Qwen2_VL72B_OCR / app.py
John6666's picture
Upload 2 files
b1ef8f1 verified
raw
history blame
2.42 kB
import spaces
import gradio as gr
import torch
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_REPO = "Qwen/Qwen2-VL-72B-Instruct-AWQ"
#MODEL_REPO = "Qwen/Qwen2-VL-7B-Instruct"
# Load the model and processor on available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_REPO,
torch_dtype=torch.float16,
#device_map="auto"
)#.to(device)
processor = AutoProcessor.from_pretrained(MODEL_REPO)
@spaces.GPU(duration=60)
def generate_caption(message, history, system_prompt, max_new_tokens):
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": message.get("text", "")}
]
}
]
for image in message["files"]:
messages["content"].append({"type": "image", "image": image}) # The uploaded image
# Prepare the input
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs.to(device)
#model.to(device)
# Generate the output
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
# Launch the Gradio interface with the updated inference function and title
with gr.Blocks() as demo:
system_prompt = gr.Textbox("You are helpful AI.", label="System Prompt", render=False)
tokens = gr.Slider(minimum=1, maximum=4096, value=128, step=1, label="Max new tokens", render=False)
gr.ChatInterface(fn=generate_caption, title="Qwen2-VL-72B-Instruct-OCR", multimodal=True,
additional_inputs=[system_prompt, tokens],
description="Upload your Image and get the best possible insights out of the Image")
demo.queue().launch()