Med-Real2Sim / echonet /utils /segmentation.py
Franny Dean
files
dde56f0
raw
history blame
25.5 kB
"""Functions for training and running segmentation."""
import math
import os
import time
import click
import matplotlib.pyplot as plt
import numpy as np
import scipy.signal
import skimage.draw
import torch
import torchvision
import tqdm
import echonet
@click.command("segmentation")
@click.option("--data_dir", type=click.Path(exists=True, file_okay=False), default=None)
@click.option("--output", type=click.Path(file_okay=False), default=None)
@click.option("--model_name", type=click.Choice(
sorted(name for name in torchvision.models.segmentation.__dict__
if name.islower() and not name.startswith("__") and callable(torchvision.models.segmentation.__dict__[name]))),
default="deeplabv3_resnet50")
@click.option("--pretrained/--random", default=False)
@click.option("--weights", type=click.Path(exists=True, dir_okay=False), default=None)
@click.option("--run_test/--skip_test", default=False)
@click.option("--save_video/--skip_video", default=False)
@click.option("--num_epochs", type=int, default=50)
@click.option("--lr", type=float, default=1e-5)
@click.option("--weight_decay", type=float, default=0)
@click.option("--lr_step_period", type=int, default=None)
@click.option("--num_train_patients", type=int, default=None)
@click.option("--num_workers", type=int, default=4)
@click.option("--batch_size", type=int, default=20)
@click.option("--device", type=str, default=None)
@click.option("--seed", type=int, default=0)
def run(
data_dir=None,
output=None,
model_name="deeplabv3_resnet50",
pretrained=False,
weights=None,
run_test=False,
save_video=False,
num_epochs=50,
lr=1e-5,
weight_decay=1e-5,
lr_step_period=None,
num_train_patients=None,
num_workers=4,
batch_size=20,
device=None,
seed=0,
):
"""Trains/tests segmentation model.
Args:
data_dir (str, optional): Directory containing dataset. Defaults to
`echonet.config.DATA_DIR`.
output (str, optional): Directory to place outputs. Defaults to
output/segmentation/<model_name>_<pretrained/random>/.
model_name (str, optional): Name of segmentation model. One of ``deeplabv3_resnet50'',
``deeplabv3_resnet101'', ``fcn_resnet50'', or ``fcn_resnet101''
(options are torchvision.models.segmentation.<model_name>)
Defaults to ``deeplabv3_resnet50''.
pretrained (bool, optional): Whether to use pretrained weights for model
Defaults to False.
weights (str, optional): Path to checkpoint containing weights to
initialize model. Defaults to None.
run_test (bool, optional): Whether or not to run on test.
Defaults to False.
save_video (bool, optional): Whether to save videos with segmentations.
Defaults to False.
num_epochs (int, optional): Number of epochs during training
Defaults to 50.
lr (float, optional): Learning rate for SGD
Defaults to 1e-5.
weight_decay (float, optional): Weight decay for SGD
Defaults to 0.
lr_step_period (int or None, optional): Period of learning rate decay
(learning rate is decayed by a multiplicative factor of 0.1)
Defaults to math.inf (never decay learning rate).
num_train_patients (int or None, optional): Number of training patients
for ablations. Defaults to all patients.
num_workers (int, optional): Number of subprocesses to use for data
loading. If 0, the data will be loaded in the main process.
Defaults to 4.
device (str or None, optional): Name of device to run on. Options from
https://pytorch.org/docs/stable/tensor_attributes.html#torch.torch.device
Defaults to ``cuda'' if available, and ``cpu'' otherwise.
batch_size (int, optional): Number of samples to load per batch
Defaults to 20.
seed (int, optional): Seed for random number generator. Defaults to 0.
