File size: 25,530 Bytes
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
"""Functions for training and running segmentation."""

import math
import os
import time

import click
import matplotlib.pyplot as plt
import numpy as np
import scipy.signal
import skimage.draw
import torch
import torchvision
import tqdm

import echonet


@click.command("segmentation")
@click.option("--data_dir", type=click.Path(exists=True, file_okay=False), default=None)
@click.option("--output", type=click.Path(file_okay=False), default=None)
@click.option("--model_name", type=click.Choice(
    sorted(name for name in torchvision.models.segmentation.__dict__
           if name.islower() and not name.startswith("__") and callable(torchvision.models.segmentation.__dict__[name]))),
    default="deeplabv3_resnet50")
@click.option("--pretrained/--random", default=False)
@click.option("--weights", type=click.Path(exists=True, dir_okay=False), default=None)
@click.option("--run_test/--skip_test", default=False)
@click.option("--save_video/--skip_video", default=False)
@click.option("--num_epochs", type=int, default=50)
@click.option("--lr", type=float, default=1e-5)
@click.option("--weight_decay", type=float, default=0)
@click.option("--lr_step_period", type=int, default=None)
@click.option("--num_train_patients", type=int, default=None)
@click.option("--num_workers", type=int, default=4)
@click.option("--batch_size", type=int, default=20)
@click.option("--device", type=str, default=None)
@click.option("--seed", type=int, default=0)
def run(
    data_dir=None,
    output=None,

    model_name="deeplabv3_resnet50",
    pretrained=False,
    weights=None,

    run_test=False,
    save_video=False,
    num_epochs=50,
    lr=1e-5,
    weight_decay=1e-5,
    lr_step_period=None,
    num_train_patients=None,
    num_workers=4,
    batch_size=20,
    device=None,
    seed=0,
):
    """Trains/tests segmentation model.

    Args:
        data_dir (str, optional): Directory containing dataset. Defaults to
            `echonet.config.DATA_DIR`.
        output (str, optional): Directory to place outputs. Defaults to
            output/segmentation/<model_name>_<pretrained/random>/.
        model_name (str, optional): Name of segmentation model. One of ``deeplabv3_resnet50'',
            ``deeplabv3_resnet101'', ``fcn_resnet50'', or ``fcn_resnet101''
            (options are torchvision.models.segmentation.<model_name>)
            Defaults to ``deeplabv3_resnet50''.
        pretrained (bool, optional): Whether to use pretrained weights for model
            Defaults to False.
        weights (str, optional): Path to checkpoint containing weights to
            initialize model. Defaults to None.
        run_test (bool, optional): Whether or not to run on test.
            Defaults to False.
        save_video (bool, optional): Whether to save videos with segmentations.
            Defaults to False.
        num_epochs (int, optional): Number of epochs during training
            Defaults to 50.
        lr (float, optional): Learning rate for SGD
            Defaults to 1e-5.
        weight_decay (float, optional): Weight decay for SGD
            Defaults to 0.
        lr_step_period (int or None, optional): Period of learning rate decay
            (learning rate is decayed by a multiplicative factor of 0.1)
            Defaults to math.inf (never decay learning rate).
        num_train_patients (int or None, optional): Number of training patients
            for ablations. Defaults to all patients.
        num_workers (int, optional): Number of subprocesses to use for data
            loading. If 0, the data will be loaded in the main process.
            Defaults to 4.
        device (str or None, optional): Name of device to run on. Options from
            https://pytorch.org/docs/stable/tensor_attributes.html#torch.torch.device
            Defaults to ``cuda'' if available, and ``cpu'' otherwise.
        batch_size (int, optional): Number of samples to load per batch
            Defaults to 20.
        seed (int, optional): Seed for random number generator. Defaults to 0.
    """

    # Seed RNGs
    np.random.seed(seed)
    torch.manual_seed(seed)

    # Set default output directory
    if output is None:
        output = os.path.join("output", "segmentation", "{}_{}".format(model_name, "pretrained" if pretrained else "random"))
    os.makedirs(output, exist_ok=True)

    # Set device for computations
    if device is None:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Set up model
    model = torchvision.models.segmentation.__dict__[model_name](pretrained=pretrained, aux_loss=False)

    model.classifier[-1] = torch.nn.Conv2d(model.classifier[-1].in_channels, 1, kernel_size=model.classifier[-1].kernel_size)  # change number of outputs to 1
    if device.type == "cuda":
        model = torch.nn.DataParallel(model)
    model.to(device)

    if weights is not None:
        checkpoint = torch.load(weights)
        model.load_state_dict(checkpoint['state_dict'])

