Spaces:
Running
Running
File size: 24,953 Bytes
dde56f0 d37165a dde56f0 bb3f4fa b6fbf82 570e6d5 dde56f0 97f0f9a f4f238a dde56f0 d2993f4 dde56f0 d37165a dde56f0 608ea30 4d12343 dde56f0 d37165a dde56f0 608ea30 dde56f0 d37165a dde56f0 d37165a dde56f0 d37165a dde56f0 d2993f4 dde56f0 d2993f4 dde56f0 a4c401d dde56f0 97f0f9a c8eaa36 53a34c4 dde56f0 a4c401d dde56f0 97f0f9a c8eaa36 a4c401d 53a34c4 a4c401d dde56f0 a4c401d dde56f0 d2993f4 dde56f0 11e40e8 dde56f0 11e40e8 dde56f0 11e40e8 dde56f0 11e40e8 13dd6b4 a4c401d dde56f0 5fa2298 bfc98f5 5fa2298 dde56f0 597a33a 7a57c2f dde56f0 c8eaa36 dde56f0 734b43b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
import gradio as gr
import os
import matplotlib.pyplot as plt
from scipy.integrate import odeint
import torch
from torch.utils import data
from torch.utils.data import DataLoader, Dataset
from torch import nn, optim
from skimage.transform import rescale, resize
from torch import nn, optim
import torch.nn.functional as F
from torch.utils.data import Subset
from scipy.interpolate import interp1d
import collections
import numpy as np
import random
#for pvloop simulator:
import pandas as pd
from scipy.integrate import odeint
import torchvision
import echonet
import matplotlib.animation as animation
from functools import partial
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
sequences_all = []
info_data_all = []
path = 'EchoNet-Dynamic'
output_path = ''
class Echo(torchvision.datasets.VisionDataset):
"""EchoNet-Dynamic Dataset.
Args:
root (string): Root directory of dataset (defaults to `echonet.config.DATA_DIR`)
split (string): One of {``train'', ``val'', ``test'', ``all'', or ``external_test''}
target_type (string or list, optional): Type of target to use,
``Filename'', ``EF'', ``EDV'', ``ESV'', ``LargeIndex'',
``SmallIndex'', ``LargeFrame'', ``SmallFrame'', ``LargeTrace'',
or ``SmallTrace''
Can also be a list to output a tuple with all specified target types.
The targets represent:
``Filename'' (string): filename of video
``EF'' (float): ejection fraction
``EDV'' (float): end-diastolic volume
``ESV'' (float): end-systolic volume
``LargeIndex'' (int): index of large (diastolic) frame in video
``SmallIndex'' (int): index of small (systolic) frame in video
``LargeFrame'' (np.array shape=(3, height, width)): normalized large (diastolic) frame
``SmallFrame'' (np.array shape=(3, height, width)): normalized small (systolic) frame
``LargeTrace'' (np.array shape=(height, width)): left ventricle large (diastolic) segmentation
value of 0 indicates pixel is outside left ventricle
1 indicates pixel is inside left ventricle
``SmallTrace'' (np.array shape=(height, width)): left ventricle small (systolic) segmentation
value of 0 indicates pixel is outside left ventricle
1 indicates pixel is inside left ventricle
Defaults to ``EF''.
mean (int, float, or np.array shape=(3,), optional): means for all (if scalar) or each (if np.array) channel.
Used for normalizing the video. Defaults to 0 (video is not shifted).
std (int, float, or np.array shape=(3,), optional): standard deviation for all (if scalar) or each (if np.array) channel.
Used for normalizing the video. Defaults to 0 (video is not scaled).
length (int or None, optional): Number of frames to clip from video. If ``None'', longest possible clip is returned.
Defaults to 16.
period (int, optional): Sampling period for taking a clip from the video (i.e. every ``period''-th frame is taken)
Defaults to 2.
max_length (int or None, optional): Maximum number of frames to clip from video (main use is for shortening excessively
long videos when ``length'' is set to None). If ``None'', shortening is not applied to any video.
Defaults to 250.
clips (int, optional): Number of clips to sample. Main use is for test-time augmentation with random clips.
