Spaces:
Sleeping
Sleeping
add : app.py
Browse files- moondream/__init__.py +0 -0
- moondream/__pycache__/__init__.cpython-312.pyc +0 -0
- moondream/eval/docvqa.py +45 -0
- moondream/eval/naturalbench.py +74 -0
- moondream/eval/pope.py +64 -0
- moondream/eval/tallyqa.py +72 -0
- moondream/hf/__init__.py +2 -0
- moondream/hf/__pycache__/__init__.cpython-312.pyc +0 -0
- moondream/hf/__pycache__/configuration_moondream.cpython-312.pyc +0 -0
- moondream/hf/__pycache__/fourier_features.cpython-312.pyc +0 -0
- moondream/hf/__pycache__/modeling_phi.cpython-312.pyc +0 -0
- moondream/hf/__pycache__/moondream.cpython-312.pyc +0 -0
- moondream/hf/__pycache__/region_model.cpython-312.pyc +0 -0
- moondream/hf/__pycache__/util.cpython-312.pyc +0 -0
- moondream/hf/__pycache__/vision_encoder.cpython-312.pyc +0 -0
- moondream/hf/configuration_moondream.py +96 -0
- moondream/hf/fourier_features.py +19 -0
- moondream/hf/modeling_phi.py +1477 -0
- moondream/hf/moondream.py +352 -0
- moondream/hf/region_model.py +69 -0
- moondream/hf/util.py +15 -0
- moondream/hf/vision_encoder.py +325 -0
- moondream/torch/layers.py +68 -0
- moondream/torch/rope.py +46 -0
- moondream/torch/sample.py +99 -0
- moondream/torch/text.py +90 -0
- moondream/torch/vision.py +104 -0
- moondream/torch/weights.py +216 -0
moondream/__init__.py
ADDED
File without changes
|
moondream/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (151 Bytes). View file
|
|
moondream/eval/docvqa.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import editdistance
|
2 |
+
from datasets import load_dataset
|
3 |
+
from tqdm import tqdm
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
|
6 |
+
from ..hf import detect_device
|
7 |
+
|
8 |
+
MODEL_ID = "vikhyatk/moondream2"
|
9 |
+
DEVICE, DTYPE = detect_device()
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
12 |
+
moondream = AutoModelForCausalLM.from_pretrained(
|
13 |
+
MODEL_ID,
|
14 |
+
trust_remote_code=True,
|
15 |
+
attn_implementation="flash_attention_2",
|
16 |
+
torch_dtype=DTYPE,
|
17 |
+
device_map={"": DEVICE},
|
18 |
+
)
|
19 |
+
moondream.eval()
|
20 |
+
|
21 |
+
|
22 |
+
def get_anls(s1, s2):
|
23 |
+
s1 = s1.lower().strip()
|
24 |
+
s2 = s2.lower().strip()
|
25 |
+
iou = 1 - editdistance.eval(s1, s2) / max(len(s1), len(s2))
|
26 |
+
anls = iou if iou >= 0.5 else 0.0
|
27 |
+
return anls
|
28 |
+
|
29 |
+
|
30 |
+
docvqa_val = load_dataset("vikhyatk/docvqa", split="validation")
|
31 |
+
|
32 |
+
scores = []
|
33 |
+
for row in tqdm(docvqa_val):
|
34 |
+
image = row["image"]
|
35 |
+
enc_image = moondream.encode_image(image)
|
36 |
+
for qa in row["qa"]:
|
37 |
+
question = qa["question"]
|
38 |
+
answers = qa["answers"]
|
39 |
+
prompt = f"{question}\nAnswer briefly with a single word or phrase."
|
40 |
+
|
41 |
+
model_answer = moondream.answer_question(enc_image, prompt, tokenizer)
|
42 |
+
anls = max(get_anls(model_answer, gt) for gt in answers)
|
43 |
+
scores.append(anls)
|
44 |
+
|
45 |
+
print("ANLS:", sum(scores) / len(scores))
|
moondream/eval/naturalbench.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from tqdm import tqdm
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
from ..hf import detect_device
|
6 |
+
|
7 |
+
MODEL_ID = "vikhyatk/moondream2"
|
8 |
+
DEVICE, DTYPE = detect_device()
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
11 |
+
moondream = AutoModelForCausalLM.from_pretrained(
|
12 |
+
MODEL_ID,
|
13 |
+
trust_remote_code=True,
|
14 |
+
attn_implementation="flash_attention_2",
|
15 |
+
torch_dtype=DTYPE,
|
16 |
+
device_map={"": DEVICE},
|
17 |
+
)
|
18 |
+
moondream.eval()
|
19 |
+
|
20 |
+
# Yes, the benchmark test set is stored in the 'train' split...
|
21 |
+
dataset = load_dataset("BaiqiL/NaturalBench", split="train")
|
22 |
+
|
23 |
+
acc = []
|
24 |
+
q_acc = []
|
25 |
+
i_acc = []
|
26 |
+
g_acc = []
|
27 |
+
|
28 |
+
for row in tqdm(dataset):
|
29 |
+
if row["Question_Type"] == "yes_no":
|
30 |
+
suffix = " Answer yes or no."
|
31 |
+
else:
|
32 |
+
suffix = ""
|
33 |
+
|
34 |
+
answers = moondream.batch_answer(
|
35 |
+
images=[row["Image_0"], row["Image_1"], row["Image_0"], row["Image_1"]],
|
36 |
+
prompts=[
|
37 |
+
row["Question_0"] + suffix,
|
38 |
+
row["Question_0"] + suffix,
|
39 |
+
row["Question_1"] + suffix,
|
40 |
+
row["Question_1"] + suffix,
|
41 |
+
],
|
42 |
+
tokenizer=tokenizer,
|
43 |
+
)
|
44 |
+
|
45 |
+
expected = [
|
46 |
+
row["Image_0_Question_0"],
|
47 |
+
row["Image_1_Question_0"],
|
48 |
+
row["Image_0_Question_1"],
|
49 |
+
row["Image_1_Question_1"],
|
50 |
+
]
|
51 |
+
|
52 |
+
acc.append(answers[0] == expected[0])
|
53 |
+
acc.append(answers[1] == expected[1])
|
54 |
+
acc.append(answers[2] == expected[2])
|
55 |
+
acc.append(answers[3] == expected[3])
|
56 |
+
|
57 |
+
i_acc.append(answers[0] == expected[0] and answers[2] == expected[2])
|
58 |
+
i_acc.append(answers[1] == expected[1] and answers[3] == expected[3])
|
59 |
+
|
60 |
+
q_acc.append(answers[0] == expected[0] and answers[1] == expected[1])
|
61 |
+
q_acc.append(answers[2] == expected[2] and answers[3] == expected[3])
|
62 |
+
|
63 |
+
g_acc.append(
|
64 |
+
answers[0] == expected[0]
|
65 |
+
and answers[1] == expected[1]
|
66 |
+
and answers[2] == expected[2]
|
67 |
+
and answers[3] == expected[3]
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
print("Overall Accuracy:", sum(acc) / len(acc))
|
72 |
+
print("Image Accuracy:", sum(i_acc) / len(i_acc))
|
73 |
+
print("Question Accuracy:", sum(q_acc) / len(q_acc))
|
74 |
+
print("Group Accuracy:", sum(g_acc) / len(g_acc))
|
moondream/eval/pope.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from tqdm import tqdm
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
from ..hf import detect_device
|
6 |
+
|
7 |
+
MODEL_ID = "vikhyatk/moondream2"
|
8 |
+
DEVICE, DTYPE = detect_device()
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
11 |
+
moondream = AutoModelForCausalLM.from_pretrained(
|
12 |
+
MODEL_ID,
|
13 |
+
trust_remote_code=True,
|
14 |
+
attn_implementation="flash_attention_2",
|
15 |
+
torch_dtype=DTYPE,
|
16 |
+
device_map={"": DEVICE},
|
17 |
+
)
|
18 |
+
moondream.eval()
|
19 |
+
|
20 |
+
pope_dataset = load_dataset("vikhyatk/POPE", split="test")
|
21 |
+
|
22 |
+
stats = {
|
23 |
+
"random": (0, 0),
|
24 |
+
"popular": (0, 0),
|
25 |
+
"adversarial": (0, 0),
|
26 |
+
}
|
27 |
+
for row in tqdm(pope_dataset):
|
28 |
+
image = row["image"]
|
29 |
+
enc_image = moondream.encode_image(image)
|
30 |
+
for split in ["adversarial", "popular", "random"]:
|
31 |
+
for qa in row[split]:
|
32 |
+
question = qa["question"]
|
33 |
+
answer = qa["answer"]
|
34 |
+
prompt = f"{question}\nAnswer yes or no."
|
35 |
+
model_answer = moondream.answer_question(enc_image, prompt, tokenizer)
|
36 |
+
if model_answer.lower() == answer.lower():
|
37 |
+
stats[split] = (stats[split][0] + 1, stats[split][1] + 1)
|
38 |
+
else:
|
39 |
+
stats[split] = (stats[split][0], stats[split][1] + 1)
|
40 |
+
|
41 |
+
print(
|
42 |
+
"Random:",
|
43 |
+
stats["random"][0],
|
44 |
+
"/",
|
45 |
+
stats["random"][1],
|
46 |
+
":",
|
47 |
+
stats["random"][0] * 100.0 / stats["random"][1],
|
48 |
+
)
|
49 |
+
print(
|
50 |
+
"Popular:",
|
51 |
+
stats["popular"][0],
|
52 |
+
"/",
|
53 |
+
stats["popular"][1],
|
54 |
+
":",
|
55 |
+
stats["popular"][0] * 100.0 / stats["popular"][1],
|
56 |
+
)
|
57 |
+
print(
|
58 |
+
"Adversarial:",
|
59 |
+
stats["adversarial"][0],
|
60 |
+
"/",
|
61 |
+
stats["adversarial"][1],
|
62 |
+
":",
|
63 |
+
stats["adversarial"][0] * 100.0 / stats["adversarial"][1],
|
64 |
+
)
|
moondream/eval/tallyqa.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Expects Visual Genome to be downloaded to `data/vg` and the TallyQA test set
|
2 |
+
# to be present at `data/tallyqa/test.json`.
|
3 |
+
#
|
4 |
+
# Steps to download Visual Genome and TallyQA:
|
5 |
+
#
|
6 |
+
# mkdir -p data/vg/VG_100K
|
7 |
+
# mkdir -p data/vg/VG_100K_2
|
8 |
+
# mkdir -p data/tallyqa
|
9 |
+
# wget -P data/vg/VG_100K_2/ https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip
|
10 |
+
# wget -P data/vg/VG_100K/ https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip
|
11 |
+
# wget -P data/tallyqa/ https://github.com/manoja328/TallyQA_dataset/raw/master/tallyqa.zip
|
12 |
+
# unzip data/vg/VG_100K_2/images2.zip -d data/vg/
|
13 |
+
# unzip data/vg/VG_100K/images.zip -d data/vg/
|
14 |
+
# unzip data/tallyqa/tallyqa.zip -d data/tallyqa/
|
15 |
+
# rm data/vg/VG_100K_2/images2.zip
|
16 |
+
# rm data/vg/VG_100K/images.zip
|
17 |
+
# rm data/tallyqa/tallyqa.zip
|
18 |
+
|
19 |
+
import json
|
20 |
+
|
21 |
+
from PIL import Image
|
22 |
+
from tqdm import tqdm
|
23 |
+
from transformers import AutoTokenizer
|
24 |
+
|
25 |
+
from ..hf import Moondream, detect_device
|
26 |
+
|
27 |
+
BATCH_SIZE = 16
|
28 |
+
DEVICE, DTYPE = detect_device()
|
29 |
+
|
30 |
+
model_id = "vikhyatk/moondream2"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
32 |
+
model = Moondream.from_pretrained(
|
33 |
+
model_id,
|
34 |
+
attn_implementation="flash_attention_2",
|
35 |
+
torch_dtype=DTYPE,
|
36 |
+
device_map={"": DEVICE},
|
37 |
+
)
|
38 |
+
model.eval()
|
39 |
+
|
40 |
+
total = 0
|
41 |
+
total_simple = 0
|
42 |
+
correct = 0
|
43 |
+
correct_simple = 0
|
44 |
+
|
45 |
+
# Iterate over tallyqa_test in batches of BATCH_SIZE
|
46 |
+
tallyqa_test = json.load(open("data/tallyqa/test.json"))
|
47 |
+
for i in tqdm(range(0, len(tallyqa_test), BATCH_SIZE)):
|
48 |
+
batch = tallyqa_test[i : i + BATCH_SIZE]
|
49 |
+
|
50 |
+
images = [Image.open(f"data/vg/{item['image']}") for item in batch]
|
51 |
+
questions = [
|
52 |
+
item["question"] + " Answer in a word or phrase only." for item in batch
|
53 |
+
]
|
54 |
+
|
55 |
+
answers = model.batch_answer(
|
56 |
+
images=images, prompts=questions, tokenizer=tokenizer, max_new_tokens=10
|
57 |
+
)
|
58 |
+
|
59 |
+
for answer, item in zip(answers, batch):
|
60 |
+
is_simple = item["issimple"]
|
61 |
+
is_correct = 1 if str(item["answer"]) == answer else 0
|
62 |
+
|
63 |
+
total += 1
|
64 |
+
correct += is_correct
|
65 |
+
if is_simple:
|
66 |
+
total_simple += 1
|
67 |
+
correct_simple += is_correct
|
68 |
+
|
69 |
+
print(
|
70 |
+
f"Simple: {total_simple}, Correct: {correct_simple}, Accuracy: {correct_simple*100.0/total_simple}"
|
71 |
+
)
|
72 |
+
print(f"Total: {total}, Correct: {correct}, Accuracy: {correct*100.0/total}")
|
moondream/hf/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .moondream import Moondream
|
2 |
+
from .util import LATEST_REVISION, detect_device
|
moondream/hf/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (272 Bytes). View file
|
|
moondream/hf/__pycache__/configuration_moondream.cpython-312.pyc
ADDED
Binary file (3.58 kB). View file
|
|
moondream/hf/__pycache__/fourier_features.cpython-312.pyc
ADDED
Binary file (1.37 kB). View file
|
|
moondream/hf/__pycache__/modeling_phi.cpython-312.pyc
ADDED
Binary file (62.2 kB). View file
|
|
moondream/hf/__pycache__/moondream.cpython-312.pyc
ADDED
Binary file (14.5 kB). View file
|
|
moondream/hf/__pycache__/region_model.cpython-312.pyc
ADDED
Binary file (4.48 kB). View file
|
|
moondream/hf/__pycache__/util.cpython-312.pyc
ADDED
Binary file (948 Bytes). View file
|
|
moondream/hf/__pycache__/vision_encoder.cpython-312.pyc
ADDED
Binary file (16.8 kB). View file
|
|
moondream/hf/configuration_moondream.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class PhiConfig(PretrainedConfig):
|
5 |
+
model_type = "phi"
|
6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
vocab_size=51200,
|
11 |
+
hidden_size=2048,
|
12 |
+
intermediate_size=8192,
|
13 |
+
num_hidden_layers=24,
|
14 |
+
num_attention_heads=32,
|
15 |
+
num_key_value_heads=None,
|
16 |
+
resid_pdrop=0.0,
|
17 |
+
embd_pdrop=0.0,
|
18 |
+
attention_dropout=0.0,
|
19 |
+
hidden_act="gelu_new",
|
20 |
+
max_position_embeddings=2048,
|
21 |
+
initializer_range=0.02,
|
22 |
+
layer_norm_eps=1e-5,
|
23 |
+
use_cache=True,
|
24 |
+
tie_word_embeddings=False,
|
25 |
+
rope_theta=10000.0,
|
26 |
+
rope_scaling=None,
|
27 |
+
partial_rotary_factor=0.5,
|
28 |
+
bos_token_id=1,
|
29 |
+
eos_token_id=2,
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
self.vocab_size = vocab_size
|
33 |
+
self.hidden_size = hidden_size
|
34 |
+
self.intermediate_size = intermediate_size
|
35 |
+
self.num_hidden_layers = num_hidden_layers
|
36 |
+
self.num_attention_heads = num_attention_heads
|
37 |
+
|
38 |
+
if num_key_value_heads is None:
|
39 |
+
num_key_value_heads = num_attention_heads
|
40 |
+
|
41 |
+
self.num_key_value_heads = num_key_value_heads
|
42 |
+
self.resid_pdrop = resid_pdrop
|
43 |
+
self.embd_pdrop = embd_pdrop
|
44 |
+
self.attention_dropout = attention_dropout
|
45 |
+
self.hidden_act = hidden_act
|
46 |
+
self.max_position_embeddings = max_position_embeddings
|
47 |
+
self.initializer_range = initializer_range
|
48 |
+
self.layer_norm_eps = layer_norm_eps
|
49 |
+
self.use_cache = use_cache
|
50 |
+
self.rope_theta = rope_theta
|
51 |
+
self.rope_scaling = rope_scaling
|
52 |
+
self.partial_rotary_factor = partial_rotary_factor
|
53 |
+
self._rope_scaling_validation()
|
54 |
+
|
55 |
+
super().__init__(
|
56 |
+
bos_token_id=bos_token_id,
|
57 |
+
eos_token_id=eos_token_id,
|
58 |
+
tie_word_embeddings=tie_word_embeddings,
|
59 |
+
**kwargs,
|
60 |
+
)
|
61 |
+
|
62 |
+
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
63 |
+
def _rope_scaling_validation(self):
|
64 |
+
"""
|
65 |
+
Validate the `rope_scaling` configuration.
