+ import logging
5
+ import math
6
+ import os
7
+ import platform
8
+ import random
9
+ import re
10
+ import subprocess
11
+ import time
12
+ from pathlib import Path
13
+
14
+ import cv2
15
+ import numpy as np
16
+ import pandas as pd
17
+ import torch
18
+ import torchvision
19
+ import yaml
20
+
21
+ from utils.google_utils import gsutil_getsize
22
+ from utils.metrics import fitness
23
+ from utils.torch_utils import init_torch_seeds
24
+
25
+ # Settings
26
+ torch.set_printoptions(linewidth=320, precision=5, profile='long')
27
+ np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
28
+ pd.options.display.max_columns = 10
29
+ cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
30
+ os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
31
+
32
+
33
+ def set_logging(rank=-1):
34
+ logging.basicConfig(
35
+ format="%(message)s",
36
+ level=logging.INFO if rank in [-1, 0] else logging.WARN)
37
+
38
+
39
+ def init_seeds(seed=0):
40
+ # Initialize random number generator (RNG) seeds
41
+ random.seed(seed)
42
+ np.random.seed(seed)
43
+ init_torch_seeds(seed)
44
+
45
+
46
+ def get_latest_run(search_dir='.'):
47
+ # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
48
+ last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
49
+ return max(last_list, key=os.path.getctime) if last_list else ''
50
+
51
+
52
+ def isdocker():
53
+ # Is environment a Docker container
54
+ return Path('/workspace').exists() # or Path('/.dockerenv').exists()
55
+
56
+
57
+ def emojis(str=''):
58
+ # Return platform-dependent emoji-safe version of string
59
+ return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
60
+
61
+
62
+ def check_online():
63
+ # Check internet connectivity
64
+ import socket
65
+ try:
66
+ socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
67
+ return True
68
+ except OSError:
69
+ return False
70
+
71
+
72
+ def check_git_status():
73
+ # Recommend 'git pull' if code is out of date
74
+ print(colorstr('github: '), end='')
75
+ try:
76
+ assert Path('.git').exists(), 'skipping check (not a git repository)'
77
+ assert not isdocker(), 'skipping check (Docker image)'
78
+ assert check_online(), 'skipping check (offline)'
79
+
80
+ cmd = 'git fetch && git config --get remote.origin.url'
81
+ url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
82
+ branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
83
+ n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
84
+ if n > 0:
85
+ s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
86
+ f"Use 'git pull' to update or 'git clone {url}' to download latest."
87
+ else:
88
+ s = f'up to date with {url} βœ…'
89
+ print(emojis(s)) # emoji-safe
90
+ except Exception as e:
91
+ print(e)
92
+
93
+
94
+ def check_requirements(requirements='requirements.txt', exclude=()):
95
+ # Check installed dependencies meet requirements (pass *.txt file or list of packages)
96
+ import pkg_resources as pkg
97
+ prefix = colorstr('red', 'bold', 'requirements:')
98
+ if isinstance(requirements, (str, Path)): # requirements.txt file
99
+ file = Path(requirements)
100
+ if not file.exists():
101
+ print(f"{prefix} {file.resolve()} not found, check failed.")