Defaults to 1.
pad (int or None, optional): Number of pixels to pad all frames on each side (used as augmentation).
and a window of the original size is taken. If ``None'', no padding occurs.
Defaults to ``None''.
noise (float or None, optional): Fraction of pixels to black out as simulated noise. If ``None'', no simulated noise is added.
Defaults to ``None''.
target_transform (callable, optional): A function/transform that takes in the target and transforms it.
external_test_location (string): Path to videos to use for external testing.
"""
def __init__(self, root=None,
split="train", target_type="EF",
mean=0., std=1.,
length=16, period=2,
max_length=250,
clips=1,
pad=None,
noise=None,
target_transform=None,
external_test_location=None):
if root is None:
root = path
super().__init__(root, target_transform=target_transform)
self.split = split.upper()
if not isinstance(target_type, list):
target_type = [target_type]
self.target_type = target_type
self.mean = mean
self.std = std
self.length = length
self.max_length = max_length
self.period = period
self.clips = clips
self.pad = pad
self.noise = noise
self.target_transform = target_transform
self.external_test_location = external_test_location
self.fnames, self.outcome = [], []
if self.split == "EXTERNAL_TEST":
self.fnames = sorted(os.listdir(self.external_test_location))
else:
# Load video-level labels
with open(f"{self.root}/FileList.csv") as f:
data = pd.read_csv(f)
data["Split"].map(lambda x: x.upper())
if self.split != "ALL":
data = data[data["Split"] == self.split]
self.header = data.columns.tolist()
self.fnames = data["FileName"].tolist()
self.fnames = [fn + ".avi" for fn in self.fnames if os.path.splitext(fn)[1] == ""] # Assume avi if no suffix
self.outcome = data.values.tolist()
# Check that files are present
"""
missing = set(self.fnames) - set(os.listdir(os.path.join(self.root, "Videos")))
if len(missing) != 0:
print("{} videos could not be found in {}:".format(len(missing), os.path.join(self.root, "Videos")))
for f in sorted(missing):
print("\t", f)
raise FileNotFoundError(os.path.join(self.root, "Videos", sorted(missing)[0]))
"""
# Load traces
self.frames = collections.defaultdict(list)
self.trace = collections.defaultdict(_defaultdict_of_lists)
with open(f"{self.root}/VolumeTracings.csv") as f:
header = f.readline().strip().split(",")
assert header == ["FileName", "X1", "Y1", "X2", "Y2", "Frame"]
for line in f:
filename, x1, y1, x2, y2, frame = line.strip().split(',')
x1 = float(x1)
y1 = float(y1)
x2 = float(x2)
y2 = float(y2)
frame = int(frame)
if frame not in self.trace[filename]:
self.frames[filename].append(frame)
self.trace[filename][frame].append((x1, y1, x2, y2))
for filename in self.frames:
for frame in self.frames[filename]:
self.trace[filename][frame] = np.array(self.trace[filename][frame])
# A small number of videos are missing traces; remove these videos
keep = [len(self.frames[f]) >= 2 for f in self.fnames]
self.fnames = [f for (f, k) in zip(self.fnames, keep) if k]
self.outcome = [f for (f, k) in zip(self.outcome, keep) if k]
def __getitem__(self, index):
# Find filename of video
if self.split == "EXTERNAL_TEST":
video = os.path.join(self.external_test_location, self.fnames[index])
elif self.split == "CLINICAL_TEST":
video = os.path.join(self.root, "ProcessedStrainStudyA4c", self.fnames[index])
else:
video = os.path.join(self.root, "Videos", self.fnames[index])
# Load video into np.array
video = echonet.utils.loadvideo(video).astype(np.float32)
# Add simulated noise (black out random pixels)
# 0 represents black at this point (video has not been normalized yet)
if self.noise is not None:
n = video.shape[1] * video.shape[2] * video.shape[3]