|
66 |
+
"""
|
67 |
+
if self.rope_scaling is None:
|
68 |
+
return
|
69 |
+
|
70 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
71 |
+
raise ValueError(
|
72 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
73 |
+
f"got {self.rope_scaling}"
|
74 |
+
)
|
75 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
76 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
77 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
78 |
+
raise ValueError(
|
79 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
80 |
+
)
|
81 |
+
if (
|
82 |
+
rope_scaling_factor is None
|
83 |
+
or not isinstance(rope_scaling_factor, float)
|
84 |
+
or rope_scaling_factor <= 1.0
|
85 |
+
):
|
86 |
+
raise ValueError(
|
87 |
+
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
class MoondreamConfig(PretrainedConfig):
|
92 |
+
model_type = "moondream1"
|
93 |
+
|
94 |
+
def __init__(self, **kwargs):
|
95 |
+
self.text_config = PhiConfig(**kwargs.pop("text_config", {}))
|
96 |
+
super().__init__(**kwargs)
|
moondream/hf/fourier_features.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from https://github.com/crowsonkb/k-diffusion/blob/transformer-model-v2/k_diffusion/layers.py
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
|
9 |
+
class FourierFeatures(nn.Module):
|
10 |
+
def __init__(self, in_features, out_features, std=1.0):
|
11 |
+
super().__init__()
|
12 |
+
assert out_features % 2 == 0
|
13 |
+
self.register_buffer(
|
14 |
+
"weight", torch.randn([out_features // 2, in_features]) * std
|
15 |
+
)
|
16 |
+
|
17 |
+
def forward(self, input):
|
18 |
+
f = 2 * math.pi * input @ self.weight.T
|
19 |
+
return torch.cat([f.cos(), f.sin()], dim=-1)
|
moondream/hf/modeling_phi.py
ADDED
@@ -0,0 +1,1477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""PyTorch Phi model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from packaging import version
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import CrossEntropyLoss
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
28 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
29 |
+
from transformers.modeling_outputs import (
|
30 |
+
BaseModelOutputWithPast,
|
31 |
+
CausalLMOutputWithPast,
|
32 |
+
)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
get_torch_version,
|
38 |
+
is_flash_attn_2_available,
|
39 |
+
is_flash_attn_greater_or_equal_2_10,
|
40 |
+
is_torchdynamo_compiling,
|
41 |
+
logging,
|
42 |
+
replace_return_docstrings,
|
43 |
+
)
|
44 |
+
|
45 |
+
from .configuration_moondream import PhiConfig
|
46 |
+
|
47 |
+
if is_flash_attn_2_available():
|
48 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
_CONFIG_FOR_DOC = "PhiConfig"
|
54 |
+
|
55 |
+
|
56 |
+
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
57 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
58 |
+
attention_mask: torch.Tensor,
|
59 |
+
sequence_length: int,
|
60 |
+
target_length: int,
|
61 |
+
dtype: torch.dtype,
|
62 |
+
device: torch.device,
|
63 |
+
min_dtype: float,
|
64 |
+
cache_position: torch.Tensor,
|
65 |
+
batch_size: int,
|
66 |
+
):
|
67 |
+
"""
|
68 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
69 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
attention_mask (`torch.Tensor`):
|
73 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
74 |
+
sequence_length (`int`):
|
75 |
+
The sequence length being processed.
|
76 |
+
target_length (`int`):
|
77 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
78 |
+
dtype (`torch.dtype`):
|
79 |
+
The dtype to use for the 4D attention mask.
|
80 |
+
device (`torch.device`):
|
81 |
+
The device to plcae the 4D attention mask on.
|
82 |
+
min_dtype (`float`):
|
83 |
+
The minimum value representable with the dtype `dtype`.
|
84 |
+
cache_position (`torch.Tensor`):
|
85 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
86 |
+
batch_size (`torch.Tensor`):
|
87 |
+
Batch size.
|
88 |
+
"""
|
89 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
90 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
91 |
+
causal_mask = attention_mask
|
92 |
+
else:
|
93 |
+
causal_mask = torch.full(
|
94 |
+
(sequence_length, target_length),
|
95 |
+
fill_value=min_dtype,
|
96 |
+
dtype=dtype,
|
97 |
+
device=device,
|
98 |
+
)
|
99 |
+
if sequence_length != 1:
|
100 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
101 |
+
causal_mask *= torch.arange(
|
102 |
+
target_length, device=device
|
103 |
+
) > cache_position.reshape(-1, 1)
|
104 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
105 |
+
if attention_mask is not None:
|
106 |
+
causal_mask = (
|
107 |
+
causal_mask.clone()
|
108 |
+
) # copy to contiguous memory for in-place edit
|
109 |
+
mask_length = attention_mask.shape[-1]
|
110 |
+
padding_mask = (
|
111 |
+
causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
112 |
+
)
|
113 |
+
padding_mask = padding_mask == 0
|
114 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
115 |
+
:, :, :, :mask_length
|
116 |
+
].masked_fill(padding_mask, min_dtype)
|
117 |
+
|
118 |
+
return causal_mask
|
119 |
+
|
120 |
+
|
121 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Phi
|
122 |
+
class PhiRotaryEmbedding(nn.Module):
|
123 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
124 |
+
super().__init__()
|
125 |
+
|
126 |
+
self.dim = dim
|
127 |
+
self.max_position_embeddings = max_position_embeddings
|
128 |
+
self.base = base
|
129 |
+
inv_freq = 1.0 / (
|
130 |
+
self.base
|
131 |
+
** (
|
132 |
+
torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device)
|
133 |
+
/ self.dim
|
134 |
+
)
|
135 |
+
)
|
136 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
137 |
+
|
138 |
+
# Build here to make `torch.jit.trace` work.
|
139 |
+
self._set_cos_sin_cache(
|
140 |
+
seq_len=max_position_embeddings,
|
141 |
+
device=self.inv_freq.device,
|
142 |
+
dtype=torch.get_default_dtype(),
|
143 |
+
)
|
144 |
+
|
145 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
146 |
+
self.max_seq_len_cached = seq_len
|
147 |
+
t = torch.arange(
|
148 |
+
self.max_seq_len_cached, device=device, dtype=torch.int64
|
149 |
+
).type_as(self.inv_freq)
|
150 |
+
|
151 |
+
freqs = torch.outer(t, self.inv_freq)
|
152 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
153 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
154 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
155 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
156 |
+
|
157 |
+
def forward(self, x, seq_len=None):
|
158 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
159 |
+
if seq_len > self.max_seq_len_cached:
|
160 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
161 |
+
|
162 |
+
return (
|
163 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
164 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->Phi
|
169 |
+
class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding):
|
170 |
+
"""PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
171 |
+
|
172 |
+
def __init__(
|
173 |
+
self,
|
174 |
+
dim,
|
175 |
+
max_position_embeddings=2048,
|
176 |
+
base=10000,
|
177 |
+
device=None,
|
178 |
+
scaling_factor=1.0,
|
179 |
+
):
|
180 |
+
self.scaling_factor = scaling_factor
|
181 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
182 |
+
|
183 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
184 |
+
self.max_seq_len_cached = seq_len
|
185 |
+
t = torch.arange(
|
186 |
+
self.max_seq_len_cached, device=device, dtype=torch.int64
|
187 |
+
).type_as(self.inv_freq)
|
188 |
+
t = t / self.scaling_factor
|
189 |
+
|
190 |
+
freqs = torch.outer(t, self.inv_freq)
|
191 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
192 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
193 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
194 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
195 |
+
|
196 |
+
|
197 |
+
# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->Phi
|
198 |
+
class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding):
|
199 |
+
"""PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
200 |
+
|
201 |
+
def __init__(
|
202 |
+
self,
|
203 |
+
dim,
|
204 |
+
max_position_embeddings=2048,
|
205 |
+
base=10000,
|
206 |
+
device=None,
|
207 |
+
scaling_factor=1.0,
|
208 |
+
):
|
209 |
+
self.scaling_factor = scaling_factor
|
210 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
211 |
+
|
212 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
213 |
+
self.max_seq_len_cached = seq_len
|
214 |
+
|
215 |
+
if seq_len > self.max_position_embeddings:
|
216 |
+
base = self.base * (
|
217 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings)
|
218 |
+
- (self.scaling_factor - 1)
|
219 |
+
) ** (self.dim / (self.dim - 2))
|
220 |
+
inv_freq = 1.0 / (
|
221 |
+
base
|
222 |
+
** (
|
223 |
+
torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device)
|
224 |
+
/ self.dim
|
225 |
+
)
|
226 |
+
)
|
227 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
228 |
+
|
229 |
+
t = torch.arange(
|
230 |
+
self.max_seq_len_cached, device=device, dtype=torch.int64
|
231 |
+
).type_as(self.inv_freq)
|
232 |
+
|
233 |
+
freqs = torch.outer(t, self.inv_freq)
|
234 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
235 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
236 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
237 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
238 |
+
|
239 |
+
|
240 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
241 |
+
def rotate_half(x):
|
242 |
+
"""Rotates half the hidden dims of the input."""
|
243 |
+
x1 = x[..., : x.shape[-1] // 2]
|
244 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
245 |
+
return torch.cat((-x2, x1), dim=-1)
|
246 |
+
|
247 |
+
|
248 |
+
# Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb
|
249 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
250 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
q (`torch.Tensor`): The query tensor.
|
254 |
+
k (`torch.Tensor`): The key tensor.
|
255 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
256 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
257 |
+
position_ids (`torch.Tensor`):
|
258 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
259 |
+
used to pass offsetted position ids when working with a KV-cache.
|
260 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
261 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
262 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
263 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
264 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
265 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
266 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
267 |
+
Returns:
|
268 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
269 |
+
"""
|
270 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
271 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
272 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
273 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
274 |
+
return q_embed, k_embed
|
275 |
+
|
276 |
+
|
277 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi
|
278 |
+
class PhiMLP(nn.Module):
|
279 |
+
def __init__(self, config):
|
280 |
+
super().__init__()
|
281 |
+
self.config = config
|
282 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
283 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
284 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
285 |
+
|
286 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
287 |
+
hidden_states = self.fc1(hidden_states)
|
288 |
+
hidden_states = self.activation_fn(hidden_states)
|
289 |
+
hidden_states = self.fc2(hidden_states)
|
290 |
+
return hidden_states
|
291 |
+
|
292 |
+
|
293 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
|
294 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
295 |
+
"""
|
296 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
297 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
298 |
+
"""
|
299 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
300 |
+
if n_rep == 1:
|
301 |
+
return hidden_states
|
302 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
303 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
304 |
+
)
|
305 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
306 |
+
|
307 |
+
|
308 |
+
class PhiAttention(nn.Module):
|
309 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
310 |
+
|
311 |
+
def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None):
|
312 |
+
super().__init__()
|
313 |
+
self.config = config
|
314 |
+
self.layer_idx = layer_idx
|
315 |
+
if layer_idx is None:
|
316 |
+
logger.warning_once(
|
317 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
318 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
319 |
+
"when creating this class."
|
320 |
+
)
|
321 |
+
|
322 |
+
self.attention_dropout = config.attention_dropout
|
323 |
+
self.hidden_size = config.hidden_size
|
324 |
+
self.num_heads = config.num_attention_heads
|
325 |
+
self.head_dim = self.hidden_size // self.num_heads
|
326 |
+
self.num_key_value_heads = config.num_key_value_heads
|
327 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
328 |
+
self.max_position_embeddings = config.max_position_embeddings
|
329 |
+
self.rope_theta = config.rope_theta
|
330 |
+
self.partial_rotary_factor = config.partial_rotary_factor
|
331 |
+
self.is_causal = True
|
332 |
+
|
333 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
334 |
+
raise ValueError(
|
335 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
336 |
+
f" and `num_heads`: {self.num_heads})."
|
337 |
+
)
|
338 |
+
|
339 |
+
self.Wqkv = nn.Linear(
|
340 |
+
self.hidden_size, 3 * self.num_heads * self.head_dim, bias=True
|
341 |
+
)
|
342 |
+
self.out_proj = nn.Linear(
|
343 |
+
self.num_heads * self.head_dim, self.hidden_size, bias=True
|
344 |
+
)
|
345 |
+
|
346 |
+
self._init_rope()
|
347 |
+
|
348 |
+
def _init_rope(self):
|
349 |
+
if self.config.rope_scaling is None:
|
350 |
+
self.rotary_emb = PhiRotaryEmbedding(
|
351 |
+
int(self.partial_rotary_factor * self.head_dim),
|
352 |
+
max_position_embeddings=self.max_position_embeddings,
|
353 |
+
base=self.rope_theta,
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
scaling_type = self.config.rope_scaling["type"]
|
357 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
358 |
+
if scaling_type == "linear":
|
359 |
+
self.rotary_emb = PhiLinearScalingRotaryEmbedding(
|
360 |
+
int(self.partial_rotary_factor * self.head_dim),
|
361 |
+
max_position_embeddings=self.max_position_embeddings,
|
362 |
+
scaling_factor=scaling_factor,
|
363 |
+
base=self.rope_theta,
|
364 |
+
)
|
365 |
+
elif scaling_type == "dynamic":
|
366 |
+
self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding(
|
367 |
+
int(self.partial_rotary_factor * self.head_dim),
|
368 |
+
max_position_embeddings=self.max_position_embeddings,
|
369 |
+
scaling_factor=scaling_factor,
|
370 |
+
base=self.rope_theta,
|
371 |
+
)
|
372 |
+
else:
|
373 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
374 |
+
|
375 |
+
def forward(
|
376 |
+
self,
|
377 |
+
hidden_states: torch.Tensor,
|
378 |
+
attention_mask: Optional[torch.Tensor] = None,
|
379 |
+
position_ids: Optional[torch.LongTensor] = None,
|
380 |
+
past_key_value: Optional[Cache] = None,
|
381 |
+
output_attentions: bool = False,
|
382 |
+
use_cache: bool = False,
|
383 |
+
cache_position: Optional[torch.LongTensor] = None,
|
384 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
385 |
+
bsz, q_len, _ = hidden_states.size()
|
386 |
+
|
387 |
+
query_states, key_states, value_states = self.Wqkv(hidden_states).chunk(
|
388 |
+
3, dim=-1
|
389 |
+
)
|
390 |
+
|
391 |
+
query_states = query_states.view(
|
392 |
+
bsz, q_len, self.num_heads, self.head_dim
|
393 |
+
).transpose(1, 2)
|
394 |
+
key_states = key_states.view(
|
395 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
396 |
+
).transpose(1, 2)
|
397 |
+
value_states = value_states.view(
|
398 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
399 |
+
).transpose(1, 2)
|
400 |
+
|
401 |
+
kv_seq_len = key_states.shape[-2]
|
402 |
+
if past_key_value is not None:
|
403 |
+
if self.layer_idx is None:
|
404 |
+
raise ValueError(
|
405 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
406 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
407 |
+
"with a layer index."