    # Set up optimizer
    optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
    if lr_step_period is None:
        lr_step_period = math.inf
    scheduler = torch.optim.lr_scheduler.StepLR(optim, lr_step_period)

    # Compute mean and std
    mean, std = echonet.utils.get_mean_and_std(echonet.datasets.Echo(root=data_dir, split="train"))
    tasks = ["LargeFrame", "SmallFrame", "LargeTrace", "SmallTrace"]
    kwargs = {"target_type": tasks,
              "mean": mean,
              "std": std
              }

    # Set up datasets and dataloaders
    dataset = {}
    dataset["train"] = echonet.datasets.Echo(root=data_dir, split="train", **kwargs)
    if num_train_patients is not None and len(dataset["train"]) > num_train_patients:
        # Subsample patients (used for ablation experiment)
        indices = np.random.choice(len(dataset["train"]), num_train_patients, replace=False)
        dataset["train"] = torch.utils.data.Subset(dataset["train"], indices)
    dataset["val"] = echonet.datasets.Echo(root=data_dir, split="val", **kwargs)

    # Run training and testing loops
    with open(os.path.join(output, "log.csv"), "a") as f:
        epoch_resume = 0
        bestLoss = float("inf")
        try:
            # Attempt to load checkpoint
            checkpoint = torch.load(os.path.join(output, "checkpoint.pt"))
            model.load_state_dict(checkpoint['state_dict'])
            optim.load_state_dict(checkpoint['opt_dict'])
            scheduler.load_state_dict(checkpoint['scheduler_dict'])
            epoch_resume = checkpoint["epoch"] + 1
            bestLoss = checkpoint["best_loss"]
            f.write("Resuming from epoch {}\n".format(epoch_resume))
        except FileNotFoundError:
            f.write("Starting run from scratch\n")

        for epoch in range(epoch_resume, num_epochs):
            print("Epoch #{}".format(epoch), flush=True)
            for phase in ['train', 'val']:
                start_time = time.time()
                for i in range(torch.cuda.device_count()):
                    torch.cuda.reset_peak_memory_stats(i)

                ds = dataset[phase]
                dataloader = torch.utils.data.DataLoader(
                    ds, batch_size=batch_size, num_workers=num_workers, shuffle=True, pin_memory=(device.type == "cuda"), drop_last=(phase == "train"))

                loss, large_inter, large_union, small_inter, small_union = echonet.utils.segmentation.run_epoch(model, dataloader, phase == "train", optim, device)
                overall_dice = 2 * (large_inter.sum() + small_inter.sum()) / (large_union.sum() + large_inter.sum() + small_union.sum() + small_inter.sum())
                large_dice = 2 * large_inter.sum() / (large_union.sum() + large_inter.sum())
                small_dice = 2 * small_inter.sum() / (small_union.sum() + small_inter.sum())
                f.write("{},{},{},{},{},{},{},{},{},{},{}\n".format(epoch,
                                                                    phase,
                                                                    loss,
                                                                    overall_dice,
                                                                    large_dice,
                                                                    small_dice,
                                                                    time.time() - start_time,
                                                                    large_inter.size,
                                                                    sum(torch.cuda.max_memory_allocated() for i in range(torch.cuda.device_count())),
                                                                    sum(torch.cuda.max_memory_reserved() for i in range(torch.cuda.device_count())),
                                                                    batch_size))
                f.flush()
            scheduler.step()

            # Save checkpoint
            save = {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'best_loss': bestLoss,
                'loss': loss,
                'opt_dict': optim.state_dict(),
                'scheduler_dict': scheduler.state_dict(),
            }
            torch.save(save, os.path.join(output, "checkpoint.pt"))
            if loss < bestLoss:
                torch.save(save, os.path.join(output, "best.pt"))
                bestLoss = loss

        # Load best weights
        if num_epochs != 0:
            checkpoint = torch.load(os.path.join(output, "best.pt"))
            model.load_state_dict(checkpoint['state_dict'])
            f.write("Best validation loss {} from epoch {}\n".format(checkpoint["loss"], checkpoint["epoch"]))

        if run_test:
            # Run on validation and test
            for split in ["val", "test"]:
                dataset = echonet.datasets.Echo(root=data_dir, split=split, **kwargs)
                dataloader = torch.utils.data.DataLoader(dataset,
                                                         batch_size=batch_size, num_workers=num_workers, shuffle=False, pin_memory=(device.type == "cuda"))
                loss, large_inter, large_union, small_inter, small_union = echonet.utils.segmentation.run_epoch(model, dataloader, False, None, device)

