Spaces:
Running
Running
for pretrained in True False | |
do | |
for model in r2plus1d_18 r3d_18 mc3_18 | |
do | |
for frames in 96 64 32 16 8 4 1 | |
do | |
batch=$((256 / frames)) | |
batch=$(( batch > 16 ? 16 : batch )) | |
cmd="import echonet; echonet.utils.video.run(modelname=\"${model}\", frames=${frames}, period=1, pretrained=${pretrained}, batch_size=${batch})" | |
python3 -c "${cmd}" | |
done | |
for period in 2 4 6 8 | |
do | |
batch=$((256 / 64 * period)) | |
batch=$(( batch > 16 ? 16 : batch )) | |
cmd="import echonet; echonet.utils.video.run(modelname=\"${model}\", frames=(64 // ${period}), period=${period}, pretrained=${pretrained}, batch_size=${batch})" | |
python3 -c "${cmd}" | |
done | |
done | |
done | |
period=2 | |
pretrained=True | |
for model in r2plus1d_18 r3d_18 mc3_18 | |
do | |
cmd="import echonet; echonet.utils.video.run(modelname=\"${model}\", frames=(64 // ${period}), period=${period}, pretrained=${pretrained}, run_test=True)" | |
python3 -c "${cmd}" | |
done | |
python3 -c "import echonet; echonet.utils.segmentation.run(modelname=\"deeplabv3_resnet50\", save_segmentation=True, pretrained=False)" | |
pretrained=True | |
model=r2plus1d_18 | |
period=2 | |
batch=$((256 / 64 * period)) | |
batch=$(( batch > 16 ? 16 : batch )) | |
for patients in 16 32 64 128 256 512 1024 2048 4096 7460 | |
do | |
cmd="import echonet; echonet.utils.video.run(modelname=\"${model}\", frames=(64 // ${period}), period=${period}, pretrained=${pretrained}, batch_size=${batch}, num_epochs=min(50 * (8192 // ${patients}), 200), output=\"output/training_size/video/${patients}\", n_train_patients=${patients})" | |
python3 -c "${cmd}" | |
cmd="import echonet; echonet.utils.segmentation.run(modelname=\"deeplabv3_resnet50\", pretrained=False, num_epochs=min(50 * (8192 // ${patients}), 200), output=\"output/training_size/segmentation/${patients}\", n_train_patients=${patients})" | |
python3 -c "${cmd}" | |
done | |