|
408 |
+
)
|
409 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
410 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
411 |
+
|
412 |
+
# Partial rotary embedding
|
413 |
+
query_rot, query_pass = (
|
414 |
+
query_states[..., : self.rotary_emb.dim],
|
415 |
+
query_states[..., self.rotary_emb.dim :],
|
416 |
+
)
|
417 |
+
key_rot, key_pass = (
|
418 |
+
key_states[..., : self.rotary_emb.dim],
|
419 |
+
key_states[..., self.rotary_emb.dim :],
|
420 |
+
)
|
421 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
422 |
+
query_rot, key_rot = apply_rotary_pos_emb(
|
423 |
+
query_rot, key_rot, cos, sin, position_ids
|
424 |
+
)
|
425 |
+
|
426 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
427 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
428 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
429 |
+
|
430 |
+
if past_key_value is not None:
|
431 |
+
cache_kwargs = {
|
432 |
+
"sin": sin,
|
433 |
+
"cos": cos,
|
434 |
+
"partial_rotation_size": self.rotary_emb.dim,
|
435 |
+
"cache_position": cache_position,
|
436 |
+
}
|
437 |
+
key_states, value_states = past_key_value.update(
|
438 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
439 |
+
)
|
440 |
+
|
441 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
442 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
443 |
+
|
444 |
+
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
|
445 |
+
attn_weights = torch.matmul(
|
446 |
+
query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3)
|
447 |
+
) / math.sqrt(self.head_dim)
|
448 |
+
|
449 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
450 |
+
raise ValueError(
|
451 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
452 |
+
f" {attn_weights.size()}"
|
453 |
+
)
|
454 |
+
|
455 |
+
if attention_mask is not None:
|
456 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
457 |
+
attn_weights += causal_mask
|
458 |
+
|
459 |
+
# upcast attention to fp32
|
460 |
+
attn_weights = nn.functional.softmax(
|
461 |
+
attn_weights, dim=-1, dtype=torch.float32
|
462 |
+
).to(value_states.dtype)
|
463 |
+
attn_weights = nn.functional.dropout(
|
464 |
+
attn_weights, p=self.attention_dropout, training=self.training
|
465 |
+
)
|
466 |
+
|
467 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
468 |
+
|
469 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
470 |
+
raise ValueError(
|
471 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
472 |
+
f" {attn_output.size()}"
|
473 |
+
)
|
474 |
+
|
475 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
476 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
477 |
+
|
478 |
+
attn_output = self.out_proj(attn_output)
|
479 |
+
|
480 |
+
if not output_attentions:
|
481 |
+
attn_weights = None
|
482 |
+
|
483 |
+
return attn_output, attn_weights, past_key_value
|
484 |
+
|
485 |
+
|
486 |
+
class PhiFlashAttention2(PhiAttention):
|
487 |
+
"""
|
488 |
+
Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays
|
489 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
490 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
491 |
+
"""
|
492 |
+
|
493 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
494 |
+
def __init__(self, *args, **kwargs):
|
495 |
+
super().__init__(*args, **kwargs)
|
496 |
+
|
497 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
498 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
499 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
500 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
501 |
+
|
502 |
+
def forward(
|
503 |
+
self,
|
504 |
+
hidden_states: torch.Tensor,
|
505 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
506 |
+
position_ids: Optional[torch.LongTensor] = None,
|
507 |
+
past_key_value: Optional[Cache] = None,
|
508 |
+
output_attentions: bool = False,
|
509 |
+
use_cache: bool = False,
|
510 |
+
cache_position: Optional[torch.LongTensor] = None,
|
511 |
+
**kwargs,
|
512 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
513 |
+
# PhiFlashAttention2 attention does not support output_attentions
|
514 |
+
|
515 |
+
output_attentions = False
|
516 |
+
|
517 |
+
bsz, q_len, _ = hidden_states.size()
|
518 |
+
|
519 |
+
query_states, key_states, value_states = self.Wqkv(hidden_states).chunk(
|
520 |
+
3, dim=-1
|
521 |
+
)
|
522 |
+
|
523 |
+
# Flash attention requires the input to have the shape
|
524 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
525 |
+
# therefore we just need to keep the original shape
|
526 |
+
query_states = query_states.view(
|
527 |
+
bsz, q_len, self.num_heads, self.head_dim
|
528 |
+
).transpose(1, 2)
|
529 |
+
key_states = key_states.view(
|
530 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
531 |
+
).transpose(1, 2)
|
532 |
+
value_states = value_states.view(
|
533 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
534 |
+
).transpose(1, 2)
|
535 |
+
|
536 |
+
kv_seq_len = key_states.shape[-2]
|
537 |
+
if past_key_value is not None:
|
538 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
539 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
540 |
+
|
541 |
+
# Partial rotary embedding
|
542 |
+
query_rot, query_pass = (
|
543 |
+
query_states[..., : self.rotary_emb.dim],
|
544 |
+
query_states[..., self.rotary_emb.dim :],
|
545 |
+
)
|
546 |
+
key_rot, key_pass = (
|
547 |
+
key_states[..., : self.rotary_emb.dim],
|
548 |
+
key_states[..., self.rotary_emb.dim :],
|
549 |
+
)
|
550 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
551 |
+
query_rot, key_rot = apply_rotary_pos_emb(
|
552 |
+
query_rot, key_rot, cos, sin, position_ids
|
553 |
+
)
|
554 |
+
|
555 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
556 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
557 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
558 |
+
|
559 |
+
if past_key_value is not None:
|
560 |
+
cache_kwargs = {
|
561 |
+
"sin": sin,
|
562 |
+
"cos": cos,
|
563 |
+
"partial_rotation_size": self.rotary_emb.dim,
|
564 |
+
"cache_position": cache_position,
|
565 |
+
}
|
566 |
+
key_states, value_states = past_key_value.update(
|
567 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
568 |
+
)
|
569 |
+
|
570 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
571 |
+
# to be able to avoid many of these transpose/reshape/view.
|
572 |
+
query_states = query_states.transpose(1, 2)
|
573 |
+
key_states = key_states.transpose(1, 2)
|
574 |
+
value_states = value_states.transpose(1, 2)
|
575 |
+
|
576 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
577 |
+
|
578 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
579 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
580 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
581 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
582 |
+
# in fp32.
|
583 |
+
|
584 |
+
if query_states.dtype == torch.float32:
|
585 |
+
if torch.is_autocast_enabled():
|
586 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
587 |
+
# Handle the case where the model is quantized
|
588 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
589 |
+
target_dtype = self.config._pre_quantization_dtype
|
590 |
+
else:
|
591 |
+
target_dtype = self.q_proj.weight.dtype
|
592 |
+
|
593 |
+
logger.warning_once(
|
594 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
595 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
596 |
+
f" {target_dtype}."
|
597 |
+
)
|
598 |
+
|
599 |
+
query_states = query_states.to(target_dtype)
|
600 |
+
key_states = key_states.to(target_dtype)
|
601 |
+
value_states = value_states.to(target_dtype)
|
602 |
+
|
603 |
+
attn_output = _flash_attention_forward(
|
604 |
+
query_states,
|
605 |
+
key_states,
|
606 |
+
value_states,
|
607 |
+
attention_mask,
|
608 |
+
q_len,
|
609 |
+
position_ids=position_ids,
|
610 |
+
dropout=attn_dropout,
|
611 |
+
softmax_scale=None,
|
612 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
613 |
+
is_causal=self.is_causal,
|
614 |
+
)
|
615 |
+
|
616 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
617 |
+
attn_output = self.out_proj(attn_output)
|
618 |
+
|
619 |
+
if not output_attentions:
|
620 |
+
attn_weights = None
|
621 |
+
|
622 |
+
return attn_output, attn_weights, past_key_value
|
623 |
+
|
624 |
+
|
625 |
+
class PhiSdpaAttention(PhiAttention):
|
626 |
+
def __init__(self, *args, **kwargs):
|
627 |
+
super().__init__(*args, **kwargs)
|
628 |
+
self.require_contiguous_qkv = version.parse(
|
629 |
+
get_torch_version()
|
630 |
+
) < version.parse("2.2.0")
|
631 |
+
|
632 |
+
"""
|
633 |
+
SDPA attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
634 |
+
`PhiAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
635 |
+
SDPA API.
|
636 |
+
"""
|
637 |
+
|
638 |
+
# Adapted from PhiAttention.forward
|
639 |
+
def forward(
|
640 |
+
self,
|
641 |
+
hidden_states: torch.Tensor,
|
642 |
+
attention_mask: Optional[torch.Tensor] = None,
|
643 |
+
position_ids: Optional[torch.LongTensor] = None,
|
644 |
+
past_key_value: Optional[Cache] = None,
|
645 |
+
output_attentions: bool = False,
|
646 |
+
use_cache: bool = False,
|
647 |
+
cache_position: Optional[torch.LongTensor] = None,
|
648 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
649 |
+
if output_attentions:
|
650 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
651 |
+
logger.warning_once(
|
652 |
+
"PhiModel is using PhiSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not "
|
653 |
+
"support `output_attentions=True`. Falling back to the manual attention implementation, but specifying "
|
654 |
+
"the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can "
|
655 |
+
'be removed using the argument `attn_implementation="eager"` when loading the model.'
|
656 |
+
)
|
657 |
+
return super().forward(
|
658 |
+
hidden_states=hidden_states,
|
659 |
+
attention_mask=attention_mask,
|
660 |
+
position_ids=position_ids,
|
661 |
+
past_key_value=past_key_value,
|
662 |
+
output_attentions=output_attentions,
|
663 |
+
use_cache=use_cache,
|
664 |
+
)
|
665 |
+
|
666 |
+
bsz, q_len, _ = hidden_states.size()
|
667 |
+
|
668 |
+
query_states, key_states, value_states = self.Wqkv(hidden_states).chunk(
|
669 |
+
3, dim=-1
|
670 |
+
)
|
671 |
+
|
672 |
+
query_states = query_states.view(
|
673 |
+
bsz, q_len, self.num_heads, self.head_dim
|
674 |
+
).transpose(1, 2)
|
675 |
+
key_states = key_states.view(
|
676 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
677 |
+
).transpose(1, 2)
|
678 |
+
value_states = value_states.view(
|
679 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
680 |
+
).transpose(1, 2)
|
681 |
+
|
682 |
+
kv_seq_len = key_states.shape[-2]
|
683 |
+
if past_key_value is not None:
|
684 |
+
if self.layer_idx is None:
|
685 |
+
raise ValueError(
|
686 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
687 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
688 |
+
"with a layer index."
|
689 |
+
)
|
690 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
691 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
692 |
+
|
693 |
+
# Partial rotary embedding
|
694 |
+
query_rot, query_pass = (
|
695 |
+
query_states[..., : self.rotary_emb.dim],
|
696 |
+
query_states[..., self.rotary_emb.dim :],
|
697 |
+
)
|
698 |
+
key_rot, key_pass = (
|
699 |
+
key_states[..., : self.rotary_emb.dim],
|
700 |
+
key_states[..., self.rotary_emb.dim :],
|
701 |
+
)
|
702 |
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
703 |
+
query_rot, key_rot = apply_rotary_pos_emb(
|
704 |
+
query_rot, key_rot, cos, sin, position_ids
|
705 |
+
)
|
706 |
+
|
707 |
+
# [batch_size, seq_length, num_heads, head_dim]
|
708 |
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
709 |
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
710 |
+
|
711 |
+
if past_key_value is not None:
|
712 |
+
cache_kwargs = {
|
713 |
+
"sin": sin,
|
714 |
+
"cos": cos,
|
715 |
+
"partial_rotation_size": self.rotary_emb.dim,
|
716 |
+
"cache_position": cache_position,
|
717 |
+
}
|
718 |
+
key_states, value_states = past_key_value.update(
|
719 |
+
key_states, value_states, self.layer_idx, cache_kwargs
|
720 |
+
)
|
721 |
+
|
722 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
723 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
724 |
+
|
725 |
+
causal_mask = attention_mask
|
726 |
+
if attention_mask is not None:
|
727 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
728 |
+
|
729 |
+
# SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
|
730 |
+
# attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0.
|
731 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577
|
732 |
+
if (
|
733 |
+
self.require_contiguous_qkv
|
734 |
+
and query_states.device.type == "cuda"
|
735 |
+
and attention_mask is not None
|
736 |
+
):
|
737 |
+
query_states = query_states.contiguous()
|
738 |
+
key_states = key_states.contiguous()
|
739 |
+
value_states = value_states.contiguous()
|
740 |
+
|
741 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
742 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
743 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
744 |
+
|
745 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
746 |
+
query_states,
|
747 |
+
key_states,
|
748 |
+
value_states,
|
749 |
+
attn_mask=causal_mask,
|
750 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
751 |
+
is_causal=is_causal,
|
752 |
+
)
|
753 |
+
|
754 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
755 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
756 |
+
|
757 |
+
attn_output = self.out_proj(attn_output)
|
758 |
+
|
759 |
+
return attn_output, None, past_key_value
|
760 |
+
|
761 |
+
|
762 |
+
PHI_ATTENTION_CLASSES = {
|
763 |
+
"eager": PhiAttention,
|
764 |
+
"flash_attention_2": PhiFlashAttention2,
|
765 |
+
"sdpa": PhiSdpaAttention,
|
766 |
+
}
|
767 |
+
|
768 |
+
|
769 |
+
class PhiDecoderLayer(nn.Module):
|
770 |
+
def __init__(self, config: PhiConfig, layer_idx: int):
|
771 |
+
super().__init__()
|
772 |
+
self.mixer = PHI_ATTENTION_CLASSES[config._attn_implementation](
|
773 |
+
config, layer_idx=layer_idx
|
774 |
+
)
|
775 |
+
self.mlp = PhiMLP(config)
|
776 |
+
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
777 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
778 |
+
|
779 |
+
def forward(
|
780 |
+
self,
|
781 |
+
hidden_states: torch.Tensor,
|
782 |
+
attention_mask: Optional[torch.Tensor] = None,
|
783 |
+
position_ids: Optional[torch.LongTensor] = None,
|
784 |
+
output_attentions: Optional[bool] = False,
|
785 |
+
use_cache: Optional[bool] = False,
|
786 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
787 |
+
cache_position: Optional[torch.LongTensor] = None,
|
788 |
+
**kwargs,
|
789 |
+
) -> Tuple[
|
790 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
791 |
+
]:
|
792 |
+
"""
|
793 |
+
Args:
|
794 |
+
hidden_states (`torch.FloatTensor`):
|
795 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
796 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
797 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
798 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
799 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
800 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
801 |
+
output_attentions (`bool`, *optional*):
|
802 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
803 |
+
returned tensors for more detail.
|
804 |
+
use_cache (`bool`, *optional*):
|
805 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
806 |
+
(see `past_key_values`).
|
807 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
808 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
809 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
810 |
+
kwargs (`dict`, *optional*):
|
811 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
812 |
+
into the model
|
813 |
+
"""
|
814 |
+
|
815 |
+
residual = hidden_states
|
816 |
+
|
817 |
+
hidden_states = self.ln(hidden_states)
|
818 |
+
|
819 |
+
# Self Attention
|
820 |
+
attn_outputs, self_attn_weights, present_key_value = self.mixer(
|
821 |
+
hidden_states=hidden_states,
|
822 |
+
attention_mask=attention_mask,
|
823 |
+
position_ids=position_ids,
|
824 |
+
past_key_value=past_key_value,
|
825 |
+
output_attentions=output_attentions,
|
826 |
+
use_cache=use_cache,
|
827 |
+
cache_position=cache_position,
|
828 |
+
)
|
829 |
+
attn_outputs = self.resid_dropout(attn_outputs)
|
830 |
+
|
831 |
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
832 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
833 |
+
outputs = (hidden_states,)
|
834 |
+
|
835 |
+
if output_attentions:
|
836 |
+
outputs += (self_attn_weights,)
|
837 |
+
|
838 |
+
if use_cache:
|
839 |
+
outputs += (present_key_value,)
|
840 |
+
|
841 |
+
return outputs
|
842 |
+
|
843 |
+
|
844 |
+
PHI_START_DOCSTRING = r"""
|
845 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
846 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
847 |
+
etc.)
|
848 |
+
|
849 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
850 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
851 |
+
and behavior.
|
852 |
+
|
853 |
+
Parameters:
|
854 |
+
config ([`PhiConfig`]):
|
855 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
856 |
+
load the weights associated with the model, only the configuration. Check out the
|
857 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
858 |
+
"""
|
859 |
+
|
860 |
+
|
861 |
+
@add_start_docstrings(
|
862 |
+
"The bare Phi Model outputting raw hidden-states without any specific head on top.",
|
863 |
+
PHI_START_DOCSTRING,
|
864 |
+
)
|
865 |
+
class PhiPreTrainedModel(PreTrainedModel):
|
866 |
+
config_class = PhiConfig
|
867 |
+
base_model_prefix = "model"
|
868 |
+
supports_gradient_checkpointing = True
|
869 |
+
_no_split_modules = ["PhiDecoderLayer"]
|
870 |
+
_skip_keys_device_placement = "past_key_values"
|
871 |
+
_supports_flash_attn_2 = True
|
872 |
+
_supports_sdpa = True
|
873 |
+
_supports_cache_class = True
|
874 |
+
|
875 |
+
def _init_weights(self, module):
|
876 |
+
std = self.config.initializer_range
|
877 |
+
if isinstance(module, nn.Linear):
|
878 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
879 |
+
if module.bias is not None:
|
880 |
+
module.bias.data.zero_()
|
881 |
+
elif isinstance(module, nn.Embedding):
|
882 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
883 |
+
if module.padding_idx is not None:
|
884 |
+
module.weight.data[module.padding_idx].zero_()
|
885 |
+
|
886 |
+
|
887 |
+
class Embedding(nn.Module):
|
888 |
+
def __init__(self, config: PhiConfig):
|
889 |
+
super().__init__()
|
890 |
+
self.wte = nn.Embedding(
|
891 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
892 |
+
)
|
893 |
+
|
894 |
+
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
895 |
+
return self.wte(input_ids)
|
896 |
+
|
897 |
+
|
898 |
+
PHI_INPUTS_DOCSTRING = r"""
|
899 |
+
Args:
|
900 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
901 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
902 |
+
it.
