|
import os
|
|
import shutil
|
|
|
|
import torch
|
|
from trainer import Trainer, TrainerArgs
|
|
|
|
from tests import get_tests_output_path
|
|
from TTS.config.shared_configs import BaseDatasetConfig
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.tts.layers.xtts.dvae import DiscreteVAE
|
|
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
|
|
|
|
config_dataset = BaseDatasetConfig(
|
|
formatter="ljspeech",
|
|
dataset_name="ljspeech",
|
|
path="tests/data/ljspeech/",
|
|
meta_file_train="metadata.csv",
|
|
meta_file_val="metadata.csv",
|
|
language="en",
|
|
)
|
|
|
|
DATASETS_CONFIG_LIST = [config_dataset]
|
|
|
|
|
|
RUN_NAME = "GPT_XTTS_LJSpeech_FT"
|
|
PROJECT_NAME = "XTTS_trainer"
|
|
DASHBOARD_LOGGER = "tensorboard"
|
|
LOGGER_URI = None
|
|
|
|
OUT_PATH = os.path.join(get_tests_output_path(), "train_outputs", "xtts_tests")
|
|
os.makedirs(OUT_PATH, exist_ok=True)
|
|
|
|
|
|
|
|
DVAE_CHECKPOINT = os.path.join(OUT_PATH, "dvae.pth")
|
|
|
|
MEL_NORM_FILE = os.path.join(OUT_PATH, "mel_stats.pth")
|
|
dvae = DiscreteVAE(
|
|
channels=80,
|
|
normalization=None,
|
|
positional_dims=1,
|
|
num_tokens=8192,
|
|
codebook_dim=512,
|
|
hidden_dim=512,
|
|
num_resnet_blocks=3,
|
|
kernel_size=3,
|
|
num_layers=2,
|
|
use_transposed_convs=False,
|
|
)
|
|
torch.save(dvae.state_dict(), DVAE_CHECKPOINT)
|
|
mel_stats = torch.ones(80)
|
|
torch.save(mel_stats, MEL_NORM_FILE)
|
|
|
|
|
|
|
|
TOKENIZER_FILE = "tests/inputs/xtts_vocab.json"
|
|
XTTS_CHECKPOINT = None
|
|
|
|
|
|
|
|
SPEAKER_REFERENCE = [
|
|
"tests/data/ljspeech/wavs/LJ001-0002.wav"
|
|
]
|
|
LANGUAGE = config_dataset.language
|
|
|
|
|
|
|
|
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True
|
|
START_WITH_EVAL = False
|
|
BATCH_SIZE = 2
|
|
GRAD_ACUMM_STEPS = 1
|
|
|
|
|
|
|
|
|
|
model_args = GPTArgs(
|
|
max_conditioning_length=132300,
|
|
min_conditioning_length=66150,
|
|
debug_loading_failures=False,
|
|
max_wav_length=255995,
|
|
max_text_length=200,
|
|
mel_norm_file=MEL_NORM_FILE,
|
|
dvae_checkpoint=DVAE_CHECKPOINT,
|
|
xtts_checkpoint=XTTS_CHECKPOINT,
|
|
tokenizer_file=TOKENIZER_FILE,
|
|
gpt_num_audio_tokens=8194,
|
|
gpt_start_audio_token=8192,
|
|
gpt_stop_audio_token=8193,
|
|
gpt_use_masking_gt_prompt_approach=True,
|
|
gpt_use_perceiver_resampler=True,
|
|
)
|
|
|
|
audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
|
|
|
|
config = GPTTrainerConfig(
|
|
epochs=1,
|
|
output_path=OUT_PATH,
|
|
model_args=model_args,
|
|
run_name=RUN_NAME,
|
|
project_name=PROJECT_NAME,
|
|
run_description="GPT XTTS training",
|
|
dashboard_logger=DASHBOARD_LOGGER,
|
|
logger_uri=LOGGER_URI,
|
|
audio=audio_config,
|
|
batch_size=BATCH_SIZE,
|
|
batch_group_size=48,
|
|
eval_batch_size=BATCH_SIZE,
|
|
num_loader_workers=8,
|
|
eval_split_max_size=256,
|
|
print_step=50,
|
|
plot_step=100,
|
|
log_model_step=1000,
|
|
save_step=10000,
|
|
save_n_checkpoints=1,
|
|
save_checkpoints=True,
|
|
|
|
print_eval=False,
|
|
|
|
optimizer="AdamW",
|
|
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
|
|
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
|
|
lr=5e-06,
|
|
lr_scheduler="MultiStepLR",
|
|
|
|
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
|
|
test_sentences=[
|
|
{
|
|
"text": "This cake is great. It's so delicious and moist.",
|
|
"speaker_wav": SPEAKER_REFERENCE,
|
|
"language": LANGUAGE,
|
|
},
|
|
],
|
|
)
|
|
|
|
|
|
model = GPTTrainer.init_from_config(config)
|
|
|
|
|
|
train_samples, eval_samples = load_tts_samples(
|
|
DATASETS_CONFIG_LIST,
|
|
eval_split=True,
|
|
eval_split_max_size=config.eval_split_max_size,
|
|
eval_split_size=config.eval_split_size,
|
|
)
|
|
|
|
|
|
trainer = Trainer(
|
|
TrainerArgs(
|
|
restore_path=None,
|
|
skip_train_epoch=False,
|
|
start_with_eval=True,
|
|
grad_accum_steps=GRAD_ACUMM_STEPS,
|
|
),
|
|
config,
|
|
output_path=OUT_PATH,
|
|
model=model,
|
|
train_samples=train_samples,
|
|
eval_samples=eval_samples,
|
|
)
|
|
trainer.fit()
|
|
|
|
|
|
shutil.rmtree(OUT_PATH)
|
|
|