秋山翔
TEST: examples render
0778fc2
raw
history blame
2.25 kB
import os
import torch
import gradio as gr
import numpy as np
import torchvision.transforms as transforms
from torch.autograd import Variable
from network.Transformer import Transformer
LOAD_SIZE = 1280
STYLE = "shinkai_makoto"
MODEL_PATH = "models"
COLOUR_MODEL = "RGB"
model = Transformer()
model.load_state_dict(torch.load(os.path.join(MODEL_PATH, f"{STYLE}.pth")))
model.eval()
disable_gpu = True
def inference(img):
# load image
input_image = img.convert(COLOUR_MODEL)
input_image = np.asarray(input_image)
# RGB -> BGR
input_image = input_image[:, :, [2, 1, 0]]
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
# preprocess, (-1, 1)
input_image = -1 + 2 * input_image
if disable_gpu:
input_image = Variable(input_image).float()
else:
input_image = Variable(input_image).cuda()
# forward
output_image = model(input_image)
output_image = output_image[0]
# BGR -> RGB
output_image = output_image[[2, 1, 0], :, :]
output_image = output_image.data.cpu().float() * 0.5 + 0.5
return transforms.ToPILImage()(output_image)
title = "Anime Background GAN"
description = "Gradio Demo for CartoonGAN by Chen Et. Al. Models are Shinkai Makoto, Hosoda Mamoru, Kon Satoshi, and Miyazaki Hayao."
article = "<p style='text-align: center'><a href='http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/2205.pdf' target='_blank'>CartoonGAN from Chen et.al</a></p><p style='text-align: center'><a href='https://github.com/venture-anime/cartoongan-pytorch' target='_blank'>Github Repo</a></p><p style='text-align: center'><a href='https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch' target='_blank'>Original Implementation from Yijunmaverick</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akiyamasho' alt='visitor badge'></center></p>"
examples = [
["examples/garden_in.jpg"],
["examples/library_in.jpg"],
]
gr.Interface(
fn=inference,
inputs=[gr.inputs.Image(type="pil")],
outputs=gr.outputs.Image(type="pil"),
title=title,
description=description,
article=article,
examples=examples,
allow_flagging=False,
allow_screenshot=False,
enable_queue=True,
).launch()