Med-Real2Sim / dynamic /scripts /plot_hyperparameter_sweep.py
Franny Dean
files
dde56f0
raw
history blame
6.34 kB
#!/usr/bin/env python3
"""Code to generate plots for Extended Data Fig. 1."""
import os
import matplotlib
import matplotlib.pyplot as plt
import echonet
def main(root=os.path.join("output", "video"),
fig_root=os.path.join("figure", "hyperparameter"),
FRAMES=(1, 8, 16, 32, 64, 96, None),
PERIOD=(1, 2, 4, 6, 8)
):
"""Generate plots for Extended Data Fig. 1."""
echonet.utils.latexify()
os.makedirs(fig_root, exist_ok=True)
# Parameters for plotting length sweep
MAX = FRAMES[-2]
START = 1 # Starting point for normal range
TERM0 = 104 # Ending point for normal range
BREAK = 112 # Location for break
TERM1 = 120 # Starting point for "all" section
ALL = 128 # Location of "all" point
END = 135 # Ending point for "all" section
RATIO = (BREAK - START) / (END - BREAK)
# Set up figure
fig = plt.figure(figsize=(3 + 2.5 + 1.5, 2.75))
outer = matplotlib.gridspec.GridSpec(1, 3, width_ratios=[3, 2.5, 1.50])
ax = plt.subplot(outer[2]) # Legend
ax2 = plt.subplot(outer[1]) # Period plot
gs = matplotlib.gridspec.GridSpecFromSubplotSpec(
1, 2, subplot_spec=outer[0], width_ratios=[RATIO, 1], wspace=0.020) # Length plot
# Plot legend
for (model, color) in zip(["EchoNet-Dynamic (EF)", "R3D", "MC3"],
matplotlib.colors.TABLEAU_COLORS):
ax.plot([float("nan")], [float("nan")], "-", color=color, label=model)
ax.plot([float("nan")], [float("nan")], "-", color="k", label="Pretrained")
ax.plot([float("nan")], [float("nan")], "--", color="k", label="Random")
ax.set_title("")
ax.axis("off")
ax.legend(loc="center")
# Plot length sweep (panel a)
ax0 = plt.subplot(gs[0])
ax1 = plt.subplot(gs[1], sharey=ax0)
print("FRAMES")
for (model, color) in zip(["r2plus1d_18", "r3d_18", "mc3_18"],
matplotlib.colors.TABLEAU_COLORS):
for pretrained in [True, False]:
loss = [load(root, model, frames, 1, pretrained) for frames in FRAMES]
print(model, pretrained)
print(" ".join(list(map(lambda x: "{:.1f}".format(x) if x is not None else None, loss))))
l0 = loss[-2]
l1 = loss[-1]
ax0.plot(FRAMES[:-1] + (TERM0,),
loss[:-1] + [l0 + (l1 - l0) * (TERM0 - MAX) / (ALL - MAX)],
"-" if pretrained else "--", color=color)
ax1.plot([TERM1, ALL],
[l0 + (l1 - l0) * (TERM1 - MAX) / (ALL - MAX)] + [loss[-1]],
"-" if pretrained else "--", color=color)
ax0.scatter(list(map(lambda x: x if x is not None else ALL, FRAMES)), loss, color=color, s=4)
ax1.scatter(list(map(lambda x: x if x is not None else ALL, FRAMES)), loss, color=color, s=4)
ax0.set_xticks(list(map(lambda x: x if x is not None else ALL, FRAMES)))
ax1.set_xticks(list(map(lambda x: x if x is not None else ALL, FRAMES)))
ax0.set_xticklabels(list(map(lambda x: x if x is not None else "All", FRAMES)))
ax1.set_xticklabels(list(map(lambda x: x if x is not None else "All", FRAMES)))
# https://stackoverflow.com/questions/5656798/python-matplotlib-is-there-a-way-to-make-a-discontinuous-axis/43684155
# zoom-in / limit the view to different portions of the data
ax0.set_xlim(START, BREAK) # most of the data
ax1.set_xlim(BREAK, END)
# hide the spines between ax and ax2
ax0.spines['right'].set_visible(False)
ax1.spines['left'].set_visible(False)
ax1.get_yaxis().set_visible(False)
d = 0.015 # how big to make the diagonal lines in axes coordinates
# arguments to pass plot, just so we don't keep repeating them
kwargs = dict(transform=ax0.transAxes, color='k', clip_on=False, linewidth=1)
x0, x1, y0, y1 = ax0.axis()
scale = (y1 - y0) / (x1 - x0) / 2
ax0.plot((1 - scale * d, 1 + scale * d), (-d, +d), **kwargs) # top-left diagonal
ax0.plot((1 - scale * d, 1 + scale * d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
kwargs.update(transform=ax1.transAxes) # switch to the bottom 1xes
x0, x1, y0, y1 = ax1.axis()
scale = (y1 - y0) / (x1 - x0) / 2
ax1.plot((-scale * d, scale * d), (-d, +d), **kwargs) # top-right diagonal
ax1.plot((-scale * d, scale * d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal
# ax0.xaxis.label.set_transform(matplotlib.transforms.blended_transform_factory(
# matplotlib.transforms.IdentityTransform(), fig.transFigure # specify x, y transform
# )) # changed from default blend (IdentityTransform(), a[0].transAxes)
ax0.xaxis.label.set_position((0.6, 0.0))
ax0.text(-0.05, 1.10, "(a)", transform=ax0.transAxes)
ax0.set_xlabel("Clip length (frames)")
ax0.set_ylabel("Validation Loss")
# Plot period sweep (panel b)
print("PERIOD")
for (model, color) in zip(["r2plus1d_18", "r3d_18", "mc3_18"], matplotlib.colors.TABLEAU_COLORS):
for pretrained in [True, False]:
loss = [load(root, model, 64 // period, period, pretrained) for period in PERIOD]
print(model, pretrained)
print(" ".join(list(map(lambda x: "{:.1f}".format(x) if x is not None else None, loss))))
ax2.plot(PERIOD, loss, "-" if pretrained else "--", marker=".", color=color)
ax2.set_xticks(PERIOD)
ax2.text(-0.05, 1.10, "(b)", transform=ax2.transAxes)
ax2.set_xlabel("Sampling Period (frames)")
ax2.set_ylabel("Validation Loss")
# Save figure
plt.tight_layout()
plt.savefig(os.path.join(fig_root, "hyperparameter.pdf"))
plt.savefig(os.path.join(fig_root, "hyperparameter.eps"))
plt.savefig(os.path.join(fig_root, "hyperparameter.png"))
plt.close(fig)
def load(root, model, frames, period, pretrained):
"""Loads best validation loss for specified hyperparameter choice."""
pretrained = ("pretrained" if pretrained else "random")
f = os.path.join(
root,
"{}_{}_{}_{}".format(model, frames, period, pretrained),
"log.csv")
with open(f, "r") as f:
for line in f:
if "Best validation loss " in line:
return float(line.split()[3])
raise ValueError("File missing information.")
if __name__ == "__main__":
main()