102
+ return
103
+ requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
104
+ else: # list or tuple of packages
105
+ requirements = [x for x in requirements if x not in exclude]
106
+
107
+ n = 0 # number of packages updates
108
+ for r in requirements:
109
+ try:
110
+ pkg.require(r)
111
+ except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
112
+ n += 1
113
+ print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
114
+ print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
115
+
116
+ if n: # if packages updated
117
+ source = file.resolve() if 'file' in locals() else requirements
118
+ s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
119
+ f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
120
+ print(emojis(s)) # emoji-safe
121
+
122
+
123
+ def check_img_size(img_size, s=32):
124
+ # Verify img_size is a multiple of stride s
125
+ new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
126
+ if new_size != img_size:
127
+ print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
128
+ return new_size
129
+
130
+
131
+ def check_imshow():
132
+ # Check if environment supports image displays
133
+ try:
134
+ assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
135
+ cv2.imshow('test', np.zeros((1, 1, 3)))
136
+ cv2.waitKey(1)
137
+ cv2.destroyAllWindows()
138
+ cv2.waitKey(1)
139
+ return True
140
+ except Exception as e:
141
+ print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
142
+ return False
143
+
144
+
145
+ def check_file(file):
146
+ # Search for file if not found
147
+ if Path(file).is_file() or file == '':
148
+ return file
149
+ else:
150
+ files = glob.glob('./**/' + file, recursive=True) # find file
151
+ assert len(files), f'File Not Found: {file}' # assert file was found
152
+ assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
153
+ return files[0] # return file
154
+
155
+
156
+ def check_dataset(dict):
157
+ # Download dataset if not found locally
158
+ val, s = dict.get('val'), dict.get('download')
159
+ if val and len(val):
160
+ val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
161
+ if not all(x.exists() for x in val):
162
+ print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
163
+ if s and len(s): # download script
164
+ print('Downloading %s ...' % s)
165
+ if s.startswith('http') and s.endswith('.zip'): # URL
166
+ f = Path(s).name # filename
167
+ torch.hub.download_url_to_file(s, f)
168
+ r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
169
+ else: # bash script
170
+ r = os.system(s)
171
+ print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
172
+ else:
173
+ raise Exception('Dataset not found.')
174
+
175
+
176
+ def make_divisible(x, divisor):
177
+ # Returns x evenly divisible by divisor
178
+ return math.ceil(x / divisor) * divisor
179
+
180
+
181
+ def clean_str(s):
182
+ # Cleans a string by replacing special characters with underscore _
183
+ return re.sub(pattern="[|@#!‘·$€%&()=?ΒΏ^*;:,¨´><+]", repl="_", string=s)
184
+
185
+
186
+ def one_cycle(y1=0.0, y2=1.0, steps=100):
187
+ # lambda function for sinusoidal ramp from y1 to y2
188
+ return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
189
+
190
+
191
+ def colorstr(*input):
192
+ # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
193
+ *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
194
+ colors = {'black': '\033[30m', # basic colors
195
+ 'red': '\033[31m',
196
+ 'green': '\033[32m',
197
+ 'yellow': '\033[33m',
198
+ 'blue': '\033[34m',
199
+ 'magenta': '\033[35m',
200
+ 'cyan': '\033[36m',
201
+ 'white': '\033[37m',
202
+ 'bright_black': '\033[90m', # bright colors
203
+ 'bright_red': '\033[91m',
204
+ 'bright_green': '\033[92m',
205
+ 'bright_yellow': '\033[93m',
206
+ 'bright_blue': '\033[94m',
207
+ 'bright_magenta': '\033[95m',
208
+ 'bright_cyan': '\033[96m',
209
+ 'bright_white': '\033[97m',
210
+ 'end': '\033[0m', # misc
211
+ 'bold': '\033[1m',
212
+ 'underline': '\033[4m'}
213
+ return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
214
+
215
+
216
+ def labels_to_class_weights(labels, nc=80):
217
+ # Get class weights (inverse frequency) from training labels
218
+ if labels[0] is None: # no labels loaded
219
+ return torch.Tensor()
220
+
221
+ labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
222
+ classes = labels[:, 0].astype(np.int) # labels = [class xywh]
223
+ weights = np.bincount(classes, minlength=nc) # occurrences per class
224
+
225
+ # Prepend gridpoint count (for uCE training)
226
+ # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
227
+ # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
228
+
229
+ weights[weights == 0] = 1 # replace empty bins with 1
230
+ weights = 1 / weights # number of targets per class
231
+ weights /= weights.sum() # normalize
232
+ return torch.from_numpy(weights)
233
+
234
+
235
+ def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
236
+ # Produces image weights based on class_weights and image contents
237
+ class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
238
+ image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
239
+ # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
240
+ return image_weights
241
+
242
+
243
+ def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
244
+ # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
245
+ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
246
+ # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
247
+ # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
248
+ # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
249
+ x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
250
+ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
251
+ 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
252
+ return x
253
+
254
+
255
+ def xyxy2xywh(x):
256
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
257
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
258
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
259
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
260
+ y[:, 2] = x[:, 2] - x[:, 0] # width
261
+ y[:, 3] = x[:, 3] - x[:, 1] # height
262
+ return y
263
+
264
+
265
+ def xywh2xyxy(x):
266
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
267
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
268
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
269
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
270
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
271
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
272
+ return y
273
+
274
+
275
+ def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
276
+ # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
277
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
278
+ y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