                overall_dice = 2 * (large_inter + small_inter) / (large_union + large_inter + small_union + small_inter)
                large_dice = 2 * large_inter / (large_union + large_inter)
                small_dice = 2 * small_inter / (small_union + small_inter)
                with open(os.path.join(output, "{}_dice.csv".format(split)), "w") as g:
                    g.write("Filename, Overall, Large, Small\n")
                    for (filename, overall, large, small) in zip(dataset.fnames, overall_dice, large_dice, small_dice):
                        g.write("{},{},{},{}\n".format(filename, overall, large, small))

                f.write("{} dice (overall): {:.4f} ({:.4f} - {:.4f})\n".format(split, *echonet.utils.bootstrap(np.concatenate((large_inter, small_inter)), np.concatenate((large_union, small_union)), echonet.utils.dice_similarity_coefficient)))
                f.write("{} dice (large):   {:.4f} ({:.4f} - {:.4f})\n".format(split, *echonet.utils.bootstrap(large_inter, large_union, echonet.utils.dice_similarity_coefficient)))
                f.write("{} dice (small):   {:.4f} ({:.4f} - {:.4f})\n".format(split, *echonet.utils.bootstrap(small_inter, small_union, echonet.utils.dice_similarity_coefficient)))
                f.flush()

    # Saving videos with segmentations
    dataset = echonet.datasets.Echo(root=data_dir, split="test",
                                    target_type=["Filename", "LargeIndex", "SmallIndex"],  # Need filename for saving, and human-selected frames to annotate
                                    mean=mean, std=std,  # Normalization
                                    length=None, max_length=None, period=1  # Take all frames
                                    )
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=10, num_workers=num_workers, shuffle=False, pin_memory=False, collate_fn=_video_collate_fn)

    # Save videos with segmentation
    if save_video and not all(os.path.isfile(os.path.join(output, "videos", f)) for f in dataloader.dataset.fnames):
        # Only run if missing videos

        model.eval()

        os.makedirs(os.path.join(output, "videos"), exist_ok=True)
        os.makedirs(os.path.join(output, "size"), exist_ok=True)
        echonet.utils.latexify()

        with torch.no_grad():
            with open(os.path.join(output, "size.csv"), "w") as g:
                g.write("Filename,Frame,Size,HumanLarge,HumanSmall,ComputerSmall\n")
                for (x, (filenames, large_index, small_index), length) in tqdm.tqdm(dataloader):
                    # Run segmentation model on blocks of frames one-by-one
                    # The whole concatenated video may be too long to run together
                    y = np.concatenate([model(x[i:(i + batch_size), :, :, :].to(device))["out"].detach().cpu().numpy() for i in range(0, x.shape[0], batch_size)])

                    start = 0
                    x = x.numpy()
                    for (i, (filename, offset)) in enumerate(zip(filenames, length)):
                        # Extract one video and segmentation predictions
                        video = x[start:(start + offset), ...]
                        logit = y[start:(start + offset), 0, :, :]

                        # Un-normalize video
                        video *= std.reshape(1, 3, 1, 1)
                        video += mean.reshape(1, 3, 1, 1)

                        # Get frames, channels, height, and width
                        f, c, h, w = video.shape  # pylint: disable=W0612
                        assert c == 3

                        # Put two copies of the video side by side
                        video = np.concatenate((video, video), 3)

                        # If a pixel is in the segmentation, saturate blue channel
                        # Leave alone otherwise
                        video[:, 0, :, w:] = np.maximum(255. * (logit > 0), video[:, 0, :, w:])  # pylint: disable=E1111

                        # Add blank canvas under pair of videos
                        video = np.concatenate((video, np.zeros_like(video)), 2)

                        # Compute size of segmentation per frame
                        size = (logit > 0).sum((1, 2))

                        # Identify systole frames with peak detection
                        trim_min = sorted(size)[round(len(size) ** 0.05)]
                        trim_max = sorted(size)[round(len(size) ** 0.95)]
                        trim_range = trim_max - trim_min
                        systole = set(scipy.signal.find_peaks(-size, distance=20, prominence=(0.50 * trim_range))[0])

                        # Write sizes and frames to file
                        for (frame, s) in enumerate(size):
                            g.write("{},{},{},{},{},{}\n".format(filename, frame, s, 1 if frame == large_index[i] else 0, 1 if frame == small_index[i] else 0, 1 if frame in systole else 0))