|
903 |
+
|
904 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
905 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
906 |
+
|
907 |
+
[What are input IDs?](../glossary#input-ids)
|
908 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
909 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
910 |
+
|
911 |
+
- 1 for tokens that are **not masked**,
|
912 |
+
- 0 for tokens that are **masked**.
|
913 |
+
|
914 |
+
[What are attention masks?](../glossary#attention-mask)
|
915 |
+
|
916 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
917 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
918 |
+
|
919 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
920 |
+
`past_key_values`).
|
921 |
+
|
922 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
923 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
924 |
+
information on the default strategy.
|
925 |
+
|
926 |
+
- 1 indicates the head is **not masked**,
|
927 |
+
- 0 indicates the head is **masked**.
|
928 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
929 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
930 |
+
config.n_positions - 1]`.
|
931 |
+
|
932 |
+
[What are position IDs?](../glossary#position-ids)
|
933 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
934 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
935 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
936 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
937 |
+
|
938 |
+
Two formats are allowed:
|
939 |
+
- a [`~cache_utils.Cache`] instance;
|
940 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
941 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
942 |
+
cache format.
|
943 |
+
|
944 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
945 |
+
legacy cache format will be returned.
|
946 |
+
|
947 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
948 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
949 |
+
of shape `(batch_size, sequence_length)`.
|
950 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
951 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
952 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
953 |
+
model's internal embedding lookup matrix.
|
954 |
+
use_cache (`bool`, *optional*):
|
955 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
956 |
+
`past_key_values`).
|
957 |
+
output_attentions (`bool`, *optional*):
|
958 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
959 |
+
tensors for more detail.
|
960 |
+
output_hidden_states (`bool`, *optional*):
|
961 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
962 |
+
more detail.
|
963 |
+
return_dict (`bool`, *optional*):
|
964 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
965 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
966 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
967 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
968 |
+
the complete sequence length.
|
969 |
+
"""
|
970 |
+
|
971 |
+
|
972 |
+
@add_start_docstrings(
|
973 |
+
"The bare Phi Model outputting raw hidden-states without any specific head on top.",
|
974 |
+
PHI_START_DOCSTRING,
|
975 |
+
)
|
976 |
+
class PhiModel(PhiPreTrainedModel):
|
977 |
+
"""
|
978 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`]
|
979 |
+
|
980 |
+
Args:
|
981 |
+
config: PhiConfig
|
982 |
+
"""
|
983 |
+
|
984 |
+
def __init__(self, config: PhiConfig):
|
985 |
+
super().__init__(config)
|
986 |
+
self.padding_idx = config.pad_token_id
|
987 |
+
self.vocab_size = config.vocab_size
|
988 |
+
|
989 |
+
self.embd = Embedding(config)
|
990 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
991 |
+
self.h = nn.ModuleList(
|
992 |
+
[
|
993 |
+
PhiDecoderLayer(config, layer_idx)
|
994 |
+
for layer_idx in range(config.num_hidden_layers)
|
995 |
+
]
|
996 |
+
)
|
997 |
+
|
998 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
999 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
1000 |
+
|
1001 |
+
self.gradient_checkpointing = False
|
1002 |
+
# Initialize weights and apply final processing
|
1003 |
+
self.post_init()
|
1004 |
+
|
1005 |
+
def get_input_embeddings(self):
|
1006 |
+
return self.embd.wte
|
1007 |
+
|
1008 |
+
def set_input_embeddings(self, value):
|
1009 |
+
self.embd.wte = value
|
1010 |
+
|
1011 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
1012 |
+
def forward(
|
1013 |
+
self,
|
1014 |
+
input_ids: torch.LongTensor = None,
|
1015 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1016 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1017 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1018 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1019 |
+
use_cache: Optional[bool] = None,
|
1020 |
+
output_attentions: Optional[bool] = None,
|
1021 |
+
output_hidden_states: Optional[bool] = None,
|
1022 |
+
return_dict: Optional[bool] = None,
|
1023 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1024 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1025 |
+
output_attentions = (
|
1026 |
+
output_attentions
|
1027 |
+
if output_attentions is not None
|
1028 |
+
else self.config.output_attentions
|
1029 |
+
)
|
1030 |
+
output_hidden_states = (
|
1031 |
+
output_hidden_states
|
1032 |
+
if output_hidden_states is not None
|
1033 |
+
else self.config.output_hidden_states
|
1034 |
+
)
|
1035 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1036 |
+
|
1037 |
+
return_dict = (
|
1038 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1042 |
+
raise ValueError(
|
1043 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
if self.gradient_checkpointing and self.training:
|
1047 |
+
if use_cache:
|
1048 |
+
logger.warning_once(
|
1049 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1050 |
+
)
|
1051 |
+
use_cache = False
|
1052 |
+
|
1053 |
+
use_legacy_cache = False
|
1054 |
+
if use_cache and not isinstance(past_key_values, Cache) and not self.training:
|
1055 |
+
use_legacy_cache = True
|
1056 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1057 |
+
logger.warning_once(
|
1058 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
1059 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/internal/generation_utils#transformers.Cache)"
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
if inputs_embeds is None:
|
1063 |
+
inputs_embeds = self.embd(input_ids)
|
1064 |
+
|
1065 |
+
if cache_position is None:
|
1066 |
+
past_seen_tokens = (
|
1067 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
1068 |
+
)
|
1069 |
+
cache_position = torch.arange(
|
1070 |
+
past_seen_tokens,
|
1071 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
1072 |
+
device=inputs_embeds.device,
|
1073 |
+
)
|
1074 |
+
if position_ids is None:
|
1075 |
+
position_ids = cache_position.unsqueeze(0)
|
1076 |
+
|
1077 |
+
causal_mask = self._update_causal_mask(
|
1078 |
+
attention_mask,
|
1079 |
+
inputs_embeds,
|
1080 |
+
cache_position,
|
1081 |
+
past_key_values,
|
1082 |
+
output_attentions,
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
hidden_states = inputs_embeds
|
1086 |
+
|
1087 |
+
# decoder layers
|
1088 |
+
all_hidden_states = () if output_hidden_states else None
|
1089 |
+
all_self_attns = () if output_attentions else None
|
1090 |
+
next_decoder_cache = None
|
1091 |
+
|
1092 |
+
for decoder_layer in self.h:
|
1093 |
+
if output_hidden_states:
|
1094 |
+
all_hidden_states += (hidden_states,)
|
1095 |
+
|
1096 |
+
if self.gradient_checkpointing and self.training:
|
1097 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1098 |
+
decoder_layer.__call__,
|
1099 |
+
hidden_states,
|
1100 |
+
causal_mask,
|
1101 |
+
position_ids,
|
1102 |
+
output_attentions,
|
1103 |
+
use_cache,
|
1104 |
+
past_key_values,
|
1105 |
+
cache_position,
|
1106 |
+
)
|
1107 |
+
else:
|
1108 |
+
layer_outputs = decoder_layer(
|
1109 |
+
hidden_states,
|
1110 |
+
attention_mask=causal_mask,
|
1111 |
+
position_ids=position_ids,
|
1112 |
+
past_key_value=past_key_values,
|
1113 |
+
output_attentions=output_attentions,
|
1114 |
+
use_cache=use_cache,
|
1115 |
+
cache_position=cache_position,
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
hidden_states = layer_outputs[0]
|
1119 |
+
|
1120 |
+
if use_cache:
|
1121 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1122 |
+
|
1123 |
+
if output_attentions:
|
1124 |
+
all_self_attns += (layer_outputs[1],)
|
1125 |
+
|
1126 |
+
# add hidden states from the last decoder layer
|
1127 |
+
if output_hidden_states:
|
1128 |
+
all_hidden_states += (hidden_states,)
|
1129 |
+
|
1130 |
+
next_cache = None
|
1131 |
+
if use_cache:
|
1132 |
+
next_cache = (
|
1133 |
+
next_decoder_cache.to_legacy_cache()
|
1134 |
+
if use_legacy_cache
|
1135 |
+
else next_decoder_cache
|
1136 |
+
)
|
1137 |
+
if not return_dict:
|
1138 |
+
return tuple(
|
1139 |
+
v
|
1140 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1141 |
+
if v is not None
|
1142 |
+
)
|
1143 |
+
return BaseModelOutputWithPast(
|
1144 |
+
last_hidden_state=hidden_states,
|
1145 |
+
past_key_values=next_cache,
|
1146 |
+
hidden_states=all_hidden_states,
|
1147 |
+
attentions=all_self_attns,
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
|
1151 |
+
def _update_causal_mask(
|
1152 |
+
self,
|
1153 |
+
attention_mask: torch.Tensor,
|
1154 |
+
input_tensor: torch.Tensor,
|
1155 |
+
cache_position: torch.Tensor,
|
1156 |
+
past_key_values: Cache,
|
1157 |
+
output_attentions: bool,
|
1158 |
+
):
|
1159 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1160 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1161 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1162 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1163 |
+
|
1164 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1165 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1166 |
+
return attention_mask
|
1167 |
+
return None
|
1168 |
+
|
1169 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1170 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1171 |
+
# to infer the attention mask.
|
1172 |
+
past_seen_tokens = (
|
1173 |
+
past_key_values.get_seq_length() if past_key_values is not None else 0
|
1174 |
+
)
|
1175 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1176 |
+
|
1177 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1178 |
+
if (
|
1179 |
+
self.config._attn_implementation == "sdpa"
|
1180 |
+
and not using_static_cache
|
1181 |
+
and not output_attentions
|
1182 |
+
):
|
1183 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1184 |
+
attention_mask,
|
1185 |
+
inputs_embeds=input_tensor,
|
1186 |
+
past_key_values_length=past_seen_tokens,
|
1187 |
+
is_training=self.training,
|
1188 |
+
):
|
1189 |
+
return None
|
1190 |
+
|
1191 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1192 |
+
min_dtype = torch.finfo(dtype).min
|
1193 |
+
sequence_length = input_tensor.shape[1]
|
1194 |
+
if using_static_cache:
|
1195 |
+
target_length = past_key_values.get_max_length()
|
1196 |
+
else:
|
1197 |
+
target_length = (
|
1198 |
+
attention_mask.shape[-1]
|
1199 |
+
if isinstance(attention_mask, torch.Tensor)
|
1200 |
+
else past_seen_tokens + sequence_length + 1
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1204 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1205 |
+
attention_mask,
|
1206 |
+
sequence_length=sequence_length,
|
1207 |
+
target_length=target_length,
|
1208 |
+
dtype=dtype,
|
1209 |
+
device=device,
|
1210 |
+
min_dtype=min_dtype,
|
1211 |
+
cache_position=cache_position,
|
1212 |
+
batch_size=input_tensor.shape[0],
|
1213 |
+
)
|
1214 |
+
|
1215 |
+
if (
|
1216 |
+
self.config._attn_implementation == "sdpa"
|
1217 |
+
and attention_mask is not None
|
1218 |
+
and attention_mask.device.type == "cuda"
|
1219 |
+
and not output_attentions
|
1220 |
+
):
|
1221 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1222 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1223 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1224 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
1225 |
+
causal_mask, min_dtype
|
1226 |
+
)
|
1227 |
+
|
1228 |
+
return causal_mask
|
1229 |
+
|
1230 |
+
|
1231 |
+
class CausalLMHead(nn.Module):
|
1232 |
+
"""Causal Language Modeling head. Simplified version."""
|
1233 |
+
|
1234 |
+
def __init__(self, config):
|
1235 |
+
super().__init__()
|
1236 |
+
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1237 |
+
self.linear = nn.Linear(config.hidden_size, config.vocab_size)
|
1238 |
+
|
1239 |
+
def forward(self, hidden_states):
|
1240 |
+
return self.linear(self.ln(hidden_states))
|
1241 |
+
|
1242 |
+
|
1243 |
+
class PhiForCausalLM(PhiPreTrainedModel):
|
1244 |
+
|
1245 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True
|
1246 |
+
def __init__(self, config):
|
1247 |
+
super().__init__(config)
|
1248 |
+
self.transformer = PhiModel(config)
|
1249 |
+
self.vocab_size = config.vocab_size
|
1250 |
+
self.lm_head = CausalLMHead(config)
|
1251 |
+
|
1252 |
+
# Initialize weights and apply final processing
|
1253 |
+
self.post_init()
|
1254 |
+
|
1255 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
1256 |
+
def get_input_embeddings(self):
|
1257 |
+
return self.transformer.embd.wte
|
1258 |
+
|
1259 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
1260 |
+
def set_input_embeddings(self, value):
|
1261 |
+
self.transformer.embd.wte = value
|
1262 |
+
|
1263 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
1264 |
+
def get_output_embeddings(self):
|
1265 |
+
return self.lm_head.linear
|
1266 |
+
|
1267 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
1268 |
+
def set_output_embeddings(self, new_embeddings):
|
1269 |
+
self.lm_head.linear = new_embeddings
|
1270 |
+
|
1271 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
1272 |
+
def set_decoder(self, decoder):
|
1273 |
+
self.model = decoder
|
1274 |
+
|
1275 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
1276 |
+
def get_decoder(self):
|
1277 |
+
return self.model
|
1278 |
+
|
1279 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
1280 |
+
@replace_return_docstrings(
|
1281 |
+
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
1282 |
+
)
|
1283 |
+
def forward(
|
1284 |
+
self,
|
1285 |
+
input_ids: torch.LongTensor = None,
|
1286 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1287 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1288 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1289 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1290 |
+
labels: Optional[torch.LongTensor] = None,
|
1291 |
+
use_cache: Optional[bool] = None,
|
1292 |
+
output_attentions: Optional[bool] = None,
|
1293 |
+
output_hidden_states: Optional[bool] = None,
|
1294 |
+
return_dict: Optional[bool] = None,
|
1295 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1296 |
+
num_logits_to_keep: int = 0,
|
1297 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1298 |
+
r"""
|
1299 |
+
Args:
|
1300 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1301 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1302 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1303 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1304 |
+
|
1305 |
+
num_logits_to_keep (`int`, *optional*):
|
1306 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
1307 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
1308 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
1309 |
+
|
1310 |
+
Returns:
|
1311 |
+
|
1312 |
+
Example:
|
1313 |
+
|
1314 |
+
```python
|
1315 |
+
>>> from transformers import AutoTokenizer, PhiForCausalLM
|
1316 |
+
|
1317 |
+
>>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1")
|
1318 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
|
1319 |
+
|
1320 |
+
>>> prompt = "This is an example script ."
