from sklearn.feature_extraction.text import TfidfVectorizer # import for loading python objects (scikit-learn models) import pickle import nltk from nltk.data import load from nltk.stem import PorterStemmer import streamlit as st import sklearn nltk.download('punkt') def custom_tokenizer_with_English_stemmer(text): # my text was unicode so I had to use the unicode-specific translate function. If your documents are strings, you will need to use a different `translate` function here. `Translated` here just does search-replace. See the trans_table: any matching character in the set is replaced with `None` tokens = [word for word in nltk.word_tokenize(text)] stems = [stemmerEN.stem(item.lower()) for item in tokens] return stems def predictSMSdata(test_text): categories = ["legitimate", "spam"] categories.sort() # load model filename1 = "LinearSVC_SMS_spam_EN.pickle" file_handle1 = open(filename1, "rb") classifier = pickle.load(file_handle1) file_handle1.close() # load tfidf_vectorizer for transforming test text data filename2 = "tfidf_vectorizer_EN.pickle" file_handle2 = open(filename2, "rb") tfidf_vectorizer = pickle.load(file_handle2) file_handle2.close() test_list=[test_text] tfidf_vectorizer_vectors_test = tfidf_vectorizer.transform(test_list) predicted = classifier.predict(tfidf_vectorizer_vectors_test) print(categories[predicted[0]]) return categories[predicted[0]] # Porter Stemmer for English stemmerEN = PorterStemmer() # adding the text that will show in the text box default_value = "ASKED 3MOBILE IF 0870 CHATLINES INCLU IN FREE MINS. INDIA CUST SERVs SED YES. L8ER GOT MEGA BILL. 3 DONT GIV A SHIT. BAILIFF DUE IN DAYS. I O £250 3 WANT £800" text = st.text_area("enter some text!", default_value) if text: out = predictSMSdata(text) st.write("The category of SMS = " + out.upper())