279
+ y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
280
+ y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
281
+ y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
282
+ return y
283
+
284
+
285
+ def xyn2xy(x, w=640, h=640, padw=0, padh=0):
286
+ # Convert normalized segments into pixel segments, shape (n,2)
287
+ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
288
+ y[:, 0] = w * x[:, 0] + padw # top left x
289
+ y[:, 1] = h * x[:, 1] + padh # top left y
290
+ return y
291
+
292
+
293
+ def segment2box(segment, width=640, height=640):
294
+ # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
295
+ x, y = segment.T # segment xy
296
+ inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
297
+ x, y, = x[inside], y[inside]
298
+ return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
299
+
300
+
301
+ def segments2boxes(segments):
302
+ # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
303
+ boxes = []
304
+ for s in segments:
305
+ x, y = s.T # segment xy
306
+ boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
307
+ return xyxy2xywh(np.array(boxes)) # cls, xywh
308
+
309
+
310
+ def resample_segments(segments, n=1000):
311
+ # Up-sample an (n,2) segment
312
+ for i, s in enumerate(segments):
313
+ x = np.linspace(0, len(s) - 1, n)
314
+ xp = np.arange(len(s))
315
+ segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
316
+ return segments
317
+
318
+
319
+ def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
320
+ # Rescale coords (xyxy) from img1_shape to img0_shape
321
+ if ratio_pad is None: # calculate from img0_shape
322
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
323
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
324
+ else:
325
+ gain = ratio_pad[0][0]
326
+ pad = ratio_pad[1]
327
+
328
+ coords[:, [0, 2]] -= pad[0] # x padding
329
+ coords[:, [1, 3]] -= pad[1] # y padding
330
+ coords[:, :4] /= gain
331
+ clip_coords(coords, img0_shape)
332
+ return coords
333
+
334
+
335
+ def clip_coords(boxes, img_shape):
336
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
337
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
338
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
339
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
340
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
341
+
342
+
343
+ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
344
+ # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
345
+ box2 = box2.T
346
+
347
+ # Get the coordinates of bounding boxes
348
+ if x1y1x2y2: # x1, y1, x2, y2 = box1
349
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
350
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
351
+ else: # transform from xywh to xyxy
352
+ b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
353
+ b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
354
+ b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
355
+ b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
356
+
357
+ # Intersection area
358
+ inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
359
+ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
360
+
361
+ # Union Area
362
+ w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
363
+ w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
364
+ union = w1 * h1 + w2 * h2 - inter + eps
365
+
366
+ iou = inter / union
367
+
368
+ if GIoU or DIoU or CIoU:
369
+ cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
370
+ ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
371
+ if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
372
+ c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
373
+ rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
374
+ (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
375
+ if DIoU:
376
+ return iou - rho2 / c2 # DIoU
377
+ elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
378
+ v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
379
+ with torch.no_grad():
380
+ alpha = v / (v - iou + (1 + eps))
381
+ return iou - (rho2 / c2 + v * alpha) # CIoU
382
+ else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
383
+ c_area = cw * ch + eps # convex area
384
+ return iou - (c_area - union) / c_area # GIoU
385
+ else:
386
+ return iou # IoU
387
+
388
+
389
+
390
+
391
+ def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
392
+ # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
393
+ box2 = box2.T
394
+
395
+ # Get the coordinates of bounding boxes
396
+ if x1y1x2y2: # x1, y1, x2, y2 = box1
397
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
398
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
399
+ else: # transform from xywh to xyxy
400
+ b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
401
+ b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
402
+ b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
403
+ b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
404
+
405
+ # Intersection area
406
+ inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
407
+ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
408
+
409
+ # Union Area
410
+ w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
411
+ w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
412
+ union = w1 * h1 + w2 * h2 - inter + eps
413
+
414
+ # change iou into pow(iou+eps)
415
+ # iou = inter / union
416
+ iou = torch.pow(inter/union + eps, alpha)
417
+ # beta = 2 * alpha
418
+ if GIoU or DIoU or CIoU:
419
+ cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
420
+ ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
421
+ if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
422
+ c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
423
+ rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
424
+ rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
425
+ rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
426
+ if DIoU:
427
+ return iou - rho2 / c2 # DIoU
428
+ elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
429
+ v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
430
+ with torch.no_grad():
431
+ alpha_ciou = v / ((1 + eps) - inter / union + v)
432
+ # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
433
+ return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
434
+ else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
435
+ # c_area = cw * ch + eps # convex area
436
+ # return iou - (c_area - union) / c_area # GIoU
437
+ c_area = torch.max(cw * ch + eps, union) # convex area
438
+ return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
439
+ else:
440
+ return iou # torch.log(iou+eps) or iou
441
+
442
+
443
+ def box_iou(box1, box2):
444
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
445
+ """
446
+ Return intersection-over-union (Jaccard index) of boxes.
