Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
# Load the model and processor on available device(s) | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2-VL-72B-Instruct-AWQ", | |
torch_dtype=torch.float16, | |
#device_map="auto" | |
) | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct-AWQ") | |
def generate_caption(image, prompt): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image, # The uploaded image | |
}, | |
{"type": "text", "text": prompt}, | |
], | |
} | |
] | |
# Prepare the input | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt" | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
inputs = inputs.to(device) | |
# Generate the output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
# Launch the Gradio interface with the updated inference function and title | |
demo = gr.ChatInterface(fn=generate_caption, title="Qwen2-VL-72B-Instruct-OCR", multimodal=True, description="Upload your Image and get the best possible insights out of the Image") | |
demo.queue().launch() | |