Spaces:
Running
Running
library(ggplot2) | |
library(stringr) | |
library(plyr) | |
library(dplyr) | |
library(lubridate) | |
library(reshape2) | |
library(scales) | |
library(ggthemes) | |
library(Metrics) | |
data <- read.csv("r2plus1d_18_32_2_pretrained_test_predictions.csv", header = FALSE) | |
str(data) | |
dataNoAugmentation <- data[data$V2 == 0,] | |
str(dataNoAugmentation) | |
dataGlobalAugmentation <- data %>% group_by(V1) %>% summarize(meanPrediction = mean(V3), sdPred = sd(V3)) | |
str(dataGlobalAugmentation) | |
sizeData <- read.csv("size.csv") | |
sizeData <- sizeData[sizeData$ComputerSmall == 1,] | |
str(sizeData) | |
sizeRelevantFrames <- sizeData[c(1,2)] | |
sizeRelevantFrames$Frame <- sizeRelevantFrames$Frame - 32 | |
sizeRelevantFrames[sizeRelevantFrames$Frame < 0,]$Frame <- 0 | |
beatByBeat <- merge(sizeRelevantFrames, data, by.x = c("Filename", "Frame"), by.y = c("V1", "V2")) | |
beatByBeat <- beatByBeat %>% group_by(Filename) %>% summarize(meanPrediction = mean(V3), sdPred = sd(V3)) | |
str(beatByBeat) | |
### For use, need to specify file directory | |
fileLocation <- "/Users/davidouyang/Local Medical Data/" | |
ActualNumbers <- read.csv(paste0(fileLocation, "FileList.csv", sep = "")) | |
ActualNumbers <- ActualNumbers[c(1,2)] | |
str(ActualNumbers) | |
dataNoAugmentation <- merge(dataNoAugmentation, ActualNumbers, by.x = "V1", by.y = "Filename", all.x = TRUE) | |
dataNoAugmentation$AbsErr <- abs(dataNoAugmentation$V3 - dataNoAugmentation$EF) | |
str(dataNoAugmentation) | |
summary(abs(dataNoAugmentation$V3 - dataNoAugmentation$EF)) | |
# Mean of 4.216 | |
rmse(dataNoAugmentation$V3,dataNoAugmentation$EF) | |
## 5.56 | |
modelNoAugmentation <- lm(dataNoAugmentation$EF ~ dataNoAugmentation$V3) | |
summary(modelNoAugmentation)$r.squared | |
# 0.79475 | |
beatByBeat <- merge(beatByBeat, ActualNumbers, by.x = "Filename", by.y = "Filename", all.x = TRUE) | |
summary(abs(beatByBeat$meanPrediction - beatByBeat$EF)) | |
# Mean of 4.051697 | |
rmse(beatByBeat$meanPrediction, beatByBeat$EF) | |
# 5.325237 | |
modelBeatByBeat <- lm(beatByBeat$EF ~ beatByBeat$meanPrediction) | |
summary(modelBeatByBeat)$r.squared | |
# 0.8093174 | |
beatByBeatAnalysis <- merge(sizeRelevantFrames, data, by.x = c("Filename", "Frame"), by.y = c("V1", "V2")) | |
str(beatByBeatAnalysis) | |
MAEdata <- data.frame(counter = 1:500) | |
MAEdata$sample <- -9999 | |
MAEdata$error <- -9999 | |
str(MAEdata) | |
for (i in 1:500){ | |
samplingBeat <- sample_n(beatByBeatAnalysis %>% group_by(Filename), 1 + floor((i-1)/100), replace = TRUE) %>% group_by(Filename) %>% dplyr::summarize(meanPred = mean(V3)) | |
samplingBeat <- merge(samplingBeat, ActualNumbers, by.x = "Filename", by.y = "Filename", all.x = TRUE) | |
samplingBeat$error <- abs(samplingBeat$meanPred - samplingBeat$EF) | |
MAEdata$sample[i] <- 1 + floor((i-1)/100) | |
MAEdata$error[i] <- mean(samplingBeat$error ) | |
} | |
str(MAEdata) | |
beatBoxPlot <- ggplot(data = MAEdata) + geom_boxplot(aes(x = sample, y = error, group = sample), outlier.shape = NA | |
) + theme_classic() + theme(legend.position = "none", axis.text.y = element_text( size=7)) + xlab("Number of Sampled Beats") + ylab("Mean Absolute Error") + scale_fill_brewer(palette = "Set1", direction = -1) | |
beatBoxPlot | |