|
1321 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1322 |
+
|
1323 |
+
>>> # Generate
|
1324 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1325 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1326 |
+
'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
|
1327 |
+
```"""
|
1328 |
+
|
1329 |
+
output_attentions = (
|
1330 |
+
output_attentions
|
1331 |
+
if output_attentions is not None
|
1332 |
+
else self.config.output_attentions
|
1333 |
+
)
|
1334 |
+
output_hidden_states = (
|
1335 |
+
output_hidden_states
|
1336 |
+
if output_hidden_states is not None
|
1337 |
+
else self.config.output_hidden_states
|
1338 |
+
)
|
1339 |
+
return_dict = (
|
1340 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1341 |
+
)
|
1342 |
+
|
1343 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1344 |
+
outputs = self.transformer(
|
1345 |
+
input_ids=input_ids,
|
1346 |
+
attention_mask=attention_mask,
|
1347 |
+
position_ids=position_ids,
|
1348 |
+
past_key_values=past_key_values,
|
1349 |
+
inputs_embeds=inputs_embeds,
|
1350 |
+
use_cache=use_cache,
|
1351 |
+
output_attentions=output_attentions,
|
1352 |
+
output_hidden_states=output_hidden_states,
|
1353 |
+
return_dict=return_dict,
|
1354 |
+
cache_position=cache_position,
|
1355 |
+
)
|
1356 |
+
|
1357 |
+
hidden_states = outputs[0]
|
1358 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]).float()
|
1359 |
+
|
1360 |
+
loss = None
|
1361 |
+
if labels is not None:
|
1362 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
1363 |
+
logits = logits.float()
|
1364 |
+
# Shift so that tokens < n predict n
|
1365 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1366 |
+
shift_labels = labels[..., 1:].contiguous()
|
1367 |
+
# Flatten the tokens
|
1368 |
+
loss_fct = CrossEntropyLoss()
|
1369 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1370 |
+
shift_labels = shift_labels.view(-1)
|
1371 |
+
# Enable model parallelism
|
1372 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1373 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1374 |
+
|
1375 |
+
if not return_dict:
|
1376 |
+
output = (logits,) + outputs[1:]
|
1377 |
+
return (loss,) + output if loss is not None else output
|
1378 |
+
|
1379 |
+
return CausalLMOutputWithPast(
|
1380 |
+
loss=loss,
|
1381 |
+
logits=logits,
|
1382 |
+
past_key_values=outputs.past_key_values,
|
1383 |
+
hidden_states=outputs.hidden_states,
|
1384 |
+
attentions=outputs.attentions,
|
1385 |
+
)
|
1386 |
+
|
1387 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
|
1388 |
+
def prepare_inputs_for_generation(
|
1389 |
+
self,
|
1390 |
+
input_ids,
|
1391 |
+
inputs_embeds=None,
|
1392 |
+
past_key_values=None,
|
1393 |
+
attention_mask=None,
|
1394 |
+
cache_position=None,
|
1395 |
+
position_ids=None,
|
1396 |
+
use_cache=True,
|
1397 |
+
num_logits_to_keep=0,
|
1398 |
+
**kwargs,
|
1399 |
+
):
|
1400 |
+
assert inputs_embeds is not None, "inputs_embeds is required"
|
1401 |
+
|
1402 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1403 |
+
if past_key_values is not None:
|
1404 |
+
# When doing custom decoding for object detection, we don't update input_ids.
|
1405 |
+
# So we will slice `inputs_embeds`` instead.
|
1406 |
+
if input_ids.shape[1] == 0:
|
1407 |
+
inputs_embeds = inputs_embeds[:, -cache_position.shape[0] :]
|
1408 |
+
else:
|
1409 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1410 |
+
|
1411 |
+
if attention_mask is not None and position_ids is None:
|
1412 |
+
# create position_ids on the fly for batch generation
|
1413 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1414 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1415 |
+
if past_key_values:
|
1416 |
+
if input_ids.shape[1] == 0:
|
1417 |
+
position_ids = position_ids[:, -inputs_embeds.shape[1] :]
|
1418 |
+
else:
|
1419 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1420 |
+
|
1421 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
|
1422 |
+
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various
|
1423 |
+
# stride during the decoding. Here, simply using `.contiguous()` is not sufficient as
|
1424 |
+
# in the batch size = 1 case, `position_ids` is already contiguous but with varying
|
1425 |
+
# stride which retriggers a capture.
|
1426 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1427 |
+
|
1428 |
+
if cache_position[0] == 0:
|
1429 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1430 |
+
else:
|
1431 |
+
# The clone here is for the same reason as for `position_ids`.
|
1432 |
+
if past_key_values is not None and input_ids.shape[1] == 0:
|
1433 |
+
model_inputs = {
|
1434 |
+
"input_ids": None,
|
1435 |
+
"inputs_embeds": inputs_embeds.clone(
|
1436 |
+
memory_format=torch.contiguous_format
|
1437 |
+
),
|
1438 |
+
}
|
1439 |
+
else:
|
1440 |
+
model_inputs = {
|
1441 |
+
"input_ids": input_ids.clone(memory_format=torch.contiguous_format),
|
1442 |
+
"inputs_embeds": None,
|
1443 |
+
}
|
1444 |
+
|
1445 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
1446 |
+
if model_inputs["inputs_embeds"] is not None:
|
1447 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1448 |
+
device = model_inputs["inputs_embeds"].device
|
1449 |
+
else:
|
1450 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1451 |
+
device = model_inputs["input_ids"].device
|
1452 |
+
|
1453 |
+
dtype = self.lm_head.weight.dtype
|
1454 |
+
min_dtype = torch.finfo(dtype).min
|
1455 |
+
|
1456 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1457 |
+
attention_mask,
|
1458 |
+
sequence_length=sequence_length,
|
1459 |
+
target_length=past_key_values.get_max_length(),
|
1460 |
+
dtype=dtype,
|
1461 |
+
device=device,
|
1462 |
+
min_dtype=min_dtype,
|
1463 |
+
cache_position=cache_position,
|
1464 |
+
batch_size=batch_size,
|
1465 |
+
)
|
1466 |
+
|
1467 |
+
model_inputs.update(
|
1468 |
+
{
|
1469 |
+
"position_ids": position_ids,
|
1470 |
+
"cache_position": cache_position,
|
1471 |
+
"past_key_values": past_key_values,
|
1472 |
+
"use_cache": use_cache,
|
1473 |
+
"attention_mask": attention_mask,
|
1474 |
+
"num_logits_to_keep": num_logits_to_keep,
|
1475 |
+
}
|
1476 |
+
)
|
1477 |
+
return model_inputs
|
moondream/hf/moondream.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Literal, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import PreTrainedModel
|
6 |
+
|
7 |
+
from .configuration_moondream import MoondreamConfig, PhiConfig
|
8 |
+
from .modeling_phi import PhiForCausalLM
|
9 |
+
from .region_model import RegionModel
|
10 |
+
from .vision_encoder import VisionEncoder
|
11 |
+
|
12 |
+
|
13 |
+
class Moondream(PreTrainedModel):
|
14 |
+
config_class = MoondreamConfig
|
15 |
+
_supports_flash_attn_2 = True
|
16 |
+
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__(config)
|
19 |
+
self.vision_encoder = VisionEncoder(
|
20 |
+
use_flash_attn=config._attn_implementation == "flash_attention_2"
|
21 |
+
)
|
22 |
+
self.region_model = RegionModel()
|
23 |
+
|
24 |
+
if type(config.text_config) == dict:
|
25 |
+
phi_config = PhiConfig(
|
26 |
+
**config.text_config, attn_implementation=config._attn_implementation
|
27 |
+
)
|
28 |
+
else:
|
29 |
+
phi_config = config.text_config
|
30 |
+
self.text_model = PhiForCausalLM(phi_config)
|
31 |
+
|
32 |
+
@property
|
33 |
+
def device(self):
|
34 |
+
return self.text_model.device
|
35 |
+
|
36 |
+
def encode_image(self, image):
|
37 |
+
with torch.no_grad():
|
38 |
+
return self.vision_encoder(image)
|
39 |
+
|
40 |
+
def input_embeds(self, prompt, image_embeds, tokenizer):
|
41 |
+
def _tokenize(txt):
|
42 |
+
return tokenizer(
|
43 |
+
txt, return_tensors="pt", add_special_tokens=False
|
44 |
+
).input_ids.to(self.device)
|
45 |
+
|
46 |
+
text_emb = self.text_model.get_input_embeddings()
|
47 |
+
|
48 |
+
# Add BOS token
|
49 |
+
embeds = []
|
50 |
+
embeds.append(
|
51 |
+
text_emb((torch.tensor([[tokenizer.bos_token_id]], device=self.device)))
|
52 |
+
)
|
53 |
+
|
54 |
+
if "<image>" not in prompt:
|
55 |
+
embeds.append(text_emb(_tokenize(prompt)))
|
56 |
+
else:
|
57 |
+
assert prompt.count("<image>") == 1
|
58 |
+
before, after = prompt.split("<image>")
|
59 |
+
if len(before) > 0:
|
60 |
+
embeds.append(text_emb(_tokenize(before)))
|
61 |
+
embeds.append(image_embeds.to(self.device))
|
62 |
+
if len(after) > 0:
|
63 |
+
embeds.append(text_emb(_tokenize(after)))
|
64 |
+
|
65 |
+
return torch.cat(embeds, dim=1)
|
66 |
+
|
67 |
+
def get_input_embeddings(self):
|
68 |
+
return self.text_model.get_input_embeddings()
|
69 |
+
|
70 |
+
def generate(
|
71 |
+
self,
|
72 |
+
image_embeds,
|
73 |
+
prompt,
|
74 |
+
tokenizer,
|
75 |
+
max_new_tokens=128,
|
76 |
+
**kwargs,
|
77 |
+
):
|
78 |
+
generate_config = {
|
79 |
+
"eos_token_id": tokenizer.eos_token_id,
|
80 |
+
"bos_token_id": tokenizer.bos_token_id,
|
81 |
+
"pad_token_id": tokenizer.bos_token_id,
|
82 |
+
"max_new_tokens": max_new_tokens,
|
83 |
+
**kwargs,
|
84 |
+
}
|
85 |
+
|
86 |
+
with torch.no_grad():
|
87 |
+
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
88 |
+
attention_mask = torch.ones(
|
89 |
+
(inputs_embeds.shape[0], inputs_embeds.shape[1]), device=self.device
|
90 |
+
)
|
91 |
+
output_ids = self.text_model.generate(
|
92 |
+
inputs_embeds=inputs_embeds,
|
93 |
+
attention_mask=attention_mask,
|
94 |
+
**generate_config,
|
95 |
+
)
|
96 |
+
|
97 |
+
return tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
98 |
+
|
99 |
+
# Note: Not ready for use yet, intended for September release.
|
100 |
+
def caption(
|
101 |
+
self,
|
102 |
+
images: List[Image.Image],
|
103 |
+
tokenizer,
|
104 |
+
length: Optional[Literal["short"]] = None,
|
105 |
+
**kwargs,
|
106 |
+
):
|
107 |
+
image_embeds = self.encode_image(images)
|
108 |
+
|
109 |
+
templated_prompts = [
|
110 |
+
f"<image>\n\n{'Short caption' if length == 'short' else 'Caption'}:"
|
111 |
+
for _ in images
|
112 |
+
]
|
113 |
+
inputs_embeds = torch.stack(
|
114 |
+
[
|
115 |
+
self.input_embeds(prompt, image_embed.unsqueeze(0), tokenizer)[0]
|
116 |
+
for prompt, image_embed in zip(templated_prompts, image_embeds)
|
117 |
+
]
|
118 |
+
)
|
119 |
+
attention_mask = torch.ones(
|
120 |
+
(inputs_embeds.shape[0], inputs_embeds.shape[1]), device=self.device
|
121 |
+
)
|
122 |
+
|
123 |
+
generate_config = {
|
124 |
+
"eos_token_id": tokenizer.eos_token_id,
|
125 |
+
"bos_token_id": tokenizer.bos_token_id,
|
126 |
+
"pad_token_id": tokenizer.bos_token_id,
|
127 |
+
"repetition_penalty": 1.2,
|
128 |
+
"max_new_tokens": 512,
|
129 |
+
**kwargs,
|
130 |
+
}
|
131 |
+
|
132 |
+
with torch.no_grad():
|
133 |
+
output_ids = self.text_model.generate(
|
134 |
+
inputs_embeds=inputs_embeds,
|
135 |
+
attention_mask=attention_mask,
|
136 |
+
**generate_config,
|
137 |
+
)
|
138 |
+
|
139 |
+
return [
|
140 |
+
x.strip()
|
141 |
+
for x in tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
142 |
+
]
|
143 |
+
|
144 |
+
def answer_question(
|
145 |
+
self,
|
146 |
+
image_embeds,
|
147 |
+
question,
|
148 |
+
tokenizer,
|
149 |
+
chat_history="",
|
150 |
+
result_queue=None,
|
151 |
+
max_new_tokens=256,
|
152 |
+
**kwargs,
|
153 |
+
):
|
154 |
+
prompt = f"<image>\n\n{chat_history}Question: {question}\n\nAnswer:"
|
155 |
+
answer = self.generate(
|
156 |
+
image_embeds,
|
157 |
+
prompt,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
max_new_tokens=max_new_tokens,
|
160 |
+
**kwargs,
|
161 |
+
)[0]
|
162 |
+
cleaned_answer = answer.strip()
|
163 |
+
|
164 |
+
# Use the result_queue to pass the result if it is provided
|
165 |
+
if result_queue:
|
166 |
+
result_queue.put(cleaned_answer)
|
167 |
+
else:
|
168 |
+
return cleaned_answer
|
169 |
+
|
170 |
+
def batch_answer(
|
171 |
+
self,
|
172 |
+
images,
|
173 |
+
prompts,
|
174 |
+
tokenizer,
|
175 |
+
**kwargs,
|
176 |
+
):
|
177 |
+
image_embeds = self.encode_image(images)
|
178 |
+
|
179 |
+
templated_prompts = [
|
180 |
+
f"<image>\n\nQuestion: {prompt}\n\nAnswer:" for prompt in prompts
|
181 |
+
]
|
182 |
+
prompt_embs = [
|
183 |
+
self.input_embeds(prompt, image_embed.unsqueeze(0), tokenizer)[0]
|
184 |
+
for prompt, image_embed in zip(templated_prompts, image_embeds)
|
185 |
+
]
|
186 |
+
|
187 |
+
bos_emb = prompt_embs[0][0]
|
188 |
+
max_len = max([p.shape[0] for p in prompt_embs])
|
189 |
+
|
190 |
+
inputs_embeds = torch.cat(
|
191 |
+
[
|
192 |
+
torch.cat([bos_emb.repeat(max_len - p.shape[0], 1), p]).unsqueeze(0)
|
193 |
+
for p in prompt_embs
|
194 |
+
],
|
195 |
+
dim=0,
|
196 |
+
)
|
197 |
+
attention_mask = torch.cat(
|
198 |
+
[
|
199 |
+
torch.cat(
|
200 |
+
[
|
201 |
+
torch.zeros(
|
202 |
+
1,
|
203 |
+
max_len - p.shape[0],
|
204 |
+
device=self.device,
|
205 |
+
dtype=torch.long,
|
206 |
+
),
|
207 |
+
torch.ones(1, p.shape[0], device=self.device, dtype=torch.long),
|
208 |
+
],
|
209 |
+
dim=1,
|
210 |
+
)
|
211 |
+
for p in prompt_embs
|
212 |
+
],
|
213 |
+
dim=0,
|
214 |
+
)
|
215 |
+
|
216 |
+
generate_config = {
|
217 |
+
"eos_token_id": tokenizer.eos_token_id,
|
218 |
+
"bos_token_id": tokenizer.bos_token_id,
|
219 |
+
"pad_token_id": tokenizer.bos_token_id,
|
220 |
+
"max_new_tokens": 512,
|
221 |
+
**kwargs,
|
222 |
+
}
|
223 |
+
|
224 |
+
with torch.no_grad():
|
225 |
+
output_ids = self.text_model.generate(
|
226 |
+
inputs_embeds=inputs_embeds,
|
227 |
+
attention_mask=attention_mask,
|
228 |
+
**generate_config,
|
229 |
+
)
|
230 |
+
|
231 |
+
return [
|
232 |
+
x.strip()
|
233 |
+
for x in tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
234 |
+
]
|
235 |
+
|
236 |
+
def detect(
|
237 |
+
self,
|
238 |
+
image: Image.Image,
|
239 |
+
query: str,
|
240 |
+
tokenizer,
|
241 |
+
max_objects=50,
|
242 |
+
):
|
243 |
+
prompt = f"<image>\n\nDetect: {query}\n\n"
|
244 |
+
image_embeds = self.encode_image(image)
|
245 |
+
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer)
|
246 |
+
generate_config = {
|
247 |
+
"eos_token_id": tokenizer.eos_token_id,
|
248 |
+
"bos_token_id": tokenizer.bos_token_id,
|
249 |
+
"pad_token_id": tokenizer.bos_token_id,
|
250 |
+
"max_new_tokens": 1,
|
251 |
+
}
|
252 |
+
|
253 |
+
past_key_values = None
|
254 |
+
generated_boxes = []
|
255 |
+
|
256 |
+
with torch.no_grad():
|
257 |
+
while len(generated_boxes) < max_objects:
|
258 |
+
# x coordinate
|
259 |
+
attention_mask = torch.ones(
|
260 |
+
(inputs_embeds.shape[0], inputs_embeds.shape[1]), device=self.device
|
261 |
+
)
|
262 |
+
output = self.text_model.generate(
|
263 |
+
inputs_embeds=inputs_embeds,
|
264 |
+
past_key_values=past_key_values,
|
265 |
+
attention_mask=attention_mask,
|
266 |
+
return_dict_in_generate=True,
|
267 |
+
output_hidden_states=True,
|
268 |
+
**generate_config,
|
269 |
+
)
|
270 |
+
if output["sequences"][0][0].item() == tokenizer.eos_token_id:
|
271 |
+
break
|
272 |
+
|
273 |
+
x_coord_hidden = output["hidden_states"][0][-1][:, -1, :]
|
274 |
+
x_coord_logits = self.region_model.decode_coordinate(x_coord_hidden)
|
275 |