447
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
448
+ Arguments:
449
+ box1 (Tensor[N, 4])
450
+ box2 (Tensor[M, 4])
451
+ Returns:
452
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
453
+ IoU values for every element in boxes1 and boxes2
454
+ """
455
+
456
+ def box_area(box):
457
+ # box = 4xn
458
+ return (box[2] - box[0]) * (box[3] - box[1])
459
+
460
+ area1 = box_area(box1.T)
461
+ area2 = box_area(box2.T)
462
+
463
+ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
464
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
465
+ return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
466
+
467
+
468
+ def wh_iou(wh1, wh2):
469
+ # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
470
+ wh1 = wh1[:, None] # [N,1,2]
471
+ wh2 = wh2[None] # [1,M,2]
472
+ inter = torch.min(wh1, wh2).prod(2) # [N,M]
473
+ return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
474
+
475
+
476
+ def box_giou(box1, box2):
477
+ """
478
+ Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
479
+ Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
480
+ ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
481
+ Args:
482
+ boxes1 (Tensor[N, 4]): first set of boxes
483
+ boxes2 (Tensor[M, 4]): second set of boxes
484
+ Returns:
485
+ Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
486
+ for every element in boxes1 and boxes2
487
+ """
488
+
489
+ def box_area(box):
490
+ # box = 4xn
491
+ return (box[2] - box[0]) * (box[3] - box[1])
492
+
493
+ area1 = box_area(box1.T)
494
+ area2 = box_area(box2.T)
495
+
496
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
497
+ union = (area1[:, None] + area2 - inter)
498
+
499
+ iou = inter / union
500
+
501
+ lti = torch.min(box1[:, None, :2], box2[:, :2])
502
+ rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
503
+
504
+ whi = (rbi - lti).clamp(min=0) # [N,M,2]
505
+ areai = whi[:, :, 0] * whi[:, :, 1]
506
+
507
+ return iou - (areai - union) / areai
508
+
509
+
510
+ def box_ciou(box1, box2, eps: float = 1e-7):
511
+ """
512
+ Return complete intersection-over-union (Jaccard index) between two sets of boxes.
513
+ Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
514
+ ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
515
+ Args:
516
+ boxes1 (Tensor[N, 4]): first set of boxes
517
+ boxes2 (Tensor[M, 4]): second set of boxes
518
+ eps (float, optional): small number to prevent division by zero. Default: 1e-7
519
+ Returns:
520
+ Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
521
+ for every element in boxes1 and boxes2
522
+ """
523
+
524
+ def box_area(box):
525
+ # box = 4xn
526
+ return (box[2] - box[0]) * (box[3] - box[1])
527
+
528
+ area1 = box_area(box1.T)
529
+ area2 = box_area(box2.T)
530
+
531
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
532
+ union = (area1[:, None] + area2 - inter)
533
+
534
+ iou = inter / union
535
+
536
+ lti = torch.min(box1[:, None, :2], box2[:, :2])
537
+ rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
538
+
539
+ whi = (rbi - lti).clamp(min=0) # [N,M,2]
540
+ diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
541
+
542
+ # centers of boxes
543
+ x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
544
+ y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
545
+ x_g = (box2[:, 0] + box2[:, 2]) / 2
546
+ y_g = (box2[:, 1] + box2[:, 3]) / 2
547
+ # The distance between boxes' centers squared.