"""
# Seed RNGs
np.random.seed(seed)
torch.manual_seed(seed)
# Set default output directory
if output is None:
output = os.path.join("output", "segmentation", "{}_{}".format(model_name, "pretrained" if pretrained else "random"))
os.makedirs(output, exist_ok=True)
# Set device for computations
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Set up model
model = torchvision.models.segmentation.__dict__[model_name](pretrained=pretrained, aux_loss=False)
model.classifier[-1] = torch.nn.Conv2d(model.classifier[-1].in_channels, 1, kernel_size=model.classifier[-1].kernel_size) # change number of outputs to 1
if device.type == "cuda":
model = torch.nn.DataParallel(model)
model.to(device)
if weights is not None:
checkpoint = torch.load(weights)
model.load_state_dict(checkpoint['state_dict'])
# Set up optimizer
optim = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=weight_decay)
if lr_step_period is None:
lr_step_period = math.inf
scheduler = torch.optim.lr_scheduler.StepLR(optim, lr_step_period)
# Compute mean and std
mean, std = echonet.utils.get_mean_and_std(echonet.datasets.Echo(root=data_dir, split="train"))
tasks = ["LargeFrame", "SmallFrame", "LargeTrace", "SmallTrace"]
kwargs = {"target_type": tasks,
"mean": mean,
"std": std
}
# Set up datasets and dataloaders
dataset = {}
dataset["train"] = echonet.datasets.Echo(root=data_dir, split="train", **kwargs)
if num_train_patients is not None and len(dataset["train"]) > num_train_patients:
# Subsample patients (used for ablation experiment)
indices = np.random.choice(len(dataset["train"]), num_train_patients, replace=False)
dataset["train"] = torch.utils.data.Subset(dataset["train"], indices)
dataset["val"] = echonet.datasets.Echo(root=data_dir, split="val", **kwargs)
# Run training and testing loops
with open(os.path.join(output, "log.csv"), "a") as f:
epoch_resume = 0
bestLoss = float("inf")
try:
# Attempt to load checkpoint
checkpoint = torch.load(os.path.join(output, "checkpoint.pt"))
model.load_state_dict(checkpoint['state_dict'])
optim.load_state_dict(checkpoint['opt_dict'])
scheduler.load_state_dict(checkpoint['scheduler_dict'])
epoch_resume = checkpoint["epoch"] + 1
bestLoss = checkpoint["best_loss"]
f.write("Resuming from epoch {}\n".format(epoch_resume))
except FileNotFoundError:
f.write("Starting run from scratch\n")
for epoch in range(epoch_resume, num_epochs):
print("Epoch #{}".format(epoch), flush=True)
for phase in ['train', 'val']:
start_time = time.time()
for i in range(torch.cuda.device_count()):
torch.cuda.reset_peak_memory_stats(i)
ds = dataset[phase]
dataloader = torch.utils.data.DataLoader(
ds, batch_size=batch_size, num_workers=num_workers, shuffle=True, pin_memory=(device.type == "cuda"), drop_last=(phase == "train"))
loss, large_inter, large_union, small_inter, small_union = echonet.utils.segmentation.run_epoch(model, dataloader, phase == "train", optim, device)
overall_dice = 2 * (large_inter.sum() + small_inter.sum()) / (large_union.sum() + large_inter.sum() + small_union.sum() + small_inter.sum())
large_dice = 2 * large_inter.sum() / (large_union.sum() + large_inter.sum())
small_dice = 2 * small_inter.sum() / (small_union.sum() + small_inter.sum())
f.write("{},{},{},{},{},{},{},{},{},{},{}\n".format(epoch,
phase,
loss,
overall_dice,
large_dice,
small_dice,
time.time() - start_time,
large_inter.size,
sum(torch.cuda.max_memory_allocated() for i in range(torch.cuda.device_count())),
sum(torch.cuda.max_memory_reserved() for i in range(torch.cuda.device_count())),
batch_size))
f.flush()
scheduler.step()
# Save checkpoint
save = {
'epoch': epoch,
'state_dict': model.state_dict(),
'best_loss': bestLoss,
'loss': loss,
'opt_dict': optim.state_dict(),
'scheduler_dict': scheduler.state_dict(),
}
torch.save(save, os.path.join(output, "checkpoint.pt"))
if loss < bestLoss:
torch.save(save, os.path.join(output, "best.pt"))
bestLoss = loss
# Load best weights
if num_epochs != 0:
checkpoint = torch.load(os.path.join(output, "best.pt"))
model.load_state_dict(checkpoint['state_dict'])
f.write("Best validation loss {} from epoch {}\n".format(checkpoint["loss"], checkpoint["epoch"]))
if run_test:
# Run on validation and test
for split in ["val", "test"]:
dataset = echonet.datasets.Echo(root=data_dir, split=split, **kwargs)
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batch_size, num_workers=num_workers, shuffle=False, pin_memory=(device.type == "cuda"))
loss, large_inter, large_union, small_inter, small_union = echonet.utils.segmentation.run_epoch(model, dataloader, False, None, device)