+
x_coord_decoded = (
|
276 |
+
torch.argmax(x_coord_logits, dim=-1).to(torch.float32) / 1024
|
277 |
+
).to(torch.float16)
|
278 |
+
x_coord_encoded = self.region_model.encode_coordinate(
|
279 |
+
x_coord_decoded
|
280 |
+
).unsqueeze(0)
|
281 |
+
inputs_embeds = torch.cat(
|
282 |
+
[inputs_embeds, x_coord_encoded.unsqueeze(0)], dim=1
|
283 |
+
)
|
284 |
+
past_key_values = output["past_key_values"]
|
285 |
+
|
286 |
+
# y coordinate
|
287 |
+
attention_mask = torch.ones(
|
288 |
+
(inputs_embeds.shape[0], inputs_embeds.shape[1]), device=self.device
|
289 |
+
)
|
290 |
+
output = self.text_model.generate(
|
291 |
+
inputs_embeds=inputs_embeds,
|
292 |
+
past_key_values=past_key_values,
|
293 |
+
attention_mask=attention_mask,
|
294 |
+
return_dict_in_generate=True,
|
295 |
+
output_hidden_states=True,
|
296 |
+
**generate_config,
|
297 |
+
)
|
298 |
+
y_coord_hidden = output["hidden_states"][0][-1][:, -1, :]
|
299 |
+
y_coord_logits = self.region_model.decode_coordinate(y_coord_hidden)
|
300 |
+
y_coord_decoded = (
|
301 |
+
torch.argmax(y_coord_logits, dim=-1).to(torch.float32) / 1024
|
302 |
+
).to(torch.float16)
|
303 |
+
y_coord_encoded = self.region_model.encode_coordinate(
|
304 |
+
y_coord_decoded
|
305 |
+
).unsqueeze(0)
|
306 |
+
inputs_embeds = torch.cat(
|
307 |
+
[inputs_embeds, y_coord_encoded.unsqueeze(0)], dim=1
|
308 |
+
)
|
309 |
+
past_key_values = output["past_key_values"]
|
310 |
+
|
311 |
+
# size (h and w)
|
312 |
+
attention_mask = torch.ones(
|
313 |
+
(inputs_embeds.shape[0], inputs_embeds.shape[1]), device=self.device
|
314 |
+
)
|
315 |
+
output = self.text_model.generate(
|
316 |
+
inputs_embeds=inputs_embeds,
|
317 |
+
past_key_values=past_key_values,
|
318 |
+
attention_mask=attention_mask,
|
319 |
+
return_dict_in_generate=True,
|
320 |
+
output_hidden_states=True,
|
321 |
+
**generate_config,
|
322 |
+
)
|
323 |
+
size_hidden = output["hidden_states"][0][-1][:, -1, :]
|
324 |
+
size_logits = self.region_model.decode_size(size_hidden)
|
325 |
+
size_decoded = (
|
326 |
+
torch.argmax(size_logits, dim=-1).to(torch.float32) / 1024
|
327 |
+
).to(torch.float16)
|
328 |
+
size_encoded = self.region_model.encode_size(size_decoded)
|
329 |
+
inputs_embeds = torch.cat(
|
330 |
+
[inputs_embeds, size_encoded.unsqueeze(0)], dim=1
|
331 |
+
)
|
332 |
+
past_key_values = output["past_key_values"]
|
333 |
+
|
334 |
+
x_center = x_coord_decoded[0].item()
|
335 |
+
y_center = y_coord_decoded[0].item()
|
336 |
+
w_center = size_decoded[0][0].item()
|
337 |
+
h_center = size_decoded[0][1].item()
|
338 |
+
x_min = max(x_center - w_center / 2, 0)
|
339 |
+
y_min = max(y_center - h_center / 2, 0)
|
340 |
+
x_max = min(x_center + w_center / 2, 1)
|
341 |
+
y_max = min(y_center + h_center / 2, 1)
|
342 |
+
|
343 |
+
generated_boxes.append(
|
344 |
+
{
|
345 |
+
"x_min": x_min,
|
346 |
+
"y_min": y_min,
|
347 |
+
"x_max": x_max,
|
348 |
+
"y_max": y_max,
|
349 |
+
}
|
350 |
+
)
|
351 |
+
|
352 |
+
return generated_boxes
|
moondream/hf/region_model.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .fourier_features import FourierFeatures
|
5 |
+
|
6 |
+
|
7 |
+
class MLP(nn.Module):
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
in_features: int,
|
12 |
+
hidden_features: int = None,
|
13 |
+
out_features: int = None,
|
14 |
+
) -> None:
|
15 |
+
super().__init__()
|
16 |
+
out_features = out_features or in_features
|
17 |
+
hidden_features = hidden_features or in_features * 4
|
18 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
19 |
+
self.act = nn.GELU(approximate="tanh")
|
20 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
21 |
+
|
22 |
+
torch.nn.init.kaiming_normal_(
|
23 |
+
self.fc1.weight, mode="fan_in", nonlinearity="relu"
|
24 |
+
)
|
25 |
+
torch.nn.init.kaiming_normal_(
|
26 |
+
self.fc2.weight, mode="fan_in", nonlinearity="relu"
|
27 |
+
)
|
28 |
+
|
29 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
30 |
+
x = self.fc1(x)
|
31 |
+
x = self.act(x)
|
32 |
+
x = self.fc2(x)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class RegionModel(nn.Module):
|
37 |
+
def __init__(self):
|
38 |
+
super().__init__()
|
39 |
+
|
40 |
+
self.coordinate_features = FourierFeatures(1, 256)
|
41 |
+
self.coordinate_encoder = nn.Linear(256, 2048)
|
42 |
+
self.size_features = FourierFeatures(2, 512)
|
43 |
+
self.size_encoder = nn.Linear(512, 2048)
|
44 |
+
|
45 |
+
self.coordinate_decoder = MLP(2048, 8192, 1024)
|
46 |
+
self.size_decoder = MLP(2048, 8192, 2048)
|
47 |
+
|
48 |
+
def encode_coordinate(self, coordinate):
|
49 |
+
return self.coordinate_encoder(self.coordinate_features(coordinate))
|
50 |
+
|
51 |
+
def encode_size(self, size):
|
52 |
+
return self.size_encoder(self.size_features(size))
|
53 |
+
|
54 |
+
def decode_coordinate(self, logit):
|
55 |
+
return self.coordinate_decoder(logit)
|
56 |
+
|
57 |
+
def decode_size(self, logit):
|
58 |
+
o = self.size_decoder(logit)
|
59 |
+
return o.view(-1, 2, 1024)
|
60 |
+
|
61 |
+
def encode(self, position, size):
|
62 |
+
c = self.encode_coordinate(position.view(2, 1)).view(2, 2048)
|
63 |
+
return torch.stack([c[0], c[1], self.encode_size(size)], dim=0)
|
64 |
+
|
65 |
+
def decode(self, position_logits, size_logits):
|
66 |
+
return (
|
67 |
+
self.decode_coordinate(position_logits),
|
68 |
+
self.decode_size(size_logits),
|
69 |
+
)
|
moondream/hf/util.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
LATEST_REVISION = "2024-08-26"
|
4 |
+
|
5 |
+
|
6 |
+
def detect_device():
|
7 |
+
"""
|
8 |
+
Detects the appropriate device to run on, and return the device and dtype.
|
9 |
+
"""
|
10 |
+
if torch.cuda.is_available():
|
11 |
+
return torch.device("cuda"), torch.float16
|
12 |
+
elif torch.backends.mps.is_available():
|
13 |
+
return torch.device("mps"), torch.float16
|
14 |
+
else:
|
15 |
+
return torch.device("cpu"), torch.float32
|
moondream/hf/vision_encoder.py
ADDED
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
|
3 |
+
import PIL
|
4 |
+
import PIL.Image
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange
|
8 |
+
from torch import nn
|
9 |
+
from torchvision.transforms.v2 import (
|
10 |
+
Compose,
|
11 |
+
InterpolationMode,
|
12 |
+
Normalize,
|
13 |
+
Resize,
|
14 |
+
ToDtype,
|
15 |
+
ToImage,
|
16 |
+
)
|
17 |
+
from transformers.utils import is_flash_attn_2_available
|
18 |
+
|
19 |
+
try:
|
20 |
+
if is_flash_attn_2_available():
|
21 |
+
from flash_attn.modules.mha import FlashSelfAttention
|
22 |
+
else:
|
23 |
+
FlashSelfAttention = None
|
24 |
+
except ImportError:
|
25 |
+
FlashSelfAttention = None
|
26 |
+
|
27 |
+
|
28 |
+
class Attention(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self, dim, num_heads=16, use_flash_attn=False):
|
31 |
+
super().__init__()
|
32 |
+
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
33 |
+
|
34 |
+
self.num_heads = num_heads
|
35 |
+
self.head_dim = dim // num_heads
|
36 |
+
|
37 |
+
self.qkv = nn.Linear(dim, dim * 3)
|
38 |
+
self.proj = nn.Linear(dim, dim)
|
39 |
+
|
40 |
+
if use_flash_attn and FlashSelfAttention is not None:
|
41 |
+
self.flash_attn = FlashSelfAttention()
|
42 |
+
else:
|
43 |
+
self.flash_attn = None
|
44 |
+
|
45 |
+
torch.nn.init.kaiming_normal_(
|
46 |
+
self.qkv.weight, mode="fan_in", nonlinearity="relu"
|
47 |
+
)
|
48 |
+
torch.nn.init.kaiming_normal_(
|
49 |
+
self.proj.weight, mode="fan_in", nonlinearity="relu"
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
if self.flash_attn is not None:
|
54 |
+
qkv = self.qkv(x)
|
55 |
+
qkv = rearrange(
|
56 |
+
qkv, "... (three h d) -> ... three h d", three=3, h=self.num_heads
|
57 |
+
)
|
58 |
+
attn_output = self.flash_attn(qkv)
|
59 |
+
output = rearrange(attn_output, "... h d -> ... (h d)")
|
60 |
+
output = self.proj(output)
|
61 |
+
return output
|
62 |
+
else:
|
63 |
+
B, N, C = x.shape
|
64 |
+
qkv = (
|
65 |
+
self.qkv(x)
|
66 |
+
.reshape(B, N, 3, self.num_heads, self.head_dim)
|
67 |
+
.permute(2, 0, 3, 1, 4)
|
68 |
+
)
|
69 |
+
q, k, v = qkv.unbind(0)
|
70 |
+
|
71 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
72 |
+
|
73 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
74 |
+
x = self.proj(x)
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class VitBlock(nn.Module):
|
79 |
+
|
80 |
+
def __init__(self, embed_dim, use_flash_attn=False):
|
81 |
+
super().__init__()
|
82 |
+
self.attn = Attention(embed_dim, use_flash_attn=use_flash_attn)
|
83 |
+
self.mlp = MLP(embed_dim, 4304)
|
84 |
+
self.norm1 = nn.LayerNorm(embed_dim)
|
85 |
+
self.norm2 = nn.LayerNorm(embed_dim)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
x = x + self.attn(self.norm1(x))
|
89 |
+
x = x + self.mlp(self.norm2(x))
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
class VisionTransformer(nn.Module):
|
94 |
+
|
95 |
+
def __init__(self, use_flash_attn=False):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
embed_len = 729
|
99 |
+
embed_dim = 1152
|
100 |
+
|
101 |
+
self.patch_embed = LinearPatchEmbedding()
|
102 |
+
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
|
103 |
+
self.blocks = nn.Sequential(
|
104 |
+
*[VitBlock(embed_dim, use_flash_attn=use_flash_attn) for _ in range(27)]
|
105 |
+
)
|
106 |
+
self.norm = nn.LayerNorm(embed_dim)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = self.patch_embed(x)
|
110 |
+
x = x + self.pos_embed
|
111 |
+
for block in self.blocks:
|
112 |
+
x = block(x)
|
113 |
+
return self.norm(x)
|
114 |
+
|
115 |
+
|
116 |
+
class EncoderWrapper(nn.Module):
|
117 |
+
|
118 |
+
def __init__(self, use_flash_attn=False):
|
119 |
+
super().__init__()
|
120 |
+
self.model = nn.ModuleDict({"visual": VisionTransformer(use_flash_attn)})
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
return self.model["visual"](x)
|
124 |
+
|
125 |
+
|
126 |
+
class LinearPatchEmbedding(nn.Module):
|
127 |
+
|
128 |
+
def __init__(self):
|
129 |
+
super().__init__()
|
130 |
+
self.linear = nn.Linear(588, 1152)
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
b, c, hp1, wp2 = x.shape
|
134 |
+
p1, p2 = 14, 14
|
135 |
+
h, w = hp1 // p1, wp2 // p2
|
136 |
+
x = x.reshape(b, c, h, p1, w, p2)
|
137 |
+
x = x.permute(0, 2, 4, 1, 3, 5)
|
138 |
+
x = x.reshape(b, h * w, c * p1 * p2)
|
139 |
+
|
140 |
+
return self.linear(x)
|
141 |
+
|
142 |
+
|
143 |
+
class MLP(nn.Module):
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
in_features: int,
|
147 |
+
hidden_features: int = None,
|
148 |
+
out_features: int = None,
|
149 |
+
) -> None:
|
150 |
+
super().__init__()
|
151 |
+
out_features = out_features or in_features
|
152 |
+
hidden_features = hidden_features or in_features
|
153 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
154 |
+
self.act = nn.GELU(approximate="tanh")
|
155 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
156 |
+
|
157 |
+
torch.nn.init.kaiming_normal_(
|
158 |
+
self.fc1.weight, mode="fan_in", nonlinearity="relu"
|
159 |
+
)
|
160 |
+
torch.nn.init.kaiming_normal_(
|
161 |
+
self.fc2.weight, mode="fan_in", nonlinearity="relu"
|
162 |
+
)
|
163 |
+
|
164 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
165 |
+
x = self.fc1(x)
|
166 |
+
x = self.act(x)
|
167 |
+
x = self.fc2(x)
|
168 |
+
return x
|
169 |
+
|
170 |
+
|
171 |
+
class VisionProjection(nn.Module):
|
172 |
+
def __init__(self):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
image_embedding_dim = 1152
|
176 |
+
model_dim = 2048
|
177 |
+
hidden_dim = model_dim * 4
|
178 |
+
|
179 |
+
self.mlp = MLP(image_embedding_dim * 2, hidden_dim, model_dim)
|
180 |
+
|
181 |
+
@property
|
182 |
+
def device(self):
|
183 |
+
return self.mlp.fc1.weight.device
|
184 |
+
|
185 |
+
def forward(self, x):
|
186 |
+
return self.mlp(x)
|
187 |
+
|
188 |
+
|
189 |
+
def create_patches(image, patch_size=(378, 378)):
|
190 |
+
assert image.dim() == 3, "Image must be in CHW format"
|
191 |
+
|
192 |
+
_, height, width = image.shape # Channels, Height, Width
|
193 |
+
patch_height, patch_width = patch_size
|
194 |
+
|
195 |
+
if height == patch_height and width == patch_width:
|
196 |
+
return []
|
197 |
+
|
198 |
+
# Iterate over the image and create patches
|
199 |
+
patches = []
|
200 |
+
for i in range(0, height, patch_height):
|
201 |
+
row_patches = []
|
202 |
+
for j in range(0, width, patch_width):
|
203 |
+
patch = image[:, i : i + patch_height, j : j + patch_width]
|
204 |
+
row_patches.append(patch)
|
205 |
+
patches.append(torch.stack(row_patches))
|
206 |
+
return patches
|
207 |
+
|
208 |
+
|
209 |
+
class VisionEncoder(nn.Module):
|
210 |
+
|
211 |
+
def __init__(self, use_flash_attn=False):
|
212 |
+
super().__init__()
|
213 |
+
|
214 |
+
self.encoder = EncoderWrapper(use_flash_attn)
|
215 |
+
self.projection = VisionProjection()
|
216 |
+
self.supported_sizes = [(378, 378), (378, 756), (756, 378), (756, 756)]
|
217 |
+
|
218 |
+
@property
|
219 |
+
def device(self):
|
220 |
+
return self.projection.mlp.fc1.weight.device
|
221 |
+
|
222 |
+
@property
|
223 |
+
def dtype(self):
|
224 |
+
return self.projection.mlp.fc1.weight.dtype
|
225 |
+
|
226 |
+
def preprocess(self, image: PIL.Image.Image):
|
227 |
+
width, height = image.size
|
228 |
+
max_dim = max(width, height)
|
229 |
+
if max_dim < 512:
|
230 |
+
im_size = (378, 378)
|
231 |
+
else:
|
232 |
+
aspect_ratio = width / height
|
233 |
+
im_size = min(
|
234 |
+
self.supported_sizes,
|
235 |
+
key=lambda size: (
|
236 |
+
abs((size[1] / size[0]) - aspect_ratio),
|
237 |
+
abs(size[0] - width) + abs(size[1] - height),
|
238 |
+
),
|
239 |
+
)
|
240 |
+
|
241 |
+
return Compose(
|
242 |
+
[
|
243 |
+
Resize(size=im_size, interpolation=InterpolationMode.BICUBIC),
|
244 |
+
ToImage(),
|
245 |
+
ToDtype(torch.float16, scale=True),
|
246 |
+
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
247 |
+
]
|
248 |
+
)(image)
|
249 |
+
|
250 |
+
def forward(
|
251 |
+
self, images: Union[PIL.Image.Image, list[PIL.Image.Image], torch.Tensor]
|
252 |
+
) -> torch.Tensor:
|
253 |
+
im_list = None
|
254 |
+
if isinstance(images, torch.Tensor):
|
255 |
+
# Input must have dimensions (B, C, H, W)
|
256 |
+
assert (
|
257 |
+
len(images.shape) == 4
|
258 |
+
), "Tensor input must have dimensions (B, C, H, W)"
|
259 |
+
im_list = list(images)
|
260 |
+
elif isinstance(images, PIL.Image.Image):
|
261 |
+
im_list = [images]
|
262 |
+
elif isinstance(images, list):
|
263 |
+
im_list = images
|
264 |
+
else:
|
265 |
+
raise ValueError(
|
266 |
+
"Input must be a PIL image, list of PIL images, or a tensor"
|
267 |
+
)
|
268 |
+
|
269 |
+
# Preprocess unless the images are already tensors (indicating that
|
270 |
+
# they have already been preprocessed)
|
271 |
+
if not isinstance(im_list[0], torch.Tensor):
|
272 |
+
im_list = [self.preprocess(im.convert("RGB")) for im in im_list]
|
273 |
+
|
274 |
+
patches = [create_patches(im) for im in im_list]
|
275 |
+
flat_patches = [patch for image_patches in patches for patch in image_patches]