ind = np.random.choice(n, round(self.noise * n), replace=False)
f = ind % video.shape[1]
ind //= video.shape[1]
i = ind % video.shape[2]
ind //= video.shape[2]
j = ind
video[:, f, i, j] = 0
# Apply normalization
if isinstance(self.mean, (float, int)):
video -= self.mean
else:
video -= self.mean.reshape(3, 1, 1, 1)
if isinstance(self.std, (float, int)):
video /= self.std
else:
video /= self.std.reshape(3, 1, 1, 1)
# Set number of frames
c, f, h, w = video.shape
if self.length is None:
# Take as many frames as possible
length = f // self.period
else:
# Take specified number of frames
length = self.length
if self.max_length is not None:
# Shorten videos to max_length
length = min(length, self.max_length)
if f < length * self.period:
# Pad video with frames filled with zeros if too short
# 0 represents the mean color (dark grey), since this is after normalization
video = np.concatenate((video, np.zeros((c, length * self.period - f, h, w), video.dtype)), axis=1)
c, f, h, w = video.shape # pylint: disable=E0633
if self.clips == "all":
# Take all possible clips of desired length
start = np.arange(f - (length - 1) * self.period)
else:
# Take random clips from video
start = np.random.choice(f - (length - 1) * self.period, self.clips)
# Gather targets
target = []
for t in self.target_type:
key = self.fnames[index]
if t == "Filename":
target.append(self.fnames[index])
elif t == "LargeIndex":
# Traces are sorted by cross-sectional area
# Largest (diastolic) frame is last
target.append(int(self.frames[key][-1]))
elif t == "SmallIndex":
# Largest (diastolic) frame is first
target.append(int(self.frames[key][0]))
elif t == "LargeFrame":
target.append(video[:, self.frames[key][-1], :, :])
elif t == "SmallFrame":
target.append(video[:, self.frames[key][0], :, :])
elif t in ["LargeTrace", "SmallTrace"]:
if t == "LargeTrace":
t = self.trace[key][self.frames[key][-1]]
else:
t = self.trace[key][self.frames[key][0]]
x1, y1, x2, y2 = t[:, 0], t[:, 1], t[:, 2], t[:, 3]
x = np.concatenate((x1[1:], np.flip(x2[1:])))
y = np.concatenate((y1[1:], np.flip(y2[1:])))
r, c = skimage.draw.polygon(np.rint(y).astype(np.int), np.rint(x).astype(np.int), (video.shape[2], video.shape[3]))
mask = np.zeros((video.shape[2], video.shape[3]), np.float32)
mask[r, c] = 1
target.append(mask)
else:
if self.split == "CLINICAL_TEST" or self.split == "EXTERNAL_TEST":
target.append(np.float32(0))
else:
target.append(np.float32(self.outcome[index][self.header.index(t)]))
if target != []:
target = tuple(target) if len(target) > 1 else target[0]
if self.target_transform is not None:
target = self.target_transform(target)
# Select clips from video
video = tuple(video[:, s + self.period * np.arange(length), :, :] for s in start)
if self.clips == 1:
video = video[0]
else:
video = np.stack(video)
if self.pad is not None:
# Add padding of zeros (mean color of videos)
# Crop of original size is taken out
# (Used as augmentation)
c, l, h, w = video.shape
temp = np.zeros((c, l, h + 2 * self.pad, w + 2 * self.pad), dtype=video.dtype)
temp[:, :, self.pad:-self.pad, self.pad:-self.pad] = video # pylint: disable=E1130
i, j = np.random.randint(0, 2 * self.pad, 2)
video = temp[:, :, i:(i + h), j:(j + w)]
return video, target
def __len__(self):
return len(self.fnames)
def extra_repr(self) -> str:
"""Additional information to add at end of __repr__."""
lines = ["Target type: {target_type}", "Split: {split}"]
return '\n'.join(lines).format(**self.__dict__)
def _defaultdict_of_lists():
"""Returns a defaultdict of lists.
This is used to avoid issues with Windows (if this function is anonymous,
the Echo dataset cannot be used in a dataloader).
"""
return collections.defaultdict(list)
##
print("Done loading training data!")