overall_dice = 2 * (large_inter + small_inter) / (large_union + large_inter + small_union + small_inter)
large_dice = 2 * large_inter / (large_union + large_inter)
small_dice = 2 * small_inter / (small_union + small_inter)
with open(os.path.join(output, "{}_dice.csv".format(split)), "w") as g:
g.write("Filename, Overall, Large, Small\n")
for (filename, overall, large, small) in zip(dataset.fnames, overall_dice, large_dice, small_dice):
g.write("{},{},{},{}\n".format(filename, overall, large, small))
f.write("{} dice (overall): {:.4f} ({:.4f} - {:.4f})\n".format(split, *echonet.utils.bootstrap(np.concatenate((large_inter, small_inter)), np.concatenate((large_union, small_union)), echonet.utils.dice_similarity_coefficient)))
f.write("{} dice (large): {:.4f} ({:.4f} - {:.4f})\n".format(split, *echonet.utils.bootstrap(large_inter, large_union, echonet.utils.dice_similarity_coefficient)))
f.write("{} dice (small): {:.4f} ({:.4f} - {:.4f})\n".format(split, *echonet.utils.bootstrap(small_inter, small_union, echonet.utils.dice_similarity_coefficient)))
f.flush()
# Saving videos with segmentations
dataset = echonet.datasets.Echo(root=data_dir, split="test",
target_type=["Filename", "LargeIndex", "SmallIndex"], # Need filename for saving, and human-selected frames to annotate
mean=mean, std=std, # Normalization
length=None, max_length=None, period=1 # Take all frames
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=10, num_workers=num_workers, shuffle=False, pin_memory=False, collate_fn=_video_collate_fn)
# Save videos with segmentation
if save_video and not all(os.path.isfile(os.path.join(output, "videos", f)) for f in dataloader.dataset.fnames):
# Only run if missing videos
model.eval()
os.makedirs(os.path.join(output, "videos"), exist_ok=True)
os.makedirs(os.path.join(output, "size"), exist_ok=True)
echonet.utils.latexify()
with torch.no_grad():
with open(os.path.join(output, "size.csv"), "w") as g:
g.write("Filename,Frame,Size,HumanLarge,HumanSmall,ComputerSmall\n")
for (x, (filenames, large_index, small_index), length) in tqdm.tqdm(dataloader):
# Run segmentation model on blocks of frames one-by-one
# The whole concatenated video may be too long to run together
y = np.concatenate([model(x[i:(i + batch_size), :, :, :].to(device))["out"].detach().cpu().numpy() for i in range(0, x.shape[0], batch_size)])
start = 0
x = x.numpy()
for (i, (filename, offset)) in enumerate(zip(filenames, length)):
# Extract one video and segmentation predictions
video = x[start:(start + offset), ...]
logit = y[start:(start + offset), 0, :, :]
# Un-normalize video
video *= std.reshape(1, 3, 1, 1)
video += mean.reshape(1, 3, 1, 1)
# Get frames, channels, height, and width
f, c, h, w = video.shape # pylint: disable=W0612
assert c == 3
# Put two copies of the video side by side
video = np.concatenate((video, video), 3)
# If a pixel is in the segmentation, saturate blue channel
# Leave alone otherwise
video[:, 0, :, w:] = np.maximum(255. * (logit > 0), video[:, 0, :, w:]) # pylint: disable=E1111
# Add blank canvas under pair of videos
video = np.concatenate((video, np.zeros_like(video)), 2)
# Compute size of segmentation per frame
size = (logit > 0).sum((1, 2))
# Identify systole frames with peak detection
trim_min = sorted(size)[round(len(size) ** 0.05)]
trim_max = sorted(size)[round(len(size) ** 0.95)]
trim_range = trim_max - trim_min
systole = set(scipy.signal.find_peaks(-size, distance=20, prominence=(0.50 * trim_range))[0])
# Write sizes and frames to file
for (frame, s) in enumerate(size):
g.write("{},{},{},{},{},{}\n".format(filename, frame, s, 1 if frame == large_index[i] else 0, 1 if frame == small_index[i] else 0, 1 if frame in systole else 0))
# Plot sizes
fig = plt.figure(figsize=(size.shape[0] / 50 * 1.5, 3))
plt.scatter(np.arange(size.shape[0]) / 50, size, s=1)
ylim = plt.ylim()
for s in systole:
plt.plot(np.array([s, s]) / 50, ylim, linewidth=1)
plt.ylim(ylim)
plt.title(os.path.splitext(filename)[0])
plt.xlabel("Seconds")
plt.ylabel("Size (pixels)")
plt.tight_layout()
plt.savefig(os.path.join(output, "size", os.path.splitext(filename)[0] + ".pdf"))
plt.close(fig)
# Normalize size to [0, 1]
size -= size.min()
size = size / size.max()
size = 1 - size
# Iterate the frames in this video
for (f, s) in enumerate(size):
# On all frames, mark a pixel for the size of the frame
video[:, :, int(round(115 + 100 * s)), int(round(f / len(size) * 200 + 10))] = 255.
