File size: 16,314 Bytes
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""Functions for training and running EF prediction."""

import math
import os
import time

import click
import matplotlib.pyplot as plt
import numpy as np
import sklearn.metrics
import torch
import torchvision
import tqdm

import echonet


@click.command("video")
@click.option("--data_dir", type=click.Path(exists=True, file_okay=False), default=None)
@click.option("--output", type=click.Path(file_okay=False), default=None)
@click.option("--task", type=str, default="EF")
@click.option("--model_name", type=click.Choice(
    sorted(name for name in torchvision.models.video.__dict__
           if name.islower() and not name.startswith("__") and callable(torchvision.models.video.__dict__[name]))),
    default="r2plus1d_18")
@click.option("--pretrained/--random", default=True)
@click.option("--weights", type=click.Path(exists=True, dir_okay=False), default=None)
@click.option("--run_test/--skip_test", default=False)
@click.option("--num_epochs", type=int, default=45)
@click.option("--lr", type=float, default=1e-4)
@click.option("--weight_decay", type=float, default=1e-4)
@click.option("--lr_step_period", type=int, default=15)
@click.option("--frames", type=int, default=32)
@click.option("--period", type=int, default=2)
@click.option("--num_train_patients", type=int, default=None)
@click.option("--num_workers", type=int, default=4)
@click.option("--batch_size", type=int, default=20)
@click.option("--device", type=str, default=None)
@click.option("--seed", type=int, default=0)
def run(
    data_dir=None,
    output=None,
    task="EF",

    model_name="r2plus1d_18",
    pretrained=True,
    weights=None,

    run_test=False,
    num_epochs=45,
    lr=1e-4,
    weight_decay=1e-4,
    lr_step_period=15,
    frames=32,
    period=2,
    num_train_patients=None,
    num_workers=4,
    batch_size=20,
    device=None,
    seed=0,
):
    """Trains/tests EF prediction model.

    \b
    Args:
        data_dir (str, optional): Directory containing dataset. Defaults to
            `echonet.config.DATA_DIR`.
        output (str, optional): Directory to place outputs. Defaults to
            output/video/<model_name>_<pretrained/random>/.
        task (str, optional): Name of task to predict. Options are the headers
            of FileList.csv. Defaults to ``EF''.
        model_name (str, optional): Name of model. One of ``mc3_18'',
            ``r2plus1d_18'', or ``r3d_18''
            (options are torchvision.models.video.<model_name>)
            Defaults to ``r2plus1d_18''.
        pretrained (bool, optional): Whether to use pretrained weights for model
            Defaults to True.
        weights (str, optional): Path to checkpoint containing weights to
            initialize model. Defaults to None.
        run_test (bool, optional): Whether or not to run on test.
            Defaults to False.
        num_epochs (int, optional): Number of epochs during training.
            Defaults to 45.
        lr (float, optional): Learning rate for SGD
            Defaults to 1e-4.
        weight_decay (float, optional): Weight decay for SGD
            Defaults to 1e-4.
        lr_step_period (int or None, optional): Period of learning rate decay
            (learning rate is decayed by a multiplicative factor of 0.1)
            Defaults to 15.
        frames (int, optional): Number of frames to use in clip
            Defaults to 32.
        period (int, optional): Sampling period for frames
            Defaults to 2.
        n_train_patients (int or None, optional): Number of training patients
            for ablations. Defaults to all patients.
        num_workers (int, optional): Number of subprocesses to use for data
            loading. If 0, the data will be loaded in the main process.
            Defaults to 4.
        device (str or None, optional): Name of device to run on. Options from
            https://pytorch.org/docs/stable/tensor_attributes.html#torch.torch.device
            Defaults to ``cuda'' if available, and ``cpu'' otherwise.
        batch_size (int, optional): Number of samples to load per batch
            Defaults to 20.
        seed (int, optional): Seed for random number generator. Defaults to 0.
    """

    # Seed RNGs
    np.random.seed(seed)
    torch.manual_seed(seed)

    # Set default output directory
    if output is None:
        output = os.path.join("output", "video", "{}_{}_{}_{}".format(model_name, frames, period, "pretrained" if pretrained else "random"))
    os.makedirs(output, exist_ok=True)

    # Set device for computations
    if device is None:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Set up model
    model = torchvision.models.video.__dict__[model_name](pretrained=pretrained)

    model.fc = torch.nn.Linear(model.fc.in_features, 1)
    model.fc.bias.data[0] = 55.6
    if device.type == "cuda":
        model = torch.nn.DataParallel(model)
    model.to(device)

    if weights is not None:
        checkpoint = torch.load(weights)
        model.load_state_dict(checkpoint['state_dict'])

    # Set up optimizer
    optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
    if lr_step_period is None:
        lr_step_period = math.inf
    scheduler = torch.optim.lr_scheduler.StepLR(optim, lr_step_period)

    # Compute mean and std
    mean, std = echonet.utils.get_mean_and_std(echonet.datasets.Echo(root=data_dir, split="train"))
    kwargs = {"target_type": task,
              "mean": mean,
              "std": std,
              "length": frames,
              "period": period,
              }