# define normalization layer to make sure output xi in an interval [ai, bi]:
# define normalization layer to make sure output xi in an interval [ai, bi]:
class IntervalNormalizationLayer(torch.nn.Module):
def __init__(self):
super().__init__()
# new_output = [Tc, start_p, Emax, Emin, Rm, Ra, Vd]
self.a = torch.tensor([0.4, 0., 0.5, 0.02, 0.005, 0.0001, 4.], dtype=torch.float32) #HR in 20-200->Tc in [0.3, 4]
self.b = torch.tensor([1.7, 280., 3.5, 0.1, 0.1, 0.25, 16.], dtype=torch.float32)
#taken out (initial conditions): a: 20, 5, 50; b: 400, 20, 100
def forward(self, inputs):
sigmoid_output = torch.sigmoid(inputs)
scaled_output = sigmoid_output * (self.b - self.a) + self.a
return scaled_output
class NEW3DCNN(nn.Module):
def __init__(self, num_parameters):
super(NEW3DCNN, self).__init__()
self.conv1 = nn.Conv3d(3, 8, kernel_size=3, padding=1)
self.batchnorm1 = nn.BatchNorm3d(8)
self.conv2 = nn.Conv3d(8, 16, kernel_size=3, padding=1)
self.batchnorm2 = nn.BatchNorm3d(16)
self.conv3 = nn.Conv3d(16, 32, kernel_size=3, padding=1)
self.batchnorm3 = nn.BatchNorm3d(32)
self.conv4 = nn.Conv3d(32, 64, kernel_size=3, padding=1)
self.batchnorm4 = nn.BatchNorm3d(64)
self.conv5 = nn.Conv3d(64, 128, kernel_size=3, padding=1)
self.batchnorm5 = nn.BatchNorm3d(128)
self.pool = nn.AdaptiveAvgPool3d(1)
self.fc1 = nn.Linear(128, 512)
self.fc2 = nn.Linear(512, num_parameters)
self.norm1 = IntervalNormalizationLayer()
def forward(self, x):
x = F.relu(self.batchnorm1(self.conv1(x)))
x = F.max_pool3d(x, kernel_size=2, stride=2)
x = F.relu(self.batchnorm2(self.conv2(x)))
x = F.max_pool3d(x, kernel_size=2, stride=2)
x = F.relu(self.batchnorm3(self.conv3(x)))
x = F.max_pool3d(x, kernel_size=2, stride=2)
x = F.relu(self.batchnorm4(self.conv4(x)))
x = F.max_pool3d(x, kernel_size=2, stride=2)
x = F.relu(self.batchnorm5(self.conv5(x)))
x = self.pool(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
x = self.norm1(x)
return x
# Define a neural network with one hidden layer
class Interpolator(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(6, 250).double()
self.fc2 = nn.Linear(250, 2).double()
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# Initialize the neural network
net = Interpolator()
net.load_state_dict(torch.load('final_model_weights/interp6_7param_weight.pt'))
print("Done loading interpolator!")
weights_path = 'final_model_weights/202_full_echonet_7param_Vloss_epoch_200_lr_0.001_weight_best_model.pt'
model = NEW3DCNN(num_parameters = 7)
model.load_state_dict(torch.load(weights_path))
model.to(device)
## PV loops
#returns Plv at time t using Elastance(t) and Vlv(t)-Vd=x1
def Plv(volume, Emax, Emin, t, Tc, Vd):
return Elastance(Emax,Emin,t, Tc)*(volume - Vd)
#returns Elastance(t)
def Elastance(Emax,Emin, t, Tc):
t = t-int(t/Tc)*Tc #can remove this if only want 1st ED (and the 1st ES before)
tn = t/(0.2+0.15*Tc)
return (Emax-Emin)*1.55*(tn/0.7)**1.9/((tn/0.7)**1.9+1)*1/((tn/1.17)**21.9+1) + Emin
def solve_ODE_for_volume(Rm, Ra, Emax, Emin, Vd, Tc, start_v, t):
# the ODE from Simaan et al 2008
def heart_ode(y, t, Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc):
x1, x2, x3, x4, x5 = y #here y is a vector of 5 values (not functions), at time t, used for getting (dy/dt)(t)
P_lv = Plv(x1+Vd,Emax,Emin,t,Tc,Vd)
dydt = [r(x2-P_lv)/Rm-r(P_lv-x4)/Ra, (x3-x2)/(Rs*Cr)-r(x2-P_lv)/(Cr*Rm), (x2-x3)/(Rs*Cs)+x5/Cs, -x5/Ca+r(P_lv-x4)/(Ca*Ra), (x4-x3-Rc*x5)/Ls]
return dydt
# RELU for diodes
def r(u):
return max(u, 0.)
