File size: 6,137 Bytes
dde56f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python3

"""Code to generate plots for Extended Data Fig. 6."""

import os
import pickle

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import PIL
import sklearn
import torch
import torchvision

import echonet


def main(fig_root=os.path.join("figure", "noise"),
         video_output=os.path.join("output", "video", "r2plus1d_18_32_2_pretrained"),
         seg_output=os.path.join("output", "segmentation", "deeplabv3_resnet50_random"),
         NOISE=(0, 0.1, 0.2, 0.3, 0.4, 0.5)):
    """Generate plots for Extended Data Fig. 6."""

    device = torch.device("cuda")

    filename = os.path.join(fig_root, "data.pkl")  # Cache of results
    try:
        # Attempt to load cache
        with open(filename, "rb") as f:
            Y, YHAT, INTER, UNION = pickle.load(f)
    except FileNotFoundError:
        # Generate results if no cache available
        os.makedirs(fig_root, exist_ok=True)

        # Load trained video model
        model_v = torchvision.models.video.r2plus1d_18()
        model_v.fc = torch.nn.Linear(model_v.fc.in_features, 1)
        if device.type == "cuda":
            model_v = torch.nn.DataParallel(model_v)
        model_v.to(device)

        checkpoint = torch.load(os.path.join(video_output, "checkpoint.pt"))
        model_v.load_state_dict(checkpoint['state_dict'])

        # Load trained segmentation model
        model_s = torchvision.models.segmentation.deeplabv3_resnet50(aux_loss=False)
        model_s.classifier[-1] = torch.nn.Conv2d(model_s.classifier[-1].in_channels, 1, kernel_size=model_s.classifier[-1].kernel_size)
        if device.type == "cuda":
            model_s = torch.nn.DataParallel(model_s)
        model_s.to(device)

        checkpoint = torch.load(os.path.join(seg_output, "checkpoint.pt"))
        model_s.load_state_dict(checkpoint['state_dict'])

        # Run simulation
        dice = []
        mse = []
        r2 = []
        Y = []
        YHAT = []
        INTER = []
        UNION = []
        for noise in NOISE:
            Y.append([])
            YHAT.append([])
            INTER.append([])
            UNION.append([])

            dataset = echonet.datasets.Echo(split="test", noise=noise)
            PIL.Image.fromarray(dataset[0][0][:, 0, :, :].astype(np.uint8).transpose(1, 2, 0)).save(os.path.join(fig_root, "noise_{}.tif".format(round(100 * noise))))

            mean, std = echonet.utils.get_mean_and_std(echonet.datasets.Echo(split="train"))

            tasks = ["LargeFrame", "SmallFrame", "LargeTrace", "SmallTrace"]
            kwargs = {
                "target_type": tasks,
                "mean": mean,
                "std": std,
                "noise": noise
            }
            dataset = echonet.datasets.Echo(split="test", **kwargs)

            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=16, num_workers=5, shuffle=True, pin_memory=(device.type == "cuda"))

            loss, large_inter, large_union, small_inter, small_union = echonet.utils.segmentation.run_epoch(model_s, dataloader, "test", None, device)
            inter = np.concatenate((large_inter, small_inter)).sum()
            union = np.concatenate((large_union, small_union)).sum()
            dice.append(2 * inter / (union + inter))

            INTER[-1].extend(large_inter.tolist() + small_inter.tolist())
            UNION[-1].extend(large_union.tolist() + small_union.tolist())

            kwargs = {"target_type": "EF",
                      "mean": mean,
                      "std": std,
                      "length": 32,
                      "period": 2,
                      "noise": noise
                      }

            dataset = echonet.datasets.Echo(split="test", **kwargs)

            dataloader = torch.utils.data.DataLoader(dataset,
                                                     batch_size=16, num_workers=5, shuffle=True, pin_memory=(device.type == "cuda"))
            loss, yhat, y = echonet.utils.video.run_epoch(model_v, dataloader, "test", None, device)
            mse.append(loss)
            r2.append(sklearn.metrics.r2_score(y, yhat))
            Y[-1].extend(y.tolist())
            YHAT[-1].extend(yhat.tolist())

        # Save results in cache
        with open(filename, "wb") as f:
            pickle.dump((Y, YHAT, INTER, UNION), f)

    # Set up plot
    echonet.utils.latexify()

    NOISE = list(map(lambda x: round(100 * x), NOISE))
    fig = plt.figure(figsize=(6.50, 4.75))
    gs = matplotlib.gridspec.GridSpec(3, 1, height_ratios=[2.0, 2.0, 0.75])
    ax = (plt.subplot(gs[0]), plt.subplot(gs[1]), plt.subplot(gs[2]))

    # Plot EF prediction results (R^2)
    r2 = [sklearn.metrics.r2_score(y, yhat) for (y, yhat) in zip(Y, YHAT)]
    ax[0].plot(NOISE, r2, color="k", linewidth=1, marker=".")
    ax[0].set_xticks([])
    ax[0].set_ylabel("R$^2$")
    l, h = min(r2), max(r2)
    l, h = l - 0.1 * (h - l), h + 0.1 * (h - l)
    ax[0].axis([min(NOISE) - 5, max(NOISE) + 5, 0, 1])

    # Plot segmentation results (DSC)
    dice = [echonet.utils.dice_similarity_coefficient(inter, union) for (inter, union) in zip(INTER, UNION)]
    ax[1].plot(NOISE, dice, color="k", linewidth=1, marker=".")
    ax[1].set_xlabel("Pixels Removed (%)")
    ax[1].set_ylabel("DSC")
    l, h = min(dice), max(dice)
    l, h = l - 0.1 * (h - l), h + 0.1 * (h - l)
    ax[1].axis([min(NOISE) - 5, max(NOISE) + 5, 0, 1])

    # Add example images below
    for noise in NOISE:
        image = matplotlib.image.imread(os.path.join(fig_root, "noise_{}.tif".format(noise)))
        imagebox = matplotlib.offsetbox.OffsetImage(image, zoom=0.4)
        ab = matplotlib.offsetbox.AnnotationBbox(imagebox, (noise, 0.0), frameon=False)
        ax[2].add_artist(ab)
        ax[2].axis("off")
    ax[2].axis([min(NOISE) - 5, max(NOISE) + 5, -1, 1])

    fig.tight_layout()
    plt.savefig(os.path.join(fig_root, "noise.pdf"), dpi=1200)
    plt.savefig(os.path.join(fig_root, "noise.eps"), dpi=300)
    plt.savefig(os.path.join(fig_root, "noise.png"), dpi=600)
    plt.close(fig)


if __name__ == "__main__":
    main()