File size: 3,243 Bytes
10581c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import argparse
import re
from threading import Thread

import gradio as gr
import torch
from PIL import ImageDraw
from torchvision.transforms.v2 import Resize
from transformers import AutoTokenizer, TextIteratorStreamer

from moondream.hf import LATEST_REVISION, Moondream, detect_device

parser = argparse.ArgumentParser()
parser.add_argument("--cpu", action="store_true")
args = parser.parse_args()

if args.cpu:
    device = torch.device("cpu")
    dtype = torch.float32
else:
    device, dtype = detect_device()
    if device != torch.device("cpu"):
        print("Using device:", device)
        print("If you run into issues, pass the `--cpu` flag to this script.")
        print()

model_id = "vikhyatk/moondream2"
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=LATEST_REVISION)
moondream = Moondream.from_pretrained(
    model_id, revision=LATEST_REVISION, torch_dtype=dtype
).to(device=device)
moondream.eval()


def answer_question(img, prompt):
    image_embeds = moondream.encode_image(img)
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    thread = Thread(
        target=moondream.answer_question,
        kwargs={
            "image_embeds": image_embeds,
            "question": prompt,
            "tokenizer": tokenizer,
            "streamer": streamer,
        },
    )
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer


def extract_floats(text):
    # Regular expression to match an array of four floating point numbers
    pattern = r"\[\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*,\s*(-?\d+\.\d+)\s*\]"
    match = re.search(pattern, text)
    if match:
        # Extract the numbers and convert them to floats
        return [float(num) for num in match.groups()]
    return None  # Return None if no match is found


def extract_bbox(text):
    bbox = None
    if extract_floats(text) is not None:
        x1, y1, x2, y2 = extract_floats(text)
        bbox = (x1, y1, x2, y2)
    return bbox


def process_answer(img, answer):
    if extract_bbox(answer) is not None:
        x1, y1, x2, y2 = extract_bbox(answer)
        draw_image = Resize(768)(img)
        width, height = draw_image.size
        x1, x2 = int(x1 * width), int(x2 * width)
        y1, y2 = int(y1 * height), int(y2 * height)
        bbox = (x1, y1, x2, y2)
        ImageDraw.Draw(draw_image).rectangle(bbox, outline="red", width=3)
        return gr.update(visible=True, value=draw_image)

    return gr.update(visible=False, value=None)


with gr.Blocks() as demo:
    gr.Markdown(
        """
        # πŸŒ” moondream
        """
    )
    with gr.Row():
        prompt = gr.Textbox(label="Input Prompt", value="Describe this image.", scale=4)
        submit = gr.Button("Submit")
    with gr.Row():
        img = gr.Image(type="pil", label="Upload an Image")
        with gr.Column():
            output = gr.Markdown(label="Response")
            ann = gr.Image(visible=False, label="Annotated Image")

    submit.click(answer_question, [img, prompt], output)
    prompt.submit(answer_question, [img, prompt], output)
    output.change(process_answer, [img, output], ann, show_progress=False)

demo.queue().launch(debug=True)