import gradio as gr import torch from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info # Load the model and processor on available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2-VL-72B-Instruct-AWQ", torch_dtype=torch.float16, #device_map="auto" ) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-72B-Instruct-AWQ") @spaces.GPU(duration=60) def generate_caption(image, prompt): messages = [ { "role": "user", "content": [ { "type": "image", "image": image, # The uploaded image }, {"type": "text", "text": prompt}, ], } ] # Prepare the input text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ) device = "cuda" if torch.cuda.is_available() else "cpu" inputs = inputs.to(device) # Generate the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] # Launch the Gradio interface with the updated inference function and title demo = gr.ChatInterface(fn=generate_caption, title="Qwen2-VL-72B-Instruct-OCR", multimodal=True, description="Upload your Image and get the best possible insights out of the Image") demo.queue().launch()