|
import os
|
|
|
|
from trainer import Trainer, TrainerArgs
|
|
|
|
from TTS.config.shared_configs import BaseAudioConfig
|
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig, CapacitronVAEConfig
|
|
from TTS.tts.configs.tacotron2_config import Tacotron2Config
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.tts.models.tacotron2 import Tacotron2
|
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
data_path = "/srv/data/blizzard2013/segmented"
|
|
|
|
|
|
dataset_config = BaseDatasetConfig(
|
|
formatter="ljspeech",
|
|
meta_file_train="metadata.csv",
|
|
path=data_path,
|
|
)
|
|
|
|
audio_config = BaseAudioConfig(
|
|
sample_rate=24000,
|
|
do_trim_silence=True,
|
|
trim_db=60.0,
|
|
signal_norm=True,
|
|
mel_fmin=80.0,
|
|
mel_fmax=12000,
|
|
spec_gain=25.0,
|
|
log_func="np.log10",
|
|
ref_level_db=20,
|
|
preemphasis=0.0,
|
|
min_level_db=-100,
|
|
)
|
|
|
|
|
|
capacitron_config = CapacitronVAEConfig(capacitron_VAE_loss_alpha=1.0)
|
|
|
|
config = Tacotron2Config(
|
|
run_name="Blizzard-Capacitron-T2",
|
|
audio=audio_config,
|
|
capacitron_vae=capacitron_config,
|
|
use_capacitron_vae=True,
|
|
batch_size=246,
|
|
max_audio_len=6 * 24000,
|
|
min_audio_len=1 * 24000,
|
|
eval_batch_size=16,
|
|
num_loader_workers=12,
|
|
num_eval_loader_workers=8,
|
|
precompute_num_workers=24,
|
|
run_eval=True,
|
|
test_delay_epochs=5,
|
|
r=2,
|
|
optimizer="CapacitronOptimizer",
|
|
optimizer_params={"RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, "SGD": {"lr": 1e-5, "momentum": 0.9}},
|
|
attention_type="dynamic_convolution",
|
|
grad_clip=0.0,
|
|
double_decoder_consistency=False,
|
|
epochs=1000,
|
|
text_cleaner="phoneme_cleaners",
|
|
use_phonemes=True,
|
|
phoneme_language="en-us",
|
|
phonemizer="espeak",
|
|
phoneme_cache_path=os.path.join(data_path, "phoneme_cache"),
|
|
stopnet_pos_weight=15,
|
|
print_step=25,
|
|
print_eval=True,
|
|
mixed_precision=False,
|
|
output_path=output_path,
|
|
datasets=[dataset_config],
|
|
lr=1e-3,
|
|
lr_scheduler="StepwiseGradualLR",
|
|
lr_scheduler_params={
|
|
"gradual_learning_rates": [
|
|
[0, 1e-3],
|
|
[2e4, 5e-4],
|
|
[4e4, 3e-4],
|
|
[6e4, 1e-4],
|
|
[8e4, 5e-5],
|
|
]
|
|
},
|
|
scheduler_after_epoch=False,
|
|
seq_len_norm=True,
|
|
loss_masking=False,
|
|
decoder_loss_alpha=1.0,
|
|
postnet_loss_alpha=1.0,
|
|
postnet_diff_spec_alpha=1.0,
|
|
decoder_diff_spec_alpha=1.0,
|
|
decoder_ssim_alpha=1.0,
|
|
postnet_ssim_alpha=1.0,
|
|
)
|
|
|
|
ap = AudioProcessor(**config.audio.to_dict())
|
|
|
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
|
|
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
|
|
|
model = Tacotron2(config, ap, tokenizer, speaker_manager=None)
|
|
|
|
trainer = Trainer(
|
|
TrainerArgs(),
|
|
config,
|
|
output_path,
|
|
model=model,
|
|
train_samples=train_samples,
|
|
eval_samples=eval_samples,
|
|
training_assets={"audio_processor": ap},
|
|
)
|
|
|
|
trainer.fit()
|
|
|