                        # Plot sizes
                        fig = plt.figure(figsize=(size.shape[0] / 50 * 1.5, 3))
                        plt.scatter(np.arange(size.shape[0]) / 50, size, s=1)
                        ylim = plt.ylim()
                        for s in systole:
                            plt.plot(np.array([s, s]) / 50, ylim, linewidth=1)
                        plt.ylim(ylim)
                        plt.title(os.path.splitext(filename)[0])
                        plt.xlabel("Seconds")
                        plt.ylabel("Size (pixels)")
                        plt.tight_layout()
                        plt.savefig(os.path.join(output, "size", os.path.splitext(filename)[0] + ".pdf"))
                        plt.close(fig)

                        # Normalize size to [0, 1]
                        size -= size.min()
                        size = size / size.max()
                        size = 1 - size

                        # Iterate the frames in this video
                        for (f, s) in enumerate(size):

                            # On all frames, mark a pixel for the size of the frame
                            video[:, :, int(round(115 + 100 * s)), int(round(f / len(size) * 200 + 10))] = 255.

                            if f in systole:
                                # If frame is computer-selected systole, mark with a line
                                video[:, :, 115:224, int(round(f / len(size) * 200 + 10))] = 255.

                            def dash(start, stop, on=10, off=10):
                                buf = []
                                x = start
                                while x < stop:
                                    buf.extend(range(x, x + on))
                                    x += on
                                    x += off
                                buf = np.array(buf)
                                buf = buf[buf < stop]
                                return buf
                            d = dash(115, 224)

                            if f == large_index[i]:
                                # If frame is human-selected diastole, mark with green dashed line on all frames
                                video[:, :, d, int(round(f / len(size) * 200 + 10))] = np.array([0, 225, 0]).reshape((1, 3, 1))
                            if f == small_index[i]:
                                # If frame is human-selected systole, mark with red dashed line on all frames
                                video[:, :, d, int(round(f / len(size) * 200 + 10))] = np.array([0, 0, 225]).reshape((1, 3, 1))

                            # Get pixels for a circle centered on the pixel
                            r, c = skimage.draw.disk((int(round(115 + 100 * s)), int(round(f / len(size) * 200 + 10))), 4.1)

                            # On the frame that's being shown, put a circle over the pixel
                            video[f, :, r, c] = 255.

                        # Rearrange dimensions and save
                        video = video.transpose(1, 0, 2, 3)
                        video = video.astype(np.uint8)
                        echonet.utils.savevideo(os.path.join(output, "videos", filename), video, 50)

                        # Move to next video
                        start += offset


def run_epoch(model, dataloader, train, optim, device):
    """Run one epoch of training/evaluation for segmentation.

    Args:
        model (torch.nn.Module): Model to train/evaulate.
        dataloder (torch.utils.data.DataLoader): Dataloader for dataset.
        train (bool): Whether or not to train model.
        optim (torch.optim.Optimizer): Optimizer
        device (torch.device): Device to run on
    """

    total = 0.
    n = 0

    pos = 0
    neg = 0
    pos_pix = 0
    neg_pix = 0

    model.train(train)

    large_inter = 0
    large_union = 0
    small_inter = 0
    small_union = 0
    large_inter_list = []
    large_union_list = []
    small_inter_list = []
    small_union_list = []

    with torch.set_grad_enabled(train):
        with tqdm.tqdm(total=len(dataloader)) as pbar:
            for (_, (large_frame, small_frame, large_trace, small_trace)) in dataloader:
                # Count number of pixels in/out of human segmentation
                pos += (large_trace == 1).sum().item()
                pos += (small_trace == 1).sum().item()
                neg += (large_trace == 0).sum().item()
                neg += (small_trace == 0).sum().item()

                # Count number of pixels in/out of computer segmentation
                pos_pix += (large_trace == 1).sum(0).to("cpu").detach().numpy()
                pos_pix += (small_trace == 1).sum(0).to("cpu").detach().numpy()
                neg_pix += (large_trace == 0).sum(0).to("cpu").detach().numpy()
                neg_pix += (small_trace == 0).sum(0).to("cpu").detach().numpy()

                # Run prediction for diastolic frames and compute loss
                large_frame = large_frame.to(device)
                large_trace = large_trace.to(device)
                y_large = model(large_frame)["out"]
                loss_large = torch.nn.functional.binary_cross_entropy_with_logits(y_large[:, 0, :, :], large_trace, reduction="sum")
                # Compute pixel intersection and union between human and computer segmentations
                large_inter += np.logical_and(y_large[:, 0, :, :].detach().cpu().numpy() > 0., large_trace[:, :, :].detach().cpu().numpy() > 0.).sum()
                large_union += np.logical_or(y_large[:, 0, :, :].detach().cpu().numpy() > 0., large_trace[:, :, :].detach().cpu().numpy() > 0.).sum()
                large_inter_list.extend(np.logical_and(y_large[:, 0, :, :].detach().cpu().numpy() > 0., large_trace[:, :, :].detach().cpu().numpy() > 0.).sum((1, 2)))
                large_union_list.extend(np.logical_or(y_large[:, 0, :, :].detach().cpu().numpy() > 0., large_trace[:, :, :].detach().cpu().numpy() > 0.).sum((1, 2)))