|
276 |
+
|
277 |
+
# Images may be variable size, and need to be resized to a common size after
|
278 |
+
# creating patches.
|
279 |
+
resized_images = [
|
280 |
+
F.interpolate(im.unsqueeze(0), size=(378, 378), mode="bilinear")
|
281 |
+
for im in im_list
|
282 |
+
]
|
283 |
+
|
284 |
+
combined_images = torch.cat([*resized_images, *flat_patches], dim=0)
|
285 |
+
combined_images = combined_images.to(self.device, dtype=self.dtype)
|
286 |
+
|
287 |
+
combined_features = self.encoder(combined_images)
|
288 |
+
|
289 |
+
full_img_features = combined_features[: len(im_list)]
|
290 |
+
patch_features = (
|
291 |
+
combined_features[len(im_list) :].transpose(1, 2).view(-1, 1152, 27, 27)
|
292 |
+
)
|
293 |
+
|
294 |
+
# Reshape patch features back to their original structure
|
295 |
+
reshaped_patch_features = []
|
296 |
+
patch_idx = 0
|
297 |
+
for i, patch_set in enumerate(patches):
|
298 |
+
if len(patch_set) == 0:
|
299 |
+
reshaped_patch_features.append(
|
300 |
+
full_img_features[i].transpose(0, 1).view(1152, 27, 27)
|
301 |
+
)
|
302 |
+
else:
|
303 |
+
sample_features = []
|
304 |
+
for row_patches in patch_set:
|
305 |
+
row_len = len(row_patches)
|
306 |
+
row_features = patch_features[
|
307 |
+
patch_idx : patch_idx + row_len
|
308 |
+
] # row_len, T, C
|
309 |
+
row_features = torch.cat(
|
310 |
+
list(row_features), dim=2
|
311 |
+
) # T, C * row_len
|
312 |
+
patch_idx += row_len
|
313 |
+
sample_features.append(row_features)
|
314 |
+
sample_features = torch.cat(sample_features, dim=1)
|
315 |
+
sample_features = F.adaptive_avg_pool2d(
|
316 |
+
sample_features, output_size=(27, 27)
|
317 |
+
)
|
318 |
+
reshaped_patch_features.append(sample_features)
|
319 |
+
reshaped_patch_features = (
|
320 |
+
torch.stack(reshaped_patch_features).view(-1, 1152, 729).transpose(1, 2)
|
321 |
+
)
|
322 |
+
|
323 |
+
final_features = torch.cat([full_img_features, reshaped_patch_features], dim=2)
|
324 |
+
|
325 |
+
return self.projection(final_features)
|
moondream/torch/layers.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Literal
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
def gelu_approx(x):
|
10 |
+
return F.gelu(x, approximate="tanh")
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class LinearWeights:
|
15 |
+
weight: torch.Tensor
|
16 |
+
bias: torch.Tensor
|
17 |
+
|
18 |
+
|
19 |
+
def linear(x: torch.Tensor, w: LinearWeights) -> torch.Tensor:
|
20 |
+
return F.linear(x, w.weight, w.bias)
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class LayerNormWeights:
|
25 |
+
weight: torch.Tensor
|
26 |
+
bias: torch.Tensor
|
27 |
+
|
28 |
+
|
29 |
+
def layer_norm(x: torch.Tensor, w: LayerNormWeights) -> torch.Tensor:
|
30 |
+
return F.layer_norm(x, w.bias.shape, w.weight, w.bias)
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class MLPWeights:
|
35 |
+
fc1: LinearWeights
|
36 |
+
fc2: LinearWeights
|
37 |
+
act: Literal["gelu_approx"] = "gelu_approx"
|
38 |
+
|
39 |
+
|
40 |
+
def mlp(x: torch.Tensor, w: MLPWeights) -> torch.Tensor:
|
41 |
+
x = linear(x, w.fc1)
|
42 |
+
if w.act == "gelu_approx":
|
43 |
+
x = gelu_approx(x)
|
44 |
+
else:
|
45 |
+
raise NotImplementedError(f"Activation function {w.act} not implemented.")
|
46 |
+
x = linear(x, w.fc2)
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class AttentionWeights:
|
52 |
+
qkv: LinearWeights
|
53 |
+
proj: LinearWeights
|
54 |
+
n_heads: int
|
55 |
+
|
56 |
+
|
57 |
+
def attn(x: torch.Tensor, w: AttentionWeights) -> torch.Tensor:
|
58 |
+
bsz, q_len, d_model = x.shape
|
59 |
+
n_heads, head_dim = w.n_heads, d_model // w.n_heads
|
60 |
+
|
61 |
+
q, k, v = [
|
62 |
+
t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
|
63 |
+
for t in linear(x, w.qkv).chunk(3, dim=-1)
|
64 |
+
]
|
65 |
+
out = F.scaled_dot_product_attention(q, k, v)
|
66 |
+
out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
|
67 |
+
out = linear(out, w.proj)
|
68 |
+
return out
|
moondream/torch/rope.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ethically sourced from https://github.com/xjdr-alt/entropix
|
2 |
+
|
3 |
+
from typing import Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
def precompute_freqs_cis(
|
9 |
+
dim: int,
|
10 |
+
end: int,
|
11 |
+
theta: float = 10000.0,
|
12 |
+
use_scaled: bool = False,
|
13 |
+
dtype: torch.dtype = torch.float32,
|
14 |
+
) -> torch.Tensor:
|
15 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=dtype)[: (dim // 2)] / dim))
|
16 |
+
t = torch.arange(end, dtype=dtype).unsqueeze(1)
|
17 |
+
freqs = t * freqs.unsqueeze(0)
|
18 |
+
freqs = torch.exp(1j * freqs)
|
19 |
+
return torch.stack([freqs.real, freqs.imag], dim=-1)
|
20 |
+
|
21 |
+
|
22 |
+
def apply_rotary_emb(
|
23 |
+
x: torch.Tensor,
|
24 |
+
freqs_cis: torch.Tensor,
|
25 |
+
position_ids: torch.Tensor,
|
26 |
+
interleave: bool = False,
|
27 |
+
) -> torch.Tensor:
|
28 |
+
rot_dim = freqs_cis.shape[-2] * 2
|
29 |
+
x_rot, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
30 |
+
|
31 |
+
if interleave:
|
32 |
+
xq_r = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 0]
|
33 |
+
xq_i = x_rot.float().reshape(*x_rot.shape[:-1], -1, 2)[..., 1]
|
34 |
+
else:
|
35 |
+
d_q = x_rot.shape[-1] // 2
|
36 |
+
xq_r, xq_i = x_rot[..., :d_q], x_rot[..., d_q:]
|
37 |
+
|
38 |
+
freqs_cos = freqs_cis[..., 0][position_ids, :].unsqueeze(0).unsqueeze(0)
|
39 |
+
freqs_sin = freqs_cis[..., 1][position_ids, :].unsqueeze(0).unsqueeze(0)
|
40 |
+
|
41 |
+
# Complex multiplication: (a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
42 |
+
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
|
43 |
+
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
|
44 |
+
xq_out = torch.stack((xq_out_r, xq_out_i), dim=-1).flatten(-2)
|
45 |
+
|
46 |
+
return torch.cat([xq_out.to(x.dtype), x_pass], dim=-1)
|
moondream/torch/sample.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
|
9 |
+
from .rope import precompute_freqs_cis
|
10 |
+
from .text import lm_head, text_decoder, text_encoder
|
11 |
+
from .vision import encode_image
|
12 |
+
from .weights import load_from_pt, load_from_safetensors
|
13 |
+
|
14 |
+
if __name__ == "__main__":
|
15 |
+
parser = argparse.ArgumentParser()
|
16 |
+
parser.add_argument("--image", "-i", type=str, required=True)
|
17 |
+
parser.add_argument("--prompt", "-p", type=str, required=True)
|
18 |
+
parser.add_argument("--model", "-m", type=str, required=True)
|
19 |
+
parser.add_argument("--config", "-c", type=str, default="{}")
|
20 |
+
parser.add_argument("--max-tokens", "-t", type=int, default=200)
|
21 |
+
parser.add_argument("--sampler", "-s", type=str, default="greedy")
|
22 |
+
args = parser.parse_args()
|
23 |
+
|
24 |
+
if torch.cuda.is_available():
|
25 |
+
torch.set_default_device("cuda")
|
26 |
+
elif torch.backends.mps.is_available():
|
27 |
+
torch.set_default_device("mps")
|
28 |
+
|
29 |
+
# Load config.
|
30 |
+
config = json.loads(args.config)
|
31 |
+
text_n_heads = config.get("text_n_heads", 32)
|
32 |
+
|
33 |
+
# Load model.
|
34 |
+
model_path = args.model
|
35 |
+
if not os.path.exists(model_path):
|
36 |
+
raise FileNotFoundError(f"Model not found at {model_path}")
|
37 |
+
if model_path.endswith(".pt"):
|
38 |
+
model = load_from_pt(model_path, **config)
|
39 |
+
elif model_path.endswith(".safetensors"):
|
40 |
+
model = load_from_safetensors(model_path, **config)
|
41 |
+
else:
|
42 |
+
raise ValueError(f"Invalid model format: {model_path}")
|
43 |
+
|
44 |
+
# Encode image.
|
45 |
+
image_path = args.image
|
46 |
+
if not os.path.exists(image_path):
|
47 |
+
raise FileNotFoundError(f"Image not found at {image_path}")
|
48 |
+
image = Image.open(image_path)
|
49 |
+
image = image.resize((378, 378))
|
50 |
+
image_tensor = encode_image(image, model.vision)
|
51 |
+
|
52 |
+
# Encode text, and create inputs_embeds.
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
54 |
+
prompt = f"\n\nQuestion: {args.prompt}\n\nAnswer:"
|
55 |
+
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"]
|
56 |
+
input_ids = torch.cat([torch.tensor([[tokenizer.eos_token_id]]), input_ids], dim=1)
|
57 |
+
inputs_embeds = text_encoder(input_ids, model.text)
|
58 |
+
inputs_embeds = torch.cat(
|
59 |
+
[
|
60 |
+
inputs_embeds[:, 0:1, :],
|
61 |
+
image_tensor.unsqueeze(0),
|
62 |
+
inputs_embeds[:, 1:, :],
|
63 |
+
],
|
64 |
+
dim=1,
|
65 |
+
)
|
66 |
+
|
67 |
+
kv_cache = torch.empty(24, 2, 1, text_n_heads, 2048, 64, dtype=torch.float16)
|
68 |
+
freqs_cis = precompute_freqs_cis(32, 2048)
|
69 |
+
pos = 0
|
70 |
+
|
71 |
+
for _ in range(args.max_tokens):
|
72 |
+
with torch.no_grad():
|
73 |
+
hidden, kv_cache_update = text_decoder(
|
74 |
+
inputs_embeds, model.text, kv_cache[:, :, :, :, :pos, :], freqs_cis
|
75 |
+
)
|
76 |
+
logits = lm_head(hidden, model.text)
|
77 |
+
kv_cache[:, :, :, :, pos : pos + kv_cache_update.size(-2), :] = (
|
78 |
+
kv_cache_update
|
79 |
+
)
|
80 |
+
pos += kv_cache_update.size(-2)
|
81 |
+
|
82 |
+
if args.sampler == "multinomial":
|
83 |
+
next_token = torch.multinomial(
|
84 |
+
torch.softmax(logits, dim=-1), num_samples=1
|
85 |
+
).squeeze(0)
|
86 |
+
elif args.sampler == "greedy":
|
87 |
+
next_token = torch.argmax(logits, dim=-1)
|
88 |
+
else:
|
89 |
+
raise ValueError(f"Invalid sampler: {args.sampler}")
|
90 |
+
|
91 |
+
if next_token == tokenizer.eos_token_id:
|
92 |
+
print()
|
93 |
+
break
|
94 |
+
|
95 |
+
input_ids = next_token.unsqueeze(0)
|
96 |
+
inputs_embeds = text_encoder(input_ids, model.text)
|
97 |
+
|
98 |
+
output_text = tokenizer.batch_decode(input_ids)[0]
|
99 |
+
print(output_text, end="", flush=True)
|
moondream/torch/text.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
from .layers import layer_norm, linear, mlp
|
5 |
+
from .rope import apply_rotary_emb, precompute_freqs_cis
|
6 |
+
from .weights import AttentionWeights, TextModel, load_from_safetensors
|
7 |
+
|
8 |
+
|
9 |
+
def text_encoder(input_ids: torch.Tensor, w: TextModel):
|
10 |
+
return F.embedding(input_ids, w.wte)
|
11 |
+
|
12 |
+
|
13 |
+
def attn_mask(pos, seq_len):
|
14 |
+
"""
|
15 |
+
Create an attention mask that aligns with the bottom right of the
|
16 |
+
attention matrix. For example, if q_len = 2 and kv_len = 5, we want the
|
17 |
+
following:
|
18 |
+
|
19 |
+
1 1 1 1 0
|
20 |
+
1 1 1 1 1
|
21 |
+
|
22 |
+
and not this, which is what we get by default if we just set is_causal.