# Define fixed parameters
Rs = 1.0
Rc = 0.0398
Ca = 0.08
Cs = 1.33
Cr = 4.400
Ls = 0.0005
startp = 75.
# Initial conditions
start_pla = float(start_v*Elastance(Emax, Emin, 0, Tc))
start_pao = startp
start_pa = start_pao
start_qt = 0 #aortic flow is Q_T and is 0 at ED, also see Fig5 in simaan2008dynamical
y0 = [start_v, start_pla, start_pa, start_pao, start_qt]
# Solve
sol = odeint(heart_ode, y0, t, args = (Rs, Rm, Ra, Rc, Ca, Cs, Cr, Ls, Emax, Emin, Tc)) #t: list of values
# volume is the first state variable plus theoretical zero pressure volume
volumes = np.array(sol[:, 0]) + Vd
return volumes
def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animation):
# Define initial parameters
init_Emax = Emax # 3.0 # .5 to 3.5
init_Emin = Emin # 0.04 # .02 to .1
# init_Tc = Tc # .4 # .4 to 1.7
init_Vd = Vd # 10.0 # 0 to 25
# DUMMY VOLUME
# def volume(t, Tc):
# return 50*np.sin(2 * np.pi * t*(1/Tc))+100
# SOLVE the ODE model for the VOLUME CURVE
N = 100
t = np.linspace(0, Tc*N, int(60000*N)) #np.linspace(1, 100, 1000000)
volumes = solve_ODE_for_volume(Rm, Ra, Emax, Emin, Vd, Tc, start_v, t)
# FUNCTIONS for PRESSURE CURVE
vectorized_Elastance = np.vectorize(Elastance)
vectorized_Plv = np.vectorize(Plv)
def pressure(t, volume, Emax, Emin, Tc, Vd):
return vectorized_Plv(volume, Emax, Emin, t, Tc, Vd)
# calculate PRESSURE
pressures = pressure(t, volumes, init_Emax, init_Emin, Tc, init_Vd)
# Create the figure and the loop that we will manipulate
fig, ax = plt.subplots()
plt.ylim((0,220))
plt.xlim((0,250))
start = (N-2)*60000
end = (N-2)*60000+50000
if animation:
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)
else:
line = ax.plot(volumes[start:end], pressures[start:end], lw=1, color='b')
plt.title('Predicted PI-SSL LV Pressure Volume Loop', fontsize=16)
#plt.rcParams['fig.suptitle'] = -2.0
#ax.set_title(f'Mitral valve circuit resistance (Rm): {Rm} mmHg*s/ml \n Aortic valve circuit resistance (Ra): {Ra} mmHg*s/ml', fontsize=6)
ax.set_xlabel('LV Volume (ml)')
ax.set_ylabel('LV Pressure (mmHg)')
# adjust the main plot to make room for the sliders
# fig.subplots_adjust(left=0.25, bottom=0.25)
def update(frame):
# update to add more of the loop
end = (N-2)*60000+1000 * frame
x = volumes[start:end]
y = pressures[start:end]
ax.plot(x, y, lw=1, c='b')
if animation:
anim = animation.FuncAnimation(fig, partial(update), frames=43, interval=1)
anim.save("prediction.mp4")
return plt, Rm, Ra, Emax, Emin, Vd, Tc, start_v
def pvloop_simulator_plot_only(Rm, Ra, Emax, Emin, Vd, Tc, start_v):
plot,_,_,_,_,_,_,_ =pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animation=False)
plt.title('Simulated PI-SSL LV Pressure Volume Loop', fontsize=16)
return plot
## Demo
def generate_example():
# get random input
data_path = 'EchoNet-Dynamic'
image_data = Echo(root = data_path, split = 'all', target_type=['Filename','LargeIndex','SmallIndex'])
image_loaded_data = DataLoader(image_data, batch_size=30, shuffle=True)
val_data = next(iter(image_loaded_data))
#create_echo_clip(val_data,'test')
val_seq = val_data[0]
val_tensor = torch.tensor(val_seq, dtype=torch.float32)
