Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import torch | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
MODEL_REPO = "Qwen/Qwen2-VL-72B-Instruct-AWQ" | |
#MODEL_REPO = "Qwen/Qwen2-VL-7B-Instruct" | |
# Load the model and processor on available device(s) | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_REPO, | |
torch_dtype=torch.float16, | |
#device_map="auto" | |
)#.to(device) | |
processor = AutoProcessor.from_pretrained(MODEL_REPO) | |
def generate_caption(message, history, system_prompt, max_new_tokens): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": message.get("text", "")} | |
] | |
} | |
] | |
for image in message["files"]: | |
messages["content"].append({"type": "image", "image": image}) # The uploaded image | |
# Prepare the input | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt" | |
) | |
inputs.to(device) | |
#model.to(device) | |
# Generate the output | |
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return output_text[0] | |
# Launch the Gradio interface with the updated inference function and title | |
with gr.Blocks() as demo: | |
system_prompt = gr.Textbox("You are helpful AI.", label="System Prompt", render=False) | |
tokens = gr.Slider(minimum=1, maximum=4096, value=128, step=1, label="Max new tokens", render=False) | |
gr.ChatInterface(fn=generate_caption, title="Qwen2-VL-72B-Instruct-OCR", multimodal=True, | |
additional_inputs=[system_prompt, tokens], | |
description="Upload your Image and get the best possible insights out of the Image") | |
demo.queue().launch() | |