|
23 |
+
|
24 |
+
1 0 0 0 0
|
25 |
+
1 1 0 0 0
|
26 |
+
"""
|
27 |
+
mask = torch.ones(seq_len, pos + seq_len, dtype=torch.bool)
|
28 |
+
mask[:, pos:] = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool))
|
29 |
+
mask = mask.unsqueeze(0).unsqueeze(0) # Add batch and head dimensions
|
30 |
+
return mask
|
31 |
+
|
32 |
+
|
33 |
+
def attn(
|
34 |
+
x: torch.Tensor,
|
35 |
+
w: AttentionWeights,
|
36 |
+
freqs_cis: torch.Tensor,
|
37 |
+
layer_kv_cache: torch.Tensor,
|
38 |
+
):
|
39 |
+
bsz, q_len, d_model = x.shape
|
40 |
+
pos = 0 if layer_kv_cache is None else layer_kv_cache.shape[3]
|
41 |
+
n_heads, head_dim = w.n_heads, d_model // w.n_heads
|
42 |
+
|
43 |
+
q, k, v = [
|
44 |
+
t.view(bsz, q_len, n_heads, head_dim).transpose(1, 2)
|
45 |
+
for t in linear(x, w.qkv).chunk(3, dim=-1)
|
46 |
+
]
|
47 |
+
|
48 |
+
position_ids = torch.arange(pos, pos + q_len, dtype=torch.long)
|
49 |
+
q = apply_rotary_emb(q, freqs_cis, position_ids)
|
50 |
+
k = apply_rotary_emb(k, freqs_cis, position_ids)
|
51 |
+
|
52 |
+
k_, v_ = k, v
|
53 |
+
if layer_kv_cache is not None:
|
54 |
+
k = torch.cat([layer_kv_cache[0], k], dim=2)
|
55 |
+
v = torch.cat([layer_kv_cache[1], v], dim=2)
|
56 |
+
|
57 |
+
out = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask(pos, q_len)).to(
|
58 |
+
# This type conversion isn't needed when running in PyTorch directly, but the
|
59 |
+
# ONNX export runs attention in float32 because the attention mask is cast to
|
60 |
+
# float32.
|
61 |
+
x.dtype
|
62 |
+
)
|
63 |
+
out = out.transpose(1, 2).reshape(bsz, q_len, d_model)
|
64 |
+
out = linear(out, w.proj)
|
65 |
+
return out, torch.stack([k_, v_])
|
66 |
+
|
67 |
+
|
68 |
+
def text_decoder(
|
69 |
+
inputs_embeds: torch.Tensor,
|
70 |
+
w: TextModel,
|
71 |
+
kv_cache: torch.Tensor,
|
72 |
+
freqs_cis: torch.Tensor,
|
73 |
+
):
|
74 |
+
hidden_BTC = inputs_embeds
|
75 |
+
new_kv_cache = [torch.empty(0)] * len(w.blocks)
|
76 |
+
|
77 |
+
for i, block in enumerate(w.blocks):
|
78 |
+
l_in = layer_norm(hidden_BTC, block.ln)
|
79 |
+
l_attn, new_kv_cache[i] = attn(l_in, block.attn, freqs_cis, kv_cache[i])
|
80 |
+
l_mlp = mlp(l_in, block.mlp)
|
81 |
+
hidden_BTC = hidden_BTC + l_attn + l_mlp
|
82 |
+
|
83 |
+
return hidden_BTC, torch.stack(new_kv_cache)
|
84 |
+
|
85 |
+
|
86 |
+
def lm_head(hidden_BTC: torch.Tensor, w: TextModel):
|
87 |
+
hidden_BC = hidden_BTC[:, -1, :]
|
88 |
+
hidden_BC = layer_norm(hidden_BC, w.post_ln)
|
89 |
+
logits = linear(hidden_BC, w.lm_head)
|
90 |
+
return logits
|
moondream/torch/vision.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from einops import rearrange
|
5 |
+
from PIL import Image
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torchvision.transforms.v2 import InterpolationMode
|
8 |
+
from torchvision.transforms.v2.functional import normalize
|
9 |
+
from torchvision.transforms.v2.functional import resize as tv_resize
|
10 |
+
from torchvision.transforms.v2.functional import to_dtype, to_image
|
11 |
+
|
12 |
+
from .layers import attn, layer_norm, linear, mlp
|
13 |
+
from .weights import VisionModel, load_from_safetensors
|
14 |
+
|
15 |
+
|
16 |
+
def im_resize(
|
17 |
+
image: Image.Image,
|
18 |
+
size: List[int],
|
19 |
+
interpolation: InterpolationMode = InterpolationMode.BICUBIC,
|
20 |
+
) -> Image.Image:
|
21 |
+
"""
|
22 |
+
The 'resize' function from torchvision has bad type signatures.
|
23 |
+
it accepts both PIL images and torch tensors, but the type signature
|
24 |
+
only allows tensors.
|
25 |
+
"""
|
26 |
+
return tv_resize(
|
27 |
+
image, # type: ignore
|
28 |
+
size,
|
29 |
+
InterpolationMode.BICUBIC,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def create_patches(
|
34 |
+
image: Image.Image, image_patch_size=378
|
35 |
+
) -> Tuple[List[Image.Image], Tuple[int, int]]:
|
36 |
+
"""
|
37 |
+
Split the given image into a variable number of patches depending upon its
|
38 |
+
resolution.
|
39 |
+
"""
|
40 |
+
# Start off with the global patch.
|
41 |
+
patches = [im_resize(image, [image_patch_size, image_patch_size])]
|
42 |
+
|
43 |
+
# Find the closest resolution template.
|
44 |
+
res_templates = [(1, 2), (2, 1), (2, 2)]
|
45 |
+
im_width, im_height = image.size
|
46 |
+
max_dim = max(im_width, im_height)
|
47 |
+
if max_dim < image_patch_size * 1.4:
|
48 |
+
# If the image is already small, we just do a single patch that is a
|
49 |
+
# duplicate of the global patch. This creates a small amount of
|
50 |
+
# redundant computation now, but it is simpler and future-proofs us
|
51 |
+
# if/when we condition the vision encoder on the patch type.
|
52 |
+
res_template = (1, 1)
|
53 |
+
patches.append(patches[0])
|
54 |
+
else:
|
55 |
+
aspect_ratio = im_width / im_height
|
56 |
+
res_template = min(
|
57 |
+
res_templates, key=lambda size: abs((size[1] / size[0]) - aspect_ratio)
|
58 |
+
)
|
59 |
+
# TODO: Actually implement patching... just going to put in the global
|
60 |
+
# patch for now to make progress on other aspects.
|
61 |
+
patches.append(patches[0])
|
62 |
+
|
63 |
+
return patches, res_template
|
64 |
+
|
65 |
+
|
66 |
+
def encode_image(image: Image.Image, weights: VisionModel) -> torch.Tensor:
|
67 |
+
patches, res_template = create_patches(image.convert("RGB"))
|
68 |
+
patches = torch.stack(
|
69 |
+
[
|
70 |
+
normalize(
|
71 |
+
to_dtype(to_image(patch), torch.float16, scale=True),
|
72 |
+
mean=[0.5, 0.5, 0.5],
|
73 |
+
std=[0.5, 0.5, 0.5],
|
74 |
+
)
|
75 |
+
for patch in patches
|
76 |
+
]
|
77 |
+
)
|
78 |
+
|
79 |
+
outputs = vision_encoder(patches, weights)
|
80 |
+
|
81 |
+
# TODO: Merge sub-image patch outputs properly... for now we'll just assume
|
82 |
+
# that the global patch is repeated.
|
83 |
+
assert outputs.shape[0] == 2, "Expected single image patch."
|
84 |
+
outputs = torch.cat([outputs[0], outputs[1]], dim=-1)
|
85 |
+
|
86 |
+
return mlp(outputs, weights.proj_mlp)
|
87 |
+
|
88 |
+
|
89 |
+
def vision_encoder(input_BCHW: torch.Tensor, w: VisionModel):
|
90 |
+
x = rearrange(
|
91 |
+
input_BCHW,
|
92 |
+
"b c (h p1) (w p2) -> b (h w) (c p1 p2)",
|
93 |
+
p1=w.patch_size,
|
94 |
+
p2=w.patch_size,
|
95 |
+
) # B3HW -> B(HxW)(3xP1xP2), aka BTC
|
96 |
+
|
97 |
+
x = linear(x, w.patch_emb)
|
98 |
+
x = x + w.pos_emb
|
99 |
+
for block in w.blocks:
|
100 |
+
x = x + attn(layer_norm(x, block.ln1), block.attn)
|
101 |
+
x = x + mlp(layer_norm(x, block.ln2), block.mlp)
|
102 |
+
x = layer_norm(x, w.post_ln)
|
103 |
+
|
104 |
+
return x
|
moondream/torch/weights.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from contextlib import contextmanager
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import List, Callable
|
5 |
+
|
6 |
+
import safetensors
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from .layers import AttentionWeights, LayerNormWeights, LinearWeights, MLPWeights
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class VisionBlock:
|
14 |
+
ln1: LayerNormWeights
|
15 |
+
attn: AttentionWeights
|
16 |
+
ln2: LayerNormWeights
|
17 |
+
mlp: MLPWeights
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class VisionModel:
|
22 |
+
patch_size: int
|
23 |
+
patch_emb: LinearWeights
|
24 |
+
pos_emb: torch.Tensor
|
25 |
+
blocks: List[VisionBlock]
|
26 |
+
post_ln: LayerNormWeights
|
27 |
+
proj_mlp: MLPWeights
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class TextBlock:
|
32 |
+
ln: LayerNormWeights
|
33 |
+
attn: AttentionWeights
|
34 |
+
mlp: MLPWeights
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class TextModel:
|
39 |
+
wte: torch.Tensor
|
40 |
+
blocks: List[TextBlock]
|
41 |
+
post_ln: LayerNormWeights
|
42 |
+
lm_head: LinearWeights
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class MoondreamModel:
|
47 |
+
vision: VisionModel
|
48 |
+
text: TextModel
|
49 |
+
|
50 |
+
|
51 |
+
@contextmanager
|
52 |
+
def safetensors_open(safetensors_file: str):
|
53 |
+
"""
|
54 |
+
Simplify interfacing with safetensors files. Eliminates the need to ignore
|
55 |
+
type errors when using the `safe_open` function.
|
56 |
+
"""
|
57 |
+
with safetensors.safe_open(
|
58 |
+
safetensors_file, framework="pt"
|
59 |
+
) as st: # pyright: ignore
|
60 |
+
|
61 |
+
def get_tensor(name: str) -> torch.Tensor:
|
62 |
+
return st.get_tensor(name)
|
63 |
+
|
64 |
+
yield get_tensor
|
65 |
+
|
66 |
+
|
67 |
+
def load_model(
|
68 |
+
get_tensor: Callable[[str], torch.Tensor],
|
69 |
+
vision_blocks: int = 27,
|
70 |
+
text_blocks: int = 24,
|
71 |
+
vision_n_heads: int = 16,
|
72 |
+
text_n_heads: int = 32,
|
73 |
+
) -> MoondreamModel:
|
74 |
+
## Vision encoder
|
75 |
+
prefix = "vision_encoder.encoder.model.visual.patch_embed.linear"
|
76 |
+
patch_emb = LinearWeights(
|
77 |
+
weight=get_tensor(f"{prefix}.weight"), bias=get_tensor(f"{prefix}.bias")
|
78 |
+
)
|
79 |
+
patch_size = int(math.sqrt(patch_emb.weight.shape[1] // 3))
|
80 |
+
pos_emb = get_tensor("vision_encoder.encoder.model.visual.pos_embed")
|
81 |
+
post_ln = LayerNormWeights(
|
82 |
+
weight=get_tensor("vision_encoder.encoder.model.visual.norm.weight"),
|
83 |
+
bias=get_tensor("vision_encoder.encoder.model.visual.norm.bias"),
|
84 |
+
)
|
85 |
+
blocks = []
|
86 |
+
for i in range(vision_blocks):
|
87 |
+
prefix = f"vision_encoder.encoder.model.visual.blocks.{i}"
|
88 |
+
blocks.append(
|
89 |
+
VisionBlock(
|
90 |
+
ln1=LayerNormWeights(
|
91 |
+
weight=get_tensor(f"{prefix}.norm1.weight"),
|
92 |
+
bias=get_tensor(f"{prefix}.norm1.bias"),
|
93 |
+
),
|
94 |
+
attn=AttentionWeights(
|
95 |
+
qkv=LinearWeights(
|
96 |
+
weight=get_tensor(f"{prefix}.attn.qkv.weight"),
|
97 |
+
bias=get_tensor(f"{prefix}.attn.qkv.bias"),
|
98 |
+
),
|
99 |
+
proj=LinearWeights(
|
100 |
+
weight=get_tensor(f"{prefix}.attn.proj.weight"),
|
101 |
+
bias=get_tensor(f"{prefix}.attn.proj.bias"),
|
102 |
+
),
|
103 |
+
n_heads=vision_n_heads,
|
104 |
+
),
|
105 |
+
ln2=LayerNormWeights(
|
106 |
+
weight=get_tensor(f"{prefix}.norm2.weight"),
|
107 |
+
bias=get_tensor(f"{prefix}.norm2.bias"),
|
108 |
+
),
|
109 |
+
mlp=MLPWeights(
|
110 |
+
fc1=LinearWeights(
|
111 |
+
weight=get_tensor(f"{prefix}.mlp.fc1.weight"),
|
112 |
+
bias=get_tensor(f"{prefix}.mlp.fc1.bias"),
|
113 |
+
),
|
114 |
+
fc2=LinearWeights(
|
115 |
+
weight=get_tensor(f"{prefix}.mlp.fc2.weight"),
|
116 |
+
bias=get_tensor(f"{prefix}.mlp.fc2.bias"),
|
117 |
+
),
|
118 |
+
),
|
119 |
+
)
|
120 |
+
)
|
121 |
+
proj_mlp = MLPWeights(
|
122 |
+
fc1=LinearWeights(
|
123 |
+
weight=get_tensor("vision_encoder.projection.mlp.fc1.weight"),
|
124 |
+
bias=get_tensor("vision_encoder.projection.mlp.fc1.bias"),
|
125 |
+
),
|
126 |
+
fc2=LinearWeights(
|
127 |
+
weight=get_tensor("vision_encoder.projection.mlp.fc2.weight"),
|
128 |
+
bias=get_tensor("vision_encoder.projection.mlp.fc2.bias"),
|
129 |
+
),
|
130 |
+
act="gelu_approx",
|
131 |
+
)
|
132 |
+
vision = VisionModel(
|
133 |
+
patch_size=patch_size,
|
134 |
+
patch_emb=patch_emb,
|
135 |
+
pos_emb=pos_emb,
|
136 |
+
blocks=blocks,
|
137 |
+
post_ln=post_ln,
|
138 |
+
proj_mlp=proj_mlp,
|
139 |
+
)
|
140 |
+
|
141 |
+
## Text decoder model
|
142 |
+
wte = get_tensor("text_model.transformer.embd.wte.weight")
|
143 |
+
post_ln = LayerNormWeights(
|
144 |
+
weight=get_tensor("text_model.lm_head.ln.weight"),
|
145 |
+
bias=get_tensor("text_model.lm_head.ln.bias"),
|
146 |
+
)
|
147 |
+
lm_head = LinearWeights(
|
148 |
+
weight=get_tensor("text_model.lm_head.linear.weight"),
|
149 |
+
bias=get_tensor("text_model.lm_head.linear.bias"),
|
150 |
+
)
|
151 |
+
blocks = []
|
152 |
+
for i in range(text_blocks):
|
153 |
+
prefix = f"text_model.transformer.h.{i}"
|
154 |
+
blocks.append(
|
155 |
+
TextBlock(
|
156 |
+
ln=LayerNormWeights(
|
157 |
+
weight=get_tensor(f"{prefix}.ln.weight"),
|
158 |
+
bias=get_tensor(f"{prefix}.ln.bias"),
|
159 |
+
),
|
160 |
+
attn=AttentionWeights(
|
161 |
+
qkv=LinearWeights(
|
162 |
+
weight=get_tensor(f"{prefix}.mixer.Wqkv.weight"),
|
163 |
+
bias=get_tensor(f"{prefix}.mixer.Wqkv.bias"),
|
164 |
+
),
|
165 |
+
proj=LinearWeights(
|
166 |
+
weight=get_tensor(f"{prefix}.mixer.out_proj.weight"),
|
167 |
+
bias=get_tensor(f"{prefix}.mixer.out_proj.bias"),
|
168 |
+
),
|
169 |
+
n_heads=text_n_heads,
|
170 |
+
),
|
171 |
+
mlp=MLPWeights(
|
172 |
+
fc1=LinearWeights(
|
173 |
+
weight=get_tensor(f"{prefix}.mlp.fc1.weight"),
|
174 |
+
bias=get_tensor(f"{prefix}.mlp.fc1.bias"),
|
175 |
+
),
|
176 |
+
fc2=LinearWeights(
|
177 |
+
weight=get_tensor(f"{prefix}.mlp.fc2.weight"),
|
178 |
+
bias=get_tensor(f"{prefix}.mlp.fc2.bias"),
|
179 |
+
),
|
180 |
+
act="gelu_approx",
|
181 |
+
),
|
182 |
+
)
|
183 |
+
)
|
184 |
+
text = TextModel(wte=wte, blocks=blocks, post_ln=post_ln, lm_head=lm_head)
|
185 |
+
|
186 |
+
return MoondreamModel(vision=vision, text=text)
|
187 |
+
|
188 |
+
|
189 |
+
def load_from_safetensors(
|
190 |
+
safetensors_file: str,
|
191 |
+
vision_blocks: int = 27,
|
192 |
+
text_blocks: int = 24,
|
193 |
+
**kwargs,
|
194 |
+
) -> MoondreamModel:
|
195 |
+
with safetensors_open(safetensors_file) as get_tensor:
|
196 |
+
return load_model(get_tensor, vision_blocks, text_blocks, **kwargs)
|
197 |
+
|
198 |
+
|
199 |
+
def load_from_pt(
|
200 |
+
pt_file: str,
|
201 |
+
vision_blocks: int = 27,
|
202 |
+
text_blocks: int = 24,
|
203 |
+
**kwargs,
|
204 |
+
) -> MoondreamModel:
|
205 |
+
device = str(torch.empty(0).device)
|
206 |
+
tensors = torch.load(pt_file, map_location=device, weights_only=True)
|
207 |
+
tensors = {
|
208 |
+
k.replace("._orig_mod", ""): v.to(dtype=torch.float16)
|
209 |
+
for k, v in tensors.items()
|
210 |
+
}
|
211 |
+
return load_model(lambda x: tensors[x], vision_blocks, text_blocks, **kwargs)
|
212 |
+
|
213 |
+
|
214 |
+
if __name__ == "__main__":
|
215 |
+
weights = load_from_safetensors("model.safetensors")
|
216 |
+
print(weights)
|