if f in systole:
# If frame is computer-selected systole, mark with a line
video[:, :, 115:224, int(round(f / len(size) * 200 + 10))] = 255.
def dash(start, stop, on=10, off=10):
buf = []
x = start
while x < stop:
buf.extend(range(x, x + on))
x += on
x += off
buf = np.array(buf)
buf = buf[buf < stop]
return buf
d = dash(115, 224)
if f == large_index[i]:
# If frame is human-selected diastole, mark with green dashed line on all frames
video[:, :, d, int(round(f / len(size) * 200 + 10))] = np.array([0, 225, 0]).reshape((1, 3, 1))
if f == small_index[i]:
# If frame is human-selected systole, mark with red dashed line on all frames
video[:, :, d, int(round(f / len(size) * 200 + 10))] = np.array([0, 0, 225]).reshape((1, 3, 1))
# Get pixels for a circle centered on the pixel
r, c = skimage.draw.disk((int(round(115 + 100 * s)), int(round(f / len(size) * 200 + 10))), 4.1)
# On the frame that's being shown, put a circle over the pixel
video[f, :, r, c] = 255.
# Rearrange dimensions and save
video = video.transpose(1, 0, 2, 3)
video = video.astype(np.uint8)
echonet.utils.savevideo(os.path.join(output, "videos", filename), video, 50)
# Move to next video
start += offset
def run_epoch(model, dataloader, train, optim, device):
"""Run one epoch of training/evaluation for segmentation.
Args:
model (torch.nn.Module): Model to train/evaulate.
dataloder (torch.utils.data.DataLoader): Dataloader for dataset.
train (bool): Whether or not to train model.
optim (torch.optim.Optimizer): Optimizer
device (torch.device): Device to run on
"""
total = 0.
n = 0
pos = 0
neg = 0
pos_pix = 0
neg_pix = 0
model.train(train)
large_inter = 0
large_union = 0
small_inter = 0
small_union = 0
large_inter_list = []
large_union_list = []
small_inter_list = []
small_union_list = []
with torch.set_grad_enabled(train):
with tqdm.tqdm(total=len(dataloader)) as pbar:
for (_, (large_frame, small_frame, large_trace, small_trace)) in dataloader:
# Count number of pixels in/out of human segmentation
pos += (large_trace == 1).sum().item()
pos += (small_trace == 1).sum().item()
neg += (large_trace == 0).sum().item()
neg += (small_trace == 0).sum().item()
# Count number of pixels in/out of computer segmentation
pos_pix += (large_trace == 1).sum(0).to("cpu").detach().numpy()
pos_pix += (small_trace == 1).sum(0).to("cpu").detach().numpy()
neg_pix += (large_trace == 0).sum(0).to("cpu").detach().numpy()
neg_pix += (small_trace == 0).sum(0).to("cpu").detach().numpy()
# Run prediction for diastolic frames and compute loss
large_frame = large_frame.to(device)
large_trace = large_trace.to(device)
y_large = model(large_frame)["out"]
loss_large = torch.nn.functional.binary_cross_entropy_with_logits(y_large[:, 0, :, :], large_trace, reduction="sum")
# Compute pixel intersection and union between human and computer segmentations
large_inter += np.logical_and(y_large[:, 0, :, :].detach().cpu().numpy() > 0., large_trace[:, :, :].detach().cpu().numpy() > 0.).sum()
large_union += np.logical_or(y_large[:, 0, :, :].detach().cpu().numpy() > 0., large_trace[:, :, :].detach().cpu().numpy() > 0.).sum()
large_inter_list.extend(np.logical_and(y_large[:, 0, :, :].detach().cpu().numpy() > 0., large_trace[:, :, :].detach().cpu().numpy() > 0.).sum((1, 2)))
large_union_list.extend(np.logical_or(y_large[:, 0, :, :].detach().cpu().numpy() > 0., large_trace[:, :, :].detach().cpu().numpy() > 0.).sum((1, 2)))
# Run prediction for systolic frames and compute loss
small_frame = small_frame.to(device)
small_trace = small_trace.to(device)
