|
import json |
|
import os |
|
import sys |
|
import time |
|
import re |
|
from pathlib import Path |
|
from typing import List, Literal, Optional, Tuple, TypedDict, Dict |
|
|
|
|
|
prj_root_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
sys.path.append(prj_root_path) |
|
from code_interpreter.JuypyterClient import JupyterNotebook |
|
from code_interpreter.BaseCodeInterpreter import BaseCodeInterpreter |
|
from utils.const import * |
|
from prompt.gpt4_prompt import CODE_INTERPRETER_SYSTEM_PROMPT |
|
|
|
|
|
from colorama import init, Fore, Style |
|
from rich.markdown import Markdown |
|
import base64 |
|
|
|
import openai |
|
from retrying import retry |
|
import logging |
|
from termcolor import colored |
|
|
|
|
|
with open("./openai_api_key.txt") as f: |
|
OPENAI_API_KEY = key = f.read() |
|
openai.api_key = OPENAI_API_KEY |
|
from utils.cleaner import clean_error_msg |
|
|
|
|
|
def remove_string(s): |
|
pattern = r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}\.\d{6}:.*LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64\n" |
|
return re.sub(pattern, "", s) |
|
|
|
|
|
def clean_the_dialog(dialog, question): |
|
question_idx = 0 |
|
for idx, item in enumerate(dialog): |
|
if item["content"] == question: |
|
question_idx = idx |
|
|
|
filtered_dialog = dialog[question_idx:] |
|
|
|
user_qinit_dict = filtered_dialog[0] |
|
answer_fuse_str = "\n".join([i["content"].strip() for i in filtered_dialog[1::2]]) |
|
|
|
final_dialog_dict = [ |
|
{"role": "user", "content": user_qinit_dict["content"]}, |
|
{"role": "assistant", "content": answer_fuse_str}, |
|
] |
|
|
|
return final_dialog_dict |
|
|
|
|
|
class GPTCodeInterpreter(BaseCodeInterpreter): |
|
def __init__(self, model="gpt-4"): |
|
self.model = model |
|
self.dialog = [ |
|
|
|
{ |
|
"role": "system", |
|
"content": CODE_INTERPRETER_SYSTEM_PROMPT, |
|
}, |
|
|
|
|
|
] |
|
|
|
|
|
self.response = None |
|
|
|
assert os.path.isfile( |
|
"./openai_api_key.txt" |
|
), "The openai_api_key.txt file could not be found. Please make sure it is in the same directory as this script, and that it contains your OpenAI API key." |
|
|
|
|
|
with open("./openai_api_key.txt") as f: |
|
OPENAI_API_KEY = f.read() |
|
openai.api_key = OPENAI_API_KEY |
|
|
|
self.nb = JupyterNotebook() |
|
out = self.nb.add_and_run(TOOLS_CODE) |
|
|
|
def get_response_content(self): |
|
if self.response: |
|
return self.response["choices"][0]["message"]["content"] |
|
else: |
|
return None |
|
|
|
@retry( |
|
stop_max_attempt_number=7, |
|
wait_exponential_multiplier=1000, |
|
wait_exponential_max=10000, |
|
) |
|
def ChatCompletion(self): |
|
try: |
|
self.response = openai.ChatCompletion.create( |
|
model=self.model, messages=self.dialog, temperature=0.2, top_p=0.9 |
|
) |
|
except Exception as e: |
|
print(f"error while OPENAI api call {e}") |
|
|
|
def close(self): |
|
""" |
|
close jupyter notebook, and this class instance |
|
""" |
|
self.nb.close() |
|
|
|
def save_dialog(self, path: str = "./output/dialog.json"): |
|
with open(path, "w") as f: |
|
json.dump(self.dialog, f) |
|
