Spaces:
Runtime error
Runtime error
import os | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import spacy | |
import gradio as gr | |
import subprocess | |
def download_spacy_model(model_name): | |
command = f"python -m spacy download {model_name}" | |
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
stdout, stderr = process.communicate() | |
# Check if the command executed successfully | |
if process.returncode != 0: | |
print(f"An error occurred while downloading the model: {stderr.decode('utf-8')}") | |
else: | |
print(f"Successfully downloaded the model: {stdout.decode('utf-8')}") | |
# Call the function to download the model | |
# def find_closest(query): | |
# files_contents = [] | |
# files_names = [] | |
# for file in os.listdir(): | |
# if file.endswith(".txt"): | |
# with open(file, 'r') as f: | |
# content = f.read() | |
# files_contents.append(content) | |
# files_names.append(file) | |
# # Append query to the end | |
# files_contents.append(query) | |
# # Initialize the TfidfVectorizer | |
# tfidf_vectorizer = TfidfVectorizer() | |
# # Fit and transform the texts | |
# tfidf_matrix = tfidf_vectorizer.fit_transform(files_contents) | |
# # Compute the cosine similarity between the query and all files | |
# similarity_scores = cosine_similarity(tfidf_matrix[-1:], tfidf_matrix[:-1]) | |
# # Get the index of the file with the highest similarity score | |
# max_similarity_idx = similarity_scores.argmax() | |
# # Return the name of the file with the highest similarity score | |
# return files_names[max_similarity_idx] | |
def find_closest(query): | |
try: | |
nlp = spacy.load('en_core_web_md') | |
except: | |
download_spacy_model('en_core_web_md') | |
nlp = spacy.load('en_core_web_md') | |
files_names = [] | |
files_vectors = [] | |
for file in os.listdir(): | |
if file.endswith(".txt"): | |
with open(file, 'r') as f: | |
content = f.read() | |
files_names.append(file) | |
# Get the vector representation of the content | |
files_vectors.append(nlp(content).vector) | |
# Get the vector representation of the query | |
query_vector = nlp(query).vector | |
# Compute the cosine similarity between the query and all files | |
similarity_scores = cosine_similarity([query_vector], files_vectors) | |
# Get the index of the file with the highest similarity score | |
max_similarity_idx = similarity_scores.argmax() | |
# Return the name of the file with the highest similarity score | |
return files_names[max_similarity_idx] | |
def find_closest_mp3(query): | |
closest_txt_file = find_closest(query) | |
file_name_without_extension, _ = os.path.splitext(closest_txt_file) | |
return file_name_without_extension + '.mp3' | |
my_theme = gr.Theme.from_hub("ysharma/llamas") | |
with gr.Blocks(theme=my_theme) as demo: | |
gr.Markdown("""<h1 style="text-align: center;">BeatLlama Dreambooth</h1>""") | |
# video=gr.PlayableVideo("final_video.mp4 | |
gr.Markdown("""<h2 style="text-align: center;"><span style="color: white;"> Get a song for your dream, but sung by AI!</span></h2>""") | |
inp=gr.Textbox(placeholder="Describe your dream!",label="Your dream") | |
out=gr.Audio(label="Llamas singing your dream") | |
inp.change(find_closest_mp3,inp,out,scroll_to_output=True) | |
out.play(None) | |
demo.queue(1,api_open=False) | |
demo.launch(show_api=False) |