y_small = model(small_frame)["out"]
loss_small = torch.nn.functional.binary_cross_entropy_with_logits(y_small[:, 0, :, :], small_trace, reduction="sum")
# Compute pixel intersection and union between human and computer segmentations
small_inter += np.logical_and(y_small[:, 0, :, :].detach().cpu().numpy() > 0., small_trace[:, :, :].detach().cpu().numpy() > 0.).sum()
small_union += np.logical_or(y_small[:, 0, :, :].detach().cpu().numpy() > 0., small_trace[:, :, :].detach().cpu().numpy() > 0.).sum()
small_inter_list.extend(np.logical_and(y_small[:, 0, :, :].detach().cpu().numpy() > 0., small_trace[:, :, :].detach().cpu().numpy() > 0.).sum((1, 2)))
small_union_list.extend(np.logical_or(y_small[:, 0, :, :].detach().cpu().numpy() > 0., small_trace[:, :, :].detach().cpu().numpy() > 0.).sum((1, 2)))
# Take gradient step if training
loss = (loss_large + loss_small) / 2
if train:
optim.zero_grad()
loss.backward()
optim.step()
# Accumulate losses and compute baselines
total += loss.item()
n += large_trace.size(0)
p = pos / (pos + neg)
p_pix = (pos_pix + 1) / (pos_pix + neg_pix + 2)
# Show info on process bar
pbar.set_postfix_str("{:.4f} ({:.4f}) / {:.4f} {:.4f}, {:.4f}, {:.4f}".format(total / n / 112 / 112, loss.item() / large_trace.size(0) / 112 / 112, -p * math.log(p) - (1 - p) * math.log(1 - p), (-p_pix * np.log(p_pix) - (1 - p_pix) * np.log(1 - p_pix)).mean(), 2 * large_inter / (large_union + large_inter), 2 * small_inter / (small_union + small_inter)))
pbar.update()
large_inter_list = np.array(large_inter_list)
large_union_list = np.array(large_union_list)
small_inter_list = np.array(small_inter_list)
small_union_list = np.array(small_union_list)
return (total / n / 112 / 112,
large_inter_list,
large_union_list,
small_inter_list,
small_union_list,
)
def _video_collate_fn(x):
"""Collate function for Pytorch dataloader to merge multiple videos.
This function should be used in a dataloader for a dataset that returns
a video as the first element, along with some (non-zero) tuple of
targets. Then, the input x is a list of tuples:
- x[i][0] is the i-th video in the batch
- x[i][1] are the targets for the i-th video
This function returns a 3-tuple:
- The first element is the videos concatenated along the frames
dimension. This is done so that videos of different lengths can be
processed together (tensors cannot be "jagged", so we cannot have
a dimension for video, and another for frames).
- The second element is contains the targets with no modification.
- The third element is a list of the lengths of the videos in frames.
"""
video, target = zip(*x) # Extract the videos and targets
# ``video'' is a tuple of length ``batch_size''
# Each element has shape (channels=3, frames, height, width)
# height and width are expected to be the same across videos, but
# frames can be different.
# ``target'' is also a tuple of length ``batch_size''
# Each element is a tuple of the targets for the item.
i = list(map(lambda t: t.shape[1], video)) # Extract lengths of videos in frames
# This contatenates the videos along the the frames dimension (basically
# playing the videos one after another). The frames dimension is then
# moved to be first.
# Resulting shape is (total frames, channels=3, height, width)
video = torch.as_tensor(np.swapaxes(np.concatenate(video, 1), 0, 1))
# Swap dimensions (approximately a transpose)
# Before: target[i][j] is the j-th target of element i
# After: target[i][j] is the i-th target of element j
target = zip(*target)
return video, target, i