Spaces:
Running
Running
Commit
·
1fedf30
1
Parent(s):
1729495
caching model
Browse files
app.py
CHANGED
@@ -7,8 +7,8 @@ import torch
|
|
7 |
from torchvision import io
|
8 |
from typing import Dict
|
9 |
import base64
|
10 |
-
import random
|
11 |
|
|
|
12 |
def init_model():
|
13 |
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
14 |
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
@@ -71,6 +71,7 @@ def get_quen_op(image_file, model, processor):
|
|
71 |
except Exception as e:
|
72 |
return f"An error occurred: {str(e)}"
|
73 |
|
|
|
74 |
def init_llama():
|
75 |
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
76 |
|
@@ -105,12 +106,10 @@ def get_text(image_file, model, tokenizer):
|
|
105 |
res = model.chat(tokenizer, image_file, ocr_type='ocr')
|
106 |
return res
|
107 |
|
108 |
-
st.title("Image - Text OCR")
|
109 |
st.write("Upload an image for OCR")
|
110 |
|
111 |
-
MODEL, PROCESSOR =
|
112 |
-
random_value = random.randint(0, 100)
|
113 |
-
st.write(f"Model loaded: build number - {random_value}")
|
114 |
|
115 |
image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg'])
|
116 |
|
@@ -125,10 +124,10 @@ if image_file:
|
|
125 |
|
126 |
# model, tokenizer = init_gpu_model()
|
127 |
# model, tokenizer = init_model()
|
128 |
-
|
129 |
|
130 |
# model, processor = init_llama()
|
131 |
-
text = get_llama_op(image_file, MODEL, PROCESSOR)
|
132 |
|
133 |
# model, processor = init_qwen_model()
|
134 |
# text = get_quen_op(image_file, model, processor)
|
|
|
7 |
from torchvision import io
|
8 |
from typing import Dict
|
9 |
import base64
|
|
|
10 |
|
11 |
+
@st.cache_resource
|
12 |
def init_model():
|
13 |
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
14 |
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
|
|
71 |
except Exception as e:
|
72 |
return f"An error occurred: {str(e)}"
|
73 |
|
74 |
+
@st.cache_resource
|
75 |
def init_llama():
|
76 |
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
77 |
|
|
|
106 |
res = model.chat(tokenizer, image_file, ocr_type='ocr')
|
107 |
return res
|
108 |
|
109 |
+
st.title("Image - Text OCR (General OCR Theory - GOT)")
|
110 |
st.write("Upload an image for OCR")
|
111 |
|
112 |
+
MODEL, PROCESSOR = init_model()
|
|
|
|
|
113 |
|
114 |
image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg'])
|
115 |
|
|
|
124 |
|
125 |
# model, tokenizer = init_gpu_model()
|
126 |
# model, tokenizer = init_model()
|
127 |
+
text = get_text(image_file, MODEL, PROCESSOR)
|
128 |
|
129 |
# model, processor = init_llama()
|
130 |
+
# text = get_llama_op(image_file, MODEL, PROCESSOR)
|
131 |
|
132 |
# model, processor = init_qwen_model()
|
133 |
# text = get_quen_op(image_file, model, processor)
|