    # Set up datasets and dataloaders
    dataset = {}
    dataset["train"] = echonet.datasets.Echo(root=data_dir, split="train", **kwargs, pad=12)
    if num_train_patients is not None and len(dataset["train"]) > num_train_patients:
        # Subsample patients (used for ablation experiment)
        indices = np.random.choice(len(dataset["train"]), num_train_patients, replace=False)
        dataset["train"] = torch.utils.data.Subset(dataset["train"], indices)
    dataset["val"] = echonet.datasets.Echo(root=data_dir, split="val", **kwargs)

    # Run training and testing loops
    with open(os.path.join(output, "log.csv"), "a") as f:
        epoch_resume = 0
        bestLoss = float("inf")
        try:
            # Attempt to load checkpoint
            checkpoint = torch.load(os.path.join(output, "checkpoint.pt"))
            model.load_state_dict(checkpoint['state_dict'])
            optim.load_state_dict(checkpoint['opt_dict'])
            scheduler.load_state_dict(checkpoint['scheduler_dict'])
            epoch_resume = checkpoint["epoch"] + 1
            bestLoss = checkpoint["best_loss"]
            f.write("Resuming from epoch {}\n".format(epoch_resume))
        except FileNotFoundError:
            f.write("Starting run from scratch\n")

        for epoch in range(epoch_resume, num_epochs):
            print("Epoch #{}".format(epoch), flush=True)
            for phase in ['train', 'val']:
                start_time = time.time()
                for i in range(torch.cuda.device_count()):
                    torch.cuda.reset_peak_memory_stats(i)

                ds = dataset[phase]
                dataloader = torch.utils.data.DataLoader(
                    ds, batch_size=batch_size, num_workers=num_workers, shuffle=True, pin_memory=(device.type == "cuda"), drop_last=(phase == "train"))

                loss, yhat, y = echonet.utils.video.run_epoch(model, dataloader, phase == "train", optim, device)
                f.write("{},{},{},{},{},{},{},{},{}\n".format(epoch,
                                                              phase,
                                                              loss,
                                                              sklearn.metrics.r2_score(y, yhat),
                                                              time.time() - start_time,
                                                              y.size,
                                                              sum(torch.cuda.max_memory_allocated() for i in range(torch.cuda.device_count())),
                                                              sum(torch.cuda.max_memory_reserved() for i in range(torch.cuda.device_count())),
                                                              batch_size))
                f.flush()
            scheduler.step()

            # Save checkpoint
            save = {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'period': period,
                'frames': frames,
                'best_loss': bestLoss,
                'loss': loss,
                'r2': sklearn.metrics.r2_score(y, yhat),
                'opt_dict': optim.state_dict(),
                'scheduler_dict': scheduler.state_dict(),
            }
            torch.save(save, os.path.join(output, "checkpoint.pt"))
            if loss < bestLoss:
                torch.save(save, os.path.join(output, "best.pt"))
                bestLoss = loss

        # Load best weights
        if num_epochs != 0:
            checkpoint = torch.load(os.path.join(output, "best.pt"))
            model.load_state_dict(checkpoint['state_dict'])
            f.write("Best validation loss {} from epoch {}\n".format(checkpoint["loss"], checkpoint["epoch"]))
            f.flush()

        if run_test:
            for split in ["val", "test"]:
                # Performance without test-time augmentation
                dataloader = torch.utils.data.DataLoader(
                    echonet.datasets.Echo(root=data_dir, split=split, **kwargs),
                    batch_size=batch_size, num_workers=num_workers, shuffle=True, pin_memory=(device.type == "cuda"))
                loss, yhat, y = echonet.utils.video.run_epoch(model, dataloader, False, None, device)
                f.write("{} (one clip) R2:   {:.3f} ({:.3f} - {:.3f})\n".format(split, *echonet.utils.bootstrap(y, yhat, sklearn.metrics.r2_score)))
                f.write("{} (one clip) MAE:  {:.2f} ({:.2f} - {:.2f})\n".format(split, *echonet.utils.bootstrap(y, yhat, sklearn.metrics.mean_absolute_error)))
                f.write("{} (one clip) RMSE: {:.2f} ({:.2f} - {:.2f})\n".format(split, *tuple(map(math.sqrt, echonet.utils.bootstrap(y, yhat, sklearn.metrics.mean_squared_error)))))
                f.flush()

                # Performance with test-time augmentation
                ds = echonet.datasets.Echo(root=data_dir, split=split, **kwargs, clips="all")
                dataloader = torch.utils.data.DataLoader(
                    ds, batch_size=1, num_workers=num_workers, shuffle=False, pin_memory=(device.type == "cuda"))
                loss, yhat, y = echonet.utils.video.run_epoch(model, dataloader, False, None, device, save_all=True, block_size=batch_size)
                f.write("{} (all clips) R2:   {:.3f} ({:.3f} - {:.3f})\n".format(split, *echonet.utils.bootstrap(y, np.array(list(map(lambda x: x.mean(), yhat))), sklearn.metrics.r2_score)))
                f.write("{} (all clips) MAE:  {:.2f} ({:.2f} - {:.2f})\n".format(split, *echonet.utils.bootstrap(y, np.array(list(map(lambda x: x.mean(), yhat))), sklearn.metrics.mean_absolute_error)))
                f.write("{} (all clips) RMSE: {:.2f} ({:.2f} - {:.2f})\n".format(split, *tuple(map(math.sqrt, echonet.utils.bootstrap(y, np.array(list(map(lambda x: x.mean(), yhat))), sklearn.metrics.mean_squared_error)))))
                f.flush()