548
+ centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
549
+
550
+ w_pred = box1[:, None, 2] - box1[:, None, 0]
551
+ h_pred = box1[:, None, 3] - box1[:, None, 1]
552
+
553
+ w_gt = box2[:, 2] - box2[:, 0]
554
+ h_gt = box2[:, 3] - box2[:, 1]
555
+
556
+ v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
557
+ with torch.no_grad():
558
+ alpha = v / (1 - iou + v + eps)
559
+ return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
560
+
561
+
562
+ def box_diou(box1, box2, eps: float = 1e-7):
563
+ """
564
+ Return distance intersection-over-union (Jaccard index) between two sets of boxes.
565
+ Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
566
+ ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
567
+ Args:
568
+ boxes1 (Tensor[N, 4]): first set of boxes
569
+ boxes2 (Tensor[M, 4]): second set of boxes
570
+ eps (float, optional): small number to prevent division by zero. Default: 1e-7
571
+ Returns:
572
+ Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
573
+ for every element in boxes1 and boxes2
574
+ """
575
+
576
+ def box_area(box):
577
+ # box = 4xn
578
+ return (box[2] - box[0]) * (box[3] - box[1])
579
+
580
+ area1 = box_area(box1.T)
581
+ area2 = box_area(box2.T)
582
+
583
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
584
+ union = (area1[:, None] + area2 - inter)
585
+
586
+ iou = inter / union
587
+
588
+ lti = torch.min(box1[:, None, :2], box2[:, :2])
589
+ rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
590
+
591
+ whi = (rbi - lti).clamp(min=0) # [N,M,2]
592
+ diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
593
+
594
+ # centers of boxes
595
+ x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
596
+ y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
597
+ x_g = (box2[:, 0] + box2[:, 2]) / 2
598
+ y_g = (box2[:, 1] + box2[:, 3]) / 2
599
+ # The distance between boxes' centers squared.
600
+ centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
601
+
602
+ # The distance IoU is the IoU penalized by a normalized
603
+ # distance between boxes' centers squared.
604
+ return iou - (centers_distance_squared / diagonal_distance_squared)
605
+
606
+
607
+ def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
608
+ labels=()):
609
+ """Runs Non-Maximum Suppression (NMS) on inference results
610
+
611
+ Returns:
612
+ list of detections, on (n,6) tensor per image [xyxy, conf, cls]
613
+ """
614
+
615
+ nc = prediction.shape[2] - 5 # number of classes
616
+ xc = prediction[..., 4] > conf_thres # candidates
617
+
618
+ # Settings
619
+ min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
620
+ max_det = 300 # maximum number of detections per image
621
+ max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
622
+ time_limit = 10.0 # seconds to quit after
623
+ redundant = True # require redundant detections
624
+ multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
625
+ merge = False # use merge-NMS
626
+
627
+ t = time.time()
628
+ output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
629
+ for xi, x in enumerate(prediction): # image index, image inference
630
+ # Apply constraints
631
+ # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
632
+ x = x[xc[xi]] # confidence
633
+
634
+ # Cat apriori labels if autolabelling
635
+ if labels and len(labels[xi]):
636
+ l = labels[xi]
637
+ v = torch.zeros((len(l), nc + 5), device=x.device)
638
+ v[:, :4] = l[:, 1:5] # box
639
+ v[:, 4] = 1.0 # conf
640
+ v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
641
+ x = torch.cat((x, v), 0)
642
+
643
+ # If none remain process next image
644
+ if not x.shape[0]:
645
+ continue
646
+
647
+ # Compute conf
648
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
649
+
650
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
651
+ box = xywh2xyxy(x[:, :4])
652
+
653
+ # Detections matrix nx6 (xyxy, conf, cls)
654
+ if multi_label:
655
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
656
+ x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
657
+ else: # best class only
658
+ conf, j = x[:, 5:].max(1, keepdim=True)
659
+ x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
660
+
661
+ # Filter by class
662
+ if classes is not None:
663
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
664
+
665
+ # Apply finite constraint
666
+ # if not torch.isfinite(x).all():
667
+ # x = x[torch.isfinite(x).all(1)]
668
+
669
+ # Check shape
670
+ n = x.shape[0] # number of boxes
671
+ if not n: # no boxes
672
+ continue
673
+ elif n > max_nms: # excess boxes
674