n=random.randint(0, 29)
results = model(val_tensor)[n]
filename = val_data[1][0][n]
video = f"EchoNet-Dynamic/Videos/{filename}"
plot, Rm, Ra, Emax, Emin, Vd,Tc, start_v = pvloop_simulator(Rm=round(results[4].item(),2), Ra=round(results[5].item(),2), Emax=results[2].item(), Emin=round(results[3].item(),2), Vd=round(results[6].item(),2), Tc=round(results[0].item(),2), start_v=round(results[1].item(),2))
video = video.replace("avi", "mp4")
# animated = "prediction.mp4"
return video, plot, Rm, Ra, Emax, Emin, Vd, Tc, start_v
title = "Physics-informed self-supervised learning for predicting cardiac digital twins with echocardiography"
description = """
<p style='text-align: center'> Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David Sontag, Ahmed Alaa <br></p>
<p> We develop methodology for predicting digital twins from non-invasive cardiac ultrasound images in <a href='https://arxiv.org/abs/2403.00177'>Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning</a>. Check out our <a href='https://github.com/AlaaLab/CardioPINN' target='_blank'>code.</a> \n \n
We demonstrate the ability of our model to predict left ventricular pressure-volume loops using image data here. To run example predictions on samples from the <a href='https://echonet.github.io/dynamic/'>EchoNet</a> dataset, click the first button. \n \n
Below you can input values of predicted parameters and output a simulated pressure-volume loop predicted by the <a href='https://ieeexplore.ieee.org/document/4729737/keywords#keywords'>Simaan et al 2008</a> hydraulic analogy model by pressing 'Run simulation.'</p>
"""
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
gr.Markdown(description)
with gr.Blocks() as demo:
# text
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1.5, min_width=100):
generate_button = gr.Button("Load sample echocardiogram and generate result")
with gr.Row():
video = gr.PlayableVideo() #format="avi"
plot = gr.PlayableVideo()
with gr.Row():
Rm = gr.Number(label="Mitral valve circuit resistance (Rm) mmHg*s/ml:")
Ra = gr.Number(label="Aortic valve circuit resistance (Ra) mmHg*s/ml:")
Emax = gr.Number(label="Maximum elastance (Emax) mmHg/ml:")
Emin = gr.Number(label="Minimum elastance (Emin) mmHg/ml:")
Vd = gr.Number(label="Theoretical zero pressure volume (Vd) ml:")
Tc = gr.Number(label="Cycle duration (Tc) s:")
start_v = gr.Number(label="Initial volume (start_v) ml:")
simulation_button = gr.Button("Run simulation")
with gr.Row():
sl1 = gr.Slider(0.005, 0.1, value=.005, label="Rm")
sl2 = gr.Slider(0.0001, 0.25, value=.0001, label="Ra")
sl3 = gr.Slider(0.5, 3.5, value=.5, label="Emax")
sl4 = gr.Slider(0.02, 0.1, value= .02, label="Emin")
sl5 = gr.Slider(4.0, 25.0, value= 4.0, label="Vd")
sl6 = gr.Slider(0.4, 1.7, value= 0.4, label="Tc")
sl7 = gr.Slider(0.0, 280.0, value= 140., label="start_v")
generate_button.click(fn=generate_example, outputs = [video,plot,Rm,Ra,Emax,Emin,Vd,Tc,start_v])
simulation_button.click(fn=pvloop_simulator_plot_only, inputs = [sl1,sl2,sl3,sl4,sl5,sl6,sl7], outputs = [gr.Plot()])
demo.launch() |