tts-vie2 / TTS /tests /inputs /dummy_model_config.json
Nông Văn Thắng
main
33acd27
raw
history blame
7.67 kB
{
"run_name": "mozilla-no-loc-fattn-stopnet-sigmoid-loss_masking",
"run_description": "using forward attention, with original prenet, loss masking,separate stopnet, sigmoid. Compare this with 4817. Pytorch DPP",
"audio":{
// Audio processing parameters
"num_mels": 80, // size of the mel spec frame.
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
"hop_length": 256,
"win_length": 1024,
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"min_level_db": -100, // normalization range
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
// Normalization parameters
"signal_norm": true, // normalize the spec values in range [0, 1]
"symmetric_norm": false, // move normalization to range [-1, 1]
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
},
"distributed":{
"backend": "nccl",
"url": "tcp:\/\/localhost:54321"
},
"reinit_layers": [],
"model": "Tacotron2", // one of the model in models/
"grad_clip": 1, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"windowing": false, // Enables attention windowing. Used only in eval mode.
"memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
"attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
"prenet_type": "original", // ONLY TACOTRON2 - "original" or "bn".
"prenet_dropout": true, // ONLY TACOTRON2 - enable/disable dropout at prenet.
"use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
"forward_attn_mask": false,
"attention_type": "original",
"attention_heads": 5,
"bidirectional_decoder": false,
"transition_agent": false, // ONLY TACOTRON2 - enable/disable transition agent of forward attention.
"location_attn": false, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default.
"loss_masking": true, // enable / disable loss masking against the sequence padding.
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
"stopnet": true, // Train stopnet predicting the end of synthesis.
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"use_gst": false,
"double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
"ddc_r": 7, // reduction rate for coarse decoder.
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention.
"eval_batch_size":16,
"r": 1, // Number of frames to predict for step.
"wd": 0.000001, // Weight decay weight.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
"print_step": 10, // Number of steps to log traning on console.
"batch_group_size": 0, //Number of batches to shuffle after bucketing.
"run_eval": true,
"test_delay_epochs": 5, //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
"data_path": "/media/erogol/data_ssd/Data/Mozilla/", // DATASET-RELATED: can overwritten from command argument
"meta_file_train": "metadata_train.txt", // DATASET-RELATED: metafile for training dataloader.
"meta_file_val": "metadata_val.txt", // DATASET-RELATED: metafile for evaluation dataloader.
"dataset": "mozilla", // DATASET-RELATED: one of mozilla_voice_tts.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
"max_seq_len": 150, // DATASET-RELATED: maximum text length
"output_path": "../keep/", // DATASET-RELATED: output path for all training outputs.
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
"phoneme_cache_path": "mozilla_us_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
"text_cleaner": "phoneme_cleaners",
"use_speaker_embedding": false, // whether to use additional embeddings for separate speakers
// MULTI-SPEAKER and GST
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
"gst": { // gst parameter if gst is enabled
"gst_style_input": null, // Condition the style input either on a
// -> wave file [path to wave] or
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
// with the dictionary being len(dict) <= len(gst_style_tokens).
"gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST.
"gst_embedding_dim": 512,
"gst_num_heads": 4,
"gst_style_tokens": 10
}
}