from dataclasses import dataclass, field from typing import Dict, Optional, Sequence import logging import os, sys import copy import torch import transformers from transformers import LlamaForCausalLM, LlamaTokenizer, TextStreamer from torch.utils.data import Dataset from transformers import Trainer import torch from rich.console import Console from rich.table import Table from datetime import datetime from threading import Thread sys.path.append(os.path.dirname(__file__)) sys.path.append(os.path.dirname(os.path.dirname(__file__))) from utils.special_tok_llama2 import ( B_CODE, E_CODE, B_RESULT, E_RESULT, B_INST, E_INST, B_SYS, E_SYS, DEFAULT_PAD_TOKEN, DEFAULT_BOS_TOKEN, DEFAULT_EOS_TOKEN, DEFAULT_UNK_TOKEN, IGNORE_INDEX, ) from finetuning.conversation_template import ( json_to_code_result_tok_temp, msg_to_code_result_tok_temp, ) import warnings warnings.filterwarnings("ignore", category=UserWarning, module="transformers") os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" console = Console() # for pretty print @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="./output/llama-2-7b-chat-ci") load_peft: Optional[bool] = field(default=False) peft_model_name_or_path: Optional[str] = field( default="./output/llama-2-7b-chat-ci" ) def create_peft_config(model): from peft import ( get_peft_model, LoraConfig, TaskType, prepare_model_for_int8_training, ) peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.05, target_modules=["q_proj", "v_proj"], ) # prepare int-8 model for training model = prepare_model_for_int8_training(model) model = get_peft_model(model, peft_config) model.print_trainable_parameters() return model, peft_config def build_model_from_hf_path( hf_base_model_path: str = "./ckpt/llama-2-13b-chat", load_peft: Optional[bool] = False, peft_model_path: Optional[str] = None, ): start_time = datetime.now() # build tokenizer console.log("[bold cyan]Building tokenizer...[/bold cyan]") tokenizer = LlamaTokenizer.from_pretrained( hf_base_model_path, padding_side="right", use_fast=False, ) # Handle special tokens console.log("[bold cyan]Handling special tokens...[/bold cyan]") special_tokens_dict = dict() if tokenizer.pad_token is None: special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN # 32000 if tokenizer.eos_token is None: special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN # 2 if tokenizer.bos_token is None: special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN # 1 if tokenizer.unk_token is None: special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN tokenizer.add_special_tokens(special_tokens_dict) tokenizer.add_tokens( [B_CODE, B_RESULT, E_RESULT, B_INST, E_INST, B_SYS, E_SYS], special_tokens=True, ) # build model console.log("[bold cyan]Building model...[/bold cyan]") model = LlamaForCausalLM.from_pretrained( hf_base_model_path, load_in_4bit=True, device_map="auto", ) model.resize_token_embeddings(len(tokenizer)) if load_peft and (peft_model_path is not None): from peft import PeftModel model = PeftModel.from_pretrained(model, peft_model_path) console.log("[bold green]Peft Model Loaded[/bold green]") end_time = datetime.now() elapsed_time = end_time - start_time # Log time performance table = Table(title="Time Performance") table.add_column("Task", style="cyan") table.add_column("Time Taken", justify="right") table.add_row("Loading model", str(elapsed_time)) console.print(table) console.log("[bold green]Model Loaded[/bold green]") return {"tokenizer": tokenizer, "model": model} @torch.inference_mode() def inference( user_input="What is 100th fibo num?", max_new_tokens=512, do_sample: bool = True, use_cache: bool = True, top_p: float = 1.0, temperature: float = 0.1, top_k: int = 50, repetition_penalty: float = 1.0, ): parser = transformers.HfArgumentParser(ModelArguments) model_args = parser.parse_args_into_dataclasses()[0] model_dict = build_model_from_hf_path( hf_base_model_path=model_args.model_name_or_path, load_peft=model_args.load_peft, peft_model_path=model_args.peft_model_name_or_path, ) model = model_dict["model"] tokenizer = model_dict["tokenizer"] streamer = TextStreamer(tokenizer, skip_prompt=True) # peft # create peft config model.eval() user_prompt = msg_to_code_result_tok_temp( [{"role": "user", "content": f"{user_input}"}] ) # Printing user's content in blue console.print("\n" + "-" * 20, style="#808080") console.print(f"###User : {user_input}\n", style="blue") prompt = f"{user_prompt}\n###Assistant :" # prompt = f"{user_input}\n### Assistant : Here is python code to get the 55th fibonacci number {B_CODE}\n" inputs = tokenizer([prompt], return_tensors="pt") generated_text = model.generate( **inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=do_sample, top_p=top_p, temperature=temperature, use_cache=use_cache, top_k=top_k, repetition_penalty=repetition_penalty, ) return generated_text if __name__ == "__main__": inference(user_input="what is sin(44)?")