                # Write full performance to file
                with open(os.path.join(output, "{}_predictions.csv".format(split)), "w") as g:
                    for (filename, pred) in zip(ds.fnames, yhat):
                        for (i, p) in enumerate(pred):
                            g.write("{},{},{:.4f}\n".format(filename, i, p))
                echonet.utils.latexify()
                yhat = np.array(list(map(lambda x: x.mean(), yhat)))

                # Plot actual and predicted EF
                fig = plt.figure(figsize=(3, 3))
                lower = min(y.min(), yhat.min())
                upper = max(y.max(), yhat.max())
                plt.scatter(y, yhat, color="k", s=1, edgecolor=None, zorder=2)
                plt.plot([0, 100], [0, 100], linewidth=1, zorder=3)
                plt.axis([lower - 3, upper + 3, lower - 3, upper + 3])
                plt.gca().set_aspect("equal", "box")
                plt.xlabel("Actual EF (%)")
                plt.ylabel("Predicted EF (%)")
                plt.xticks([10, 20, 30, 40, 50, 60, 70, 80])
                plt.yticks([10, 20, 30, 40, 50, 60, 70, 80])
                plt.grid(color="gainsboro", linestyle="--", linewidth=1, zorder=1)
                plt.tight_layout()
                plt.savefig(os.path.join(output, "{}_scatter.pdf".format(split)))
                plt.close(fig)

                # Plot AUROC
                fig = plt.figure(figsize=(3, 3))
                plt.plot([0, 1], [0, 1], linewidth=1, color="k", linestyle="--")
                for thresh in [35, 40, 45, 50]:
                    fpr, tpr, _ = sklearn.metrics.roc_curve(y > thresh, yhat)
                    print(thresh, sklearn.metrics.roc_auc_score(y > thresh, yhat))
                    plt.plot(fpr, tpr)

                plt.axis([-0.01, 1.01, -0.01, 1.01])
                plt.xlabel("False Positive Rate")
                plt.ylabel("True Positive Rate")
                plt.tight_layout()
                plt.savefig(os.path.join(output, "{}_roc.pdf".format(split)))
                plt.close(fig)


def run_epoch(model, dataloader, train, optim, device, save_all=False, block_size=None):
    """Run one epoch of training/evaluation for segmentation.

    Args:
        model (torch.nn.Module): Model to train/evaulate.
        dataloder (torch.utils.data.DataLoader): Dataloader for dataset.
        train (bool): Whether or not to train model.
        optim (torch.optim.Optimizer): Optimizer
        device (torch.device): Device to run on
        save_all (bool, optional): If True, return predictions for all
            test-time augmentations separately. If False, return only
            the mean prediction.
            Defaults to False.
        block_size (int or None, optional): Maximum number of augmentations
            to run on at the same time. Use to limit the amount of memory
            used. If None, always run on all augmentations simultaneously.
            Default is None.
    """

    model.train(train)

    total = 0  # total training loss
    n = 0      # number of videos processed
    s1 = 0     # sum of ground truth EF
    s2 = 0     # Sum of ground truth EF squared

    yhat = []
    y = []

    with torch.set_grad_enabled(train):
        with tqdm.tqdm(total=len(dataloader)) as pbar:
            for (X, outcome) in dataloader:

                y.append(outcome.numpy())
                X = X.to(device)
                outcome = outcome.to(device)

                average = (len(X.shape) == 6)
                if average:
                    batch, n_clips, c, f, h, w = X.shape
                    X = X.view(-1, c, f, h, w)

                s1 += outcome.sum()
                s2 += (outcome ** 2).sum()

                if block_size is None:
                    outputs = model(X)
                else:
                    outputs = torch.cat([model(X[j:(j + block_size), ...]) for j in range(0, X.shape[0], block_size)])

                if save_all:
                    yhat.append(outputs.view(-1).to("cpu").detach().numpy())

                if average:
                    outputs = outputs.view(batch, n_clips, -1).mean(1)

                if not save_all:
                    yhat.append(outputs.view(-1).to("cpu").detach().numpy())

                loss = torch.nn.functional.mse_loss(outputs.view(-1), outcome)

                if train:
                    optim.zero_grad()
                    loss.backward()
                    optim.step()

                total += loss.item() * X.size(0)
                n += X.size(0)

                pbar.set_postfix_str("{:.2f} ({:.2f}) / {:.2f}".format(total / n, loss.item(), s2 / n - (s1 / n) ** 2))
                pbar.update()

    if not save_all:
        yhat = np.concatenate(yhat)
    y = np.concatenate(y)

    return total / n, yhat, y