+ x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
675
+
676
+ # Batched NMS
677
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
678
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
679
+ i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
680
+ if i.shape[0] > max_det: # limit detections
681
+ i = i[:max_det]
682
+ if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
683
+ # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
684
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
685
+ weights = iou * scores[None] # box weights
686
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
687
+ if redundant:
688
+ i = i[iou.sum(1) > 1] # require redundancy
689
+
690
+ output[xi] = x[i]
691
+ if (time.time() - t) > time_limit:
692
+ print(f'WARNING: NMS time limit {time_limit}s exceeded')
693
+ break # time limit exceeded
694
+
695
+ return output
696
+
697
+
698
+ def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
699
+ # Strip optimizer from 'f' to finalize training, optionally save as 's'
700
+ x = torch.load(f, map_location=torch.device('cpu'))
701
+ if x.get('ema'):
702
+ x['model'] = x['ema'] # replace model with ema
703
+ for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
704
+ x[k] = None
705
+ x['epoch'] = -1
706
+ x['model'].half() # to FP16
707
+ for p in x['model'].parameters():
708
+ p.requires_grad = False
709
+ torch.save(x, s or f)
710
+ mb = os.path.getsize(s or f) / 1E6 # filesize
711
+ print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
712
+
713
+
714
+ def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
715
+ # Print mutation results to evolve.txt (for use with train.py --evolve)
716
+ a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
717
+ b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
718
+ c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
719
+ print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
720
+
721
+ if bucket:
722
+ url = 'gs://%s/evolve.txt' % bucket
723
+ if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
724
+ os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
725
+
726
+ with open('evolve.txt', 'a') as f: # append result
727
+ f.write(c + b + '\n')
728
+ x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
729
+ x = x[np.argsort(-fitness(x))] # sort
730
+ np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
731
+
732
+ # Save yaml
733
+ for i, k in enumerate(hyp.keys()):
734
+ hyp[k] = float(x[0, i + 7])
735
+ with open(yaml_file, 'w') as f:
736
+ results = tuple(x[0, :7])
737
+ c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
738
+ f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
739
+ yaml.dump(hyp, f, sort_keys=False)
740
+
741
+ if bucket:
742
+ os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
743
+
744
+
745
+ def apply_classifier(x, model, img, im0):
746
+ # applies a second stage classifier to yolo outputs
747
+ im0 = [im0] if isinstance(im0, np.ndarray) else im0
748
+ for i, d in enumerate(x): # per image
749
+ if d is not None and len(d):
750
+ d = d.clone()
751
+
752
+ # Reshape and pad cutouts
753
+ b = xyxy2xywh(d[:, :4]) # boxes
754
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
755
+ b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
756
+ d[:, :4] = xywh2xyxy(b).long()
757
+
758
+ # Rescale boxes from img_size to im0 size
759
+ scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
760
+
761
+ # Classes
762
+ pred_cls1 = d[:, 5].long()
763
+ ims = []
764
+ for j, a in enumerate(d): # per item
765
+ cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
766
+ im = cv2.resize(cutout, (224, 224)) # BGR
767
+ # cv2.imwrite('test%i.jpg' % j, cutout)
768
+
769
+ im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
770
+ im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
771
+ im /= 255.0 # 0 - 255 to 0.0 - 1.0
772
+ ims.append(im)
773
+
774
+ pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
775
+ x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
776
+
777
+ return x
778
+
779
+
780
+ def increment_path(path, exist_ok=True, sep=''):
781
+ # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
782
+ path = Path(path) # os-agnostic
783
+ if (path.exists() and exist_ok) or (not path.exists()):
784
+ return str(path)
785
+ else:
786
+ dirs = glob.glob(f"{path}{sep}*") # similar paths
787
+ matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
788
+ i = [int(m.groups()[0]) for m in matches if m] # indices
789
+ n = max(i) + 1 if i else 2 # increment number
790
+ return f"{path}{sep}{n}" # update path