Spaces:
Runtime error
Runtime error
import spaces | |
import torch | |
import re | |
import gradio as gr | |
from threading import Thread | |
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM | |
from PIL import ImageDraw | |
from torchvision.transforms.v2 import Resize | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
model_id = "vikhyatk/moondream2" | |
revision = "2024-08-26" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) | |
moondream = AutoModelForCausalLM.from_pretrained( | |
model_id, trust_remote_code=True, revision=revision, | |
torch_dtype=torch.bfloat16, device_map={"": "cuda"}, | |
attn_implementation="flash_attention_2" | |
) | |
moondream.eval() | |
def answer_question(img, prompt): | |
image_embeds = moondream.encode_image(img) | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) | |
thread = Thread( | |
target=moondream.answer_question, | |
kwargs={ | |
"image_embeds": image_embeds, | |
"question": prompt, | |
"tokenizer": tokenizer, | |
"streamer": streamer, | |
}, | |
) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer.strip() | |
def extract_floats(text): | |
# Regular expression to match an array of four floating point numbers | |
pattern = r"\[\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*\]" | |
match = re.search(pattern, text) | |
if match: | |
# Extract the numbers and convert them to floats | |
return [float(num) for num in match.groups()] | |
return None # Return None if no match is found | |
def extract_bbox(text): | |
bbox = None | |
if extract_floats(text) is not None: | |
x1, y1, x2, y2 = extract_floats(text) | |
bbox = (x1, y1, x2, y2) | |
return bbox | |
def process_answer(img, answer): | |
if extract_bbox(answer) is not None: | |
x1, y1, x2, y2 = extract_bbox(answer) | |
draw_image = Resize(768)(img) | |
width, height = draw_image.size | |
x1, x2 = int(x1 * width), int(x2 * width) | |
y1, y2 = int(y1 * height), int(y2 * height) | |
bbox = (x1, y1, x2, y2) | |
ImageDraw.Draw(draw_image).rectangle(bbox, outline="red", width=3) | |
return gr.update(visible=True, value=draw_image) | |
return gr.update(visible=False, value=None) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# See For Me : Real-time Video Assistance for the Visually Impaired using DL | |
The "See For Me" web application is designed to support visually challenged individuals by enhancing their ability to navigate and interact with their environment. Leveraging advancements in machine learning (ML) and deep learning (DL), the project aims to provide real-time visual assistance, enabling users to access and understand textual information in their surroundings. | |
""" | |
) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Input", value="Describe this image.", scale=4) | |
submit = gr.Button("Submit") | |
with gr.Row(): | |
img = gr.Image(type="pil", label="Upload an Image") | |
with gr.Column(): | |
output = gr.Markdown(label="Response") | |
ann = gr.Image(visible=False, label="Annotated Image") | |
submit.click(answer_question, [img, prompt], output) | |
prompt.submit(answer_question, [img, prompt], output) | |
output.change(process_answer, [img, output], ann, show_progress=False) | |
demo.queue().launch() | |