aksj's picture
Update app.py
8a39e1b
raw
history blame
1.67 kB
import os
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def find_closest(query):
files_contents = []
files_names = []
for file in os.listdir():
if file.endswith(".txt"):
with open(file, 'r') as f:
content = f.read()
files_contents.append(content)
files_names.append(file)
# Append query to the end
files_contents.append(query)
# Initialize the TfidfVectorizer
tfidf_vectorizer = TfidfVectorizer()
# Fit and transform the texts
tfidf_matrix = tfidf_vectorizer.fit_transform(files_contents)
# Compute the cosine similarity between the query and all files
similarity_scores = cosine_similarity(tfidf_matrix[-1:], tfidf_matrix[:-1])
# Get the index of the file with the highest similarity score
max_similarity_idx = similarity_scores.argmax()
# Return the name of the file with the highest similarity score
return files_names[max_similarity_idx]
def find_closest_mp3(query):
closest_txt_file = find_closest(query)
file_name_without_extension, _ = os.path.splitext(closest_txt_file)
return file_name_without_extension + '.mp3'
my_theme = gr.Theme.from_hub("ysharma/llamas")
with gr.Blocks(theme=my_theme) as demo:
gr.Markdown("# BeatLlama Dreambooth!")
# video=gr.PlayableVideo("final_video.mp4")
inp=gr.Textbox(placeholder="Describe your dream!",label="Your dream")
out=gr.Audio(label="Llamas singing your dream")
inp.change(find_closest_mp3,inp,out,scroll_to_output=True)
out.play(None)
demo.queue(1)
demo.launch(show_api=False,debug=True)