print(f" ++Dialog saved to [{path}]") |
|
|
|
def chat( |
|
self, |
|
user_message: str, |
|
VERBOSE: bool = False, |
|
MAX_TRY: int = 6, |
|
code_exec_prefix: str = "", |
|
feedback_prompt: str = "", |
|
append_result: bool = True, |
|
): |
|
self.dialog.append({"role": "user", "content": user_message}) |
|
|
|
code_block_output = "" |
|
attempt = 0 |
|
img_data = None |
|
|
|
if VERBOSE: |
|
print( |
|
"###User : " + Fore.BLUE + Style.BRIGHT + user_message + Style.RESET_ALL |
|
) |
|
print("\n###Assistant : ") |
|
|
|
for i in range(MAX_TRY): |
|
|
|
self.ChatCompletion() |
|
|
|
|
|
generated_text = self.get_response_content() |
|
generated_code_blocks = self.extract_code_blocks(generated_text) |
|
|
|
if len(generated_code_blocks) > 0: |
|
|
|
first_code_block_pos = ( |
|
generated_text.find(generated_code_blocks[0]) |
|
if generated_code_blocks |
|
else -1 |
|
) |
|
text_before_first_code_block = ( |
|
generated_text |
|
if first_code_block_pos == -1 |
|
else generated_text[:first_code_block_pos] |
|
) |
|
if VERBOSE: |
|
print(Fore.GREEN + text_before_first_code_block + Style.RESET_ALL) |
|
if VERBOSE: |
|
print( |
|
Fore.YELLOW |
|
+ generated_code_blocks[0] |
|
+ "\n```\n" |
|
+ Style.RESET_ALL |
|
) |
|
code_block_output, error_flag = self.execute_code_and_return_output( |
|
generated_code_blocks[0] |
|
) |
|
|
|
code_block_output = f"{code_block_output}" |
|
|
|
if code_block_output is not None: |
|
code_block_output = code_block_output.strip() |
|
|
|
code_block_output = remove_string(code_block_output) |
|
if len(code_block_output) > 500: |
|
code_block_output = ( |
|
code_block_output[:200] + "⋯(skip)⋯" + code_block_output[-200:] |
|
) |
|
code_block_output_str = f"\n```RESULT\n{code_block_output}\n```\n" |
|
if append_result: |
|
gen_final = f"{text_before_first_code_block}{generated_code_blocks[0]}\n```{code_block_output_str}" |
|
if VERBOSE: |
|
print( |
|
Fore.LIGHTBLACK_EX + code_block_output_str + Style.RESET_ALL |
|
) |
|
else: |
|
gen_final = ( |
|
f"{text_before_first_code_block}{generated_code_blocks[0]}\n```" |
|
) |
|
|
|
self.dialog.append( |
|
{ |
|
"role": "assistant", |
|
"content": gen_final, |
|
} |
|
) |
|
|
|
if len(feedback_prompt) < 5: |
|
feedback_dict = { |
|
"role": "user", |
|
"content": "Keep going. if you think debugging tell me where you got wrong and better code.\nNeed conclusion to question only text (Do not leave result part alone).\nif doesn't need to generated anything then just say <done>", |
|
} |
|
else: |
|
feedback_dict = { |
|
"role": "user", |
|
"content": f"{feedback_prompt}", |
|
} |
|
|
|
self.dialog.append(feedback_dict) |
|
|
|
else: |
|
if "<done>" in generated_text: |
|
generated_text = generated_text.split("<done>")[0].strip() |
|
|
|
if len(generated_text) <= 0: |
|
break |
|
|
|
if VERBOSE: |
|
print(Fore.GREEN + generated_text + Style.RESET_ALL) |
|
|
|
self.dialog.append( |
|
{ |
|
"role": "assistant", |
|
"content": f"{generated_text}", |
|
} |
|
) |
|
break |
|
|
|
self.dialog = [self.dialog[0]] + clean_the_dialog( |
|
self.dialog, question=user_message |
|
) |
|
|
|
return self.dialog[-1] |
|
|