File size: 6,731 Bytes
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "# David Ouyang 10/2/2019\n",
    "\n",
    "# Notebook which iterates through a folder, including subfolders, \n",
    "# and convert DICOM files to AVI files of a defined size (natively 112 x 112)\n",
    "\n",
    "import re\n",
    "import os, os.path\n",
    "from os.path import splitext\n",
    "import pydicom as dicom\n",
    "import numpy as np\n",
    "from pydicom.uid import UID, generate_uid\n",
    "import shutil\n",
    "from multiprocessing import dummy as multiprocessing\n",
    "import time\n",
    "import subprocess\n",
    "import datetime\n",
    "from datetime import date\n",
    "import sys\n",
    "import cv2\n",
    "#from scipy.misc import imread\n",
    "import matplotlib.pyplot as plt\n",
    "import sys\n",
    "from shutil import copy\n",
    "import math\n",
    "\n",
    "destinationFolder = \"Output Folder Name\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: pillow in c:\\programdata\\anaconda3\\lib\\site-packages (6.2.0)\n",
      "Requirement already satisfied: scipy in c:\\programdata\\anaconda3\\lib\\site-packages (1.3.1)\n"
     ]
    }
   ],
   "source": [
    "# Dependencies you might need to run code\n",
    "# Commonly missing\n",
    "\n",
    "#!pip install pydicom\n",
    "#!pip install opencv-python\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "def mask(output):\n",
    "    dimension = output.shape[0]\n",
    "    \n",
    "    # Mask pixels outside of scanning sector\n",
    "    m1, m2 = np.meshgrid(np.arange(dimension), np.arange(dimension))\n",
    "    \n",
    "\n",
    "    mask = ((m1+m2)>int(dimension/2) + int(dimension/10)) \n",
    "    mask *=  ((m1-m2)<int(dimension/2) + int(dimension/10))\n",
    "    mask = np.reshape(mask, (dimension, dimension)).astype(np.int8)\n",
    "    maskedImage = cv2.bitwise_and(output, output, mask = mask)\n",
    "    \n",
    "    #print(maskedImage.shape)\n",
    "    \n",
    "    return maskedImage\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def makeVideo(fileToProcess, destinationFolder):\n",
    "    try:\n",
    "        fileName = fileToProcess.split('\\\\')[-1] #\\\\ if windows, / if on mac or sherlock\n",
    "                                                 #hex(abs(hash(fileToProcess.split('/')[-1]))).upper()\n",
    "\n",
    "        if not os.path.isdir(os.path.join(destinationFolder,fileName)):\n",
    "\n",
    "            dataset = dicom.dcmread(fileToProcess, force=True)\n",
    "            testarray = dataset.pixel_array\n",
    "\n",
    "            frame0 = testarray[0]\n",
    "            mean = np.mean(frame0, axis=1)\n",
    "            mean = np.mean(mean, axis=1)\n",
    "            yCrop = np.where(mean<1)[0][0]\n",
    "            testarray = testarray[:, yCrop:, :, :]\n",
    "\n",
    "            bias = int(np.abs(testarray.shape[2] - testarray.shape[1])/2)\n",
    "            if bias>0:\n",
    "                if testarray.shape[1] < testarray.shape[2]:\n",
    "                    testarray = testarray[:, :, bias:-bias, :]\n",
    "                else:\n",
    "                    testarray = testarray[:, bias:-bias, :, :]\n",
    "\n",
    "\n",
    "            print(testarray.shape)\n",
    "            frames,height,width,channels = testarray.shape\n",
    "\n",
    "            fps = 30\n",
    "\n",
    "            try:\n",
    "                fps = dataset[(0x18, 0x40)].value\n",
    "            except:\n",
    "                print(\"couldn't find frame rate, default to 30\")\n",
    "\n",
    "            fourcc = cv2.VideoWriter_fourcc('M','J','P','G')\n",
    "            video_filename = os.path.join(destinationFolder, fileName + '.avi')\n",
    "            out = cv2.VideoWriter(video_filename, fourcc, fps, cropSize)\n",
    "\n",
    "\n",
    "            for i in range(frames):\n",
    "\n",
    "                outputA = testarray[i,:,:,0]\n",
    "                smallOutput = outputA[int(height/10):(height - int(height/10)), int(height/10):(height - int(height/10))]\n",
    "\n",
    "                # Resize image\n",
    "                output = cv2.resize(smallOutput, cropSize, interpolation = cv2.INTER_CUBIC)\n",
    "\n",
    "                finaloutput = mask(output)\n",
    "\n",
    "\n",
    "                finaloutput = cv2.merge([finaloutput,finaloutput,finaloutput])\n",
    "                out.write(finaloutput)\n",
    "\n",
    "            out.release()\n",
    "\n",
    "        else:\n",
    "            print(fileName,\"hasAlreadyBeenProcessed\")\n",
    "    except:\n",
    "        print(\"something filed, not sure what, have to debug\", fileName)\n",
    "    return 0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "AllA4cNames = \"Input Folder Name\"\n",
    "\n",
    "count = 0\n",
    "    \n",
    "cropSize = (112,112)\n",
    "subfolders = os.listdir(AllA4cNames)\n",
    "\n",
    "\n",
    "for folder in subfolders:\n",
    "    print(folder)\n",
    "\n",
    "    for content in os.listdir(os.path.join(AllA4cNames, folder)):\n",
    "        for subcontent in os.listdir(os.path.join(AllA4cNames, folder, content)):\n",
    "            count += 1\n",
    "            \n",
    "\n",
    "            VideoPath = os.path.join(AllA4cNames, folder, content, subcontent)\n",
    "\n",
    "            print(count, folder, content, subcontent)\n",
    "\n",
    "            if not os.path.exists(os.path.join(destinationFolder,subcontent + \".avi\")):\n",
    "                makeVideo(VideoPath, destinationFolder)\n",
    "            else:\n",
    "                print(\"Already did this file\", VideoPath)\n",
    "\n",
    "\n",
    "print(len(AllA4cFilenames))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}