                # Run prediction for systolic frames and compute loss
                small_frame = small_frame.to(device)
                small_trace = small_trace.to(device)
                y_small = model(small_frame)["out"]
                loss_small = torch.nn.functional.binary_cross_entropy_with_logits(y_small[:, 0, :, :], small_trace, reduction="sum")
                # Compute pixel intersection and union between human and computer segmentations
                small_inter += np.logical_and(y_small[:, 0, :, :].detach().cpu().numpy() > 0., small_trace[:, :, :].detach().cpu().numpy() > 0.).sum()
                small_union += np.logical_or(y_small[:, 0, :, :].detach().cpu().numpy() > 0., small_trace[:, :, :].detach().cpu().numpy() > 0.).sum()
                small_inter_list.extend(np.logical_and(y_small[:, 0, :, :].detach().cpu().numpy() > 0., small_trace[:, :, :].detach().cpu().numpy() > 0.).sum((1, 2)))
                small_union_list.extend(np.logical_or(y_small[:, 0, :, :].detach().cpu().numpy() > 0., small_trace[:, :, :].detach().cpu().numpy() > 0.).sum((1, 2)))

                # Take gradient step if training
                loss = (loss_large + loss_small) / 2
                if train:
                    optim.zero_grad()
                    loss.backward()
                    optim.step()

                # Accumulate losses and compute baselines
                total += loss.item()
                n += large_trace.size(0)
                p = pos / (pos + neg)
                p_pix = (pos_pix + 1) / (pos_pix + neg_pix + 2)

                # Show info on process bar
                pbar.set_postfix_str("{:.4f} ({:.4f}) / {:.4f} {:.4f}, {:.4f}, {:.4f}".format(total / n / 112 / 112, loss.item() / large_trace.size(0) / 112 / 112, -p * math.log(p) - (1 - p) * math.log(1 - p), (-p_pix * np.log(p_pix) - (1 - p_pix) * np.log(1 - p_pix)).mean(), 2 * large_inter / (large_union + large_inter), 2 * small_inter / (small_union + small_inter)))
                pbar.update()

    large_inter_list = np.array(large_inter_list)
    large_union_list = np.array(large_union_list)
    small_inter_list = np.array(small_inter_list)
    small_union_list = np.array(small_union_list)

    return (total / n / 112 / 112,
            large_inter_list,
            large_union_list,
            small_inter_list,
            small_union_list,
            )


def _video_collate_fn(x):
    """Collate function for Pytorch dataloader to merge multiple videos.

    This function should be used in a dataloader for a dataset that returns
    a video as the first element, along with some (non-zero) tuple of
    targets. Then, the input x is a list of tuples:
      - x[i][0] is the i-th video in the batch
      - x[i][1] are the targets for the i-th video

    This function returns a 3-tuple:
      - The first element is the videos concatenated along the frames
        dimension. This is done so that videos of different lengths can be
        processed together (tensors cannot be "jagged", so we cannot have
        a dimension for video, and another for frames).
      - The second element is contains the targets with no modification.
      - The third element is a list of the lengths of the videos in frames.
    """
    video, target = zip(*x)  # Extract the videos and targets

    # ``video'' is a tuple of length ``batch_size''
    #   Each element has shape (channels=3, frames, height, width)
    #   height and width are expected to be the same across videos, but
    #   frames can be different.

    # ``target'' is also a tuple of length ``batch_size''
    # Each element is a tuple of the targets for the item.

    i = list(map(lambda t: t.shape[1], video))  # Extract lengths of videos in frames

    # This contatenates the videos along the the frames dimension (basically
    # playing the videos one after another). The frames dimension is then
    # moved to be first.
    # Resulting shape is (total frames, channels=3, height, width)
    video = torch.as_tensor(np.swapaxes(np.concatenate(video, 1), 0, 1))

    # Swap dimensions (approximately a transpose)
    # Before: target[i][j] is the j-th target of element i
    # After:  target[i][j] is the i-th target of element j
    target = zip(*target)

    return video, target, i