Spaces:
Running
Running
Franny Dean
commited on
Commit
•
238988e
1
Parent(s):
64db3e2
new description
Browse files- .ipynb_checkpoints/app-checkpoint.py +11 -4
- app.py +11 -4
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -463,7 +463,8 @@ def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=True):
|
|
463 |
end = (N)*60000
|
464 |
if animate:
|
465 |
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
|
466 |
-
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)
|
|
|
467 |
else:
|
468 |
line = ax.plot(volumes[start:end], pressures[start:end], lw=1, color='b')
|
469 |
|
@@ -523,7 +524,11 @@ description = """
|
|
523 |
<p style='text-align: center'> Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David Sontag, Ahmed Alaa <br></p>
|
524 |
<p> We develop methodology for predicting digital twins from non-invasive cardiac ultrasound images in <a href='https://arxiv.org/abs/2403.00177'>Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning</a>. Check out our <a href='https://github.com/AlaaLab/CardioPINN' target='_blank'>code.</a> \n \n
|
525 |
We demonstrate the ability of our model to predict left ventricular pressure-volume loops using image data here. To run example predictions on samples from the <a href='https://echonet.github.io/dynamic/'>EchoNet</a> dataset, click the first button. \n \n
|
526 |
-
|
|
|
|
|
|
|
|
|
527 |
"""
|
528 |
|
529 |
gr.Markdown(title)
|
@@ -551,9 +556,11 @@ with gr.Blocks() as demo:
|
|
551 |
Vd = gr.Number(label="Theoretical zero pressure volume (Vd) ml:")
|
552 |
Tc = gr.Number(label="Cycle duration (Tc) s:")
|
553 |
start_v = gr.Number(label="Initial volume (start_v) ml:")
|
554 |
-
|
555 |
-
|
|
|
556 |
|
|
|
557 |
|
558 |
|
559 |
with gr.Row():
|
|
|
463 |
end = (N)*60000
|
464 |
if animate:
|
465 |
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
|
466 |
+
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)#, label='End Diastole')
|
467 |
+
#point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5, label='End Systole')
|
468 |
else:
|
469 |
line = ax.plot(volumes[start:end], pressures[start:end], lw=1, color='b')
|
470 |
|
|
|
524 |
<p style='text-align: center'> Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David Sontag, Ahmed Alaa <br></p>
|
525 |
<p> We develop methodology for predicting digital twins from non-invasive cardiac ultrasound images in <a href='https://arxiv.org/abs/2403.00177'>Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning</a>. Check out our <a href='https://github.com/AlaaLab/CardioPINN' target='_blank'>code.</a> \n \n
|
526 |
We demonstrate the ability of our model to predict left ventricular pressure-volume loops using image data here. To run example predictions on samples from the <a href='https://echonet.github.io/dynamic/'>EchoNet</a> dataset, click the first button. \n \n
|
527 |
+
</p>
|
528 |
+
"""
|
529 |
+
|
530 |
+
description2 = """\n \n
|
531 |
+
Our model uses a hydraulic analogy model of cardiac function from <a href='https://ieeexplore.ieee.org/document/4729737/keywords#keywords'>Simaan et al 2008</a>. Below you can input values of predicted parameters and output a simulated pressure-volume loop predicted from the <a href='https://ieeexplore.ieee.org/document/4729737/keywords#keywords'>Simaan et al 2008</a> model, which is an ordinary differential equation. Tune parameters and press 'Run simulation.'
|
532 |
"""
|
533 |
|
534 |
gr.Markdown(title)
|
|
|
556 |
Vd = gr.Number(label="Theoretical zero pressure volume (Vd) ml:")
|
557 |
Tc = gr.Number(label="Cycle duration (Tc) s:")
|
558 |
start_v = gr.Number(label="Initial volume (start_v) ml:")
|
559 |
+
|
560 |
+
|
561 |
+
gr.Markdown(description2)
|
562 |
|
563 |
+
simulation_button = gr.Button("Run simulation")
|
564 |
|
565 |
|
566 |
with gr.Row():
|
app.py
CHANGED
@@ -463,7 +463,8 @@ def pvloop_simulator(Rm, Ra, Emax, Emin, Vd, Tc, start_v, animate=True):
|
|
463 |
end = (N)*60000
|
464 |
if animate:
|
465 |
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
|
466 |
-
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)
|
|
|
467 |
else:
|
468 |
line = ax.plot(volumes[start:end], pressures[start:end], lw=1, color='b')
|
469 |
|
@@ -523,7 +524,11 @@ description = """
|
|
523 |
<p style='text-align: center'> Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David Sontag, Ahmed Alaa <br></p>
|
524 |
<p> We develop methodology for predicting digital twins from non-invasive cardiac ultrasound images in <a href='https://arxiv.org/abs/2403.00177'>Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning</a>. Check out our <a href='https://github.com/AlaaLab/CardioPINN' target='_blank'>code.</a> \n \n
|
525 |
We demonstrate the ability of our model to predict left ventricular pressure-volume loops using image data here. To run example predictions on samples from the <a href='https://echonet.github.io/dynamic/'>EchoNet</a> dataset, click the first button. \n \n
|
526 |
-
|
|
|
|
|
|
|
|
|
527 |
"""
|
528 |
|
529 |
gr.Markdown(title)
|
@@ -551,9 +556,11 @@ with gr.Blocks() as demo:
|
|
551 |
Vd = gr.Number(label="Theoretical zero pressure volume (Vd) ml:")
|
552 |
Tc = gr.Number(label="Cycle duration (Tc) s:")
|
553 |
start_v = gr.Number(label="Initial volume (start_v) ml:")
|
554 |
-
|
555 |
-
|
|
|
556 |
|
|
|
557 |
|
558 |
|
559 |
with gr.Row():
|
|
|
463 |
end = (N)*60000
|
464 |
if animate:
|
465 |
line = ax.plot(volumes[start:(start+1)], pressures[start:(start+1)], lw=1, color='b')
|
466 |
+
point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5)#, label='End Diastole')
|
467 |
+
#point = ax.scatter(volumes[start:(start+1)], pressures[start:(start+1)], c="b", s=5, label='End Systole')
|
468 |
else:
|
469 |
line = ax.plot(volumes[start:end], pressures[start:end], lw=1, color='b')
|
470 |
|
|
|
524 |
<p style='text-align: center'> Keying Kuang, Frances Dean, Jack B. Jedlicki, David Ouyang, Anthony Philippakis, David Sontag, Ahmed Alaa <br></p>
|
525 |
<p> We develop methodology for predicting digital twins from non-invasive cardiac ultrasound images in <a href='https://arxiv.org/abs/2403.00177'>Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning</a>. Check out our <a href='https://github.com/AlaaLab/CardioPINN' target='_blank'>code.</a> \n \n
|
526 |
We demonstrate the ability of our model to predict left ventricular pressure-volume loops using image data here. To run example predictions on samples from the <a href='https://echonet.github.io/dynamic/'>EchoNet</a> dataset, click the first button. \n \n
|
527 |
+
</p>
|
528 |
+
"""
|
529 |
+
|
530 |
+
description2 = """\n \n
|
531 |
+
Our model uses a hydraulic analogy model of cardiac function from <a href='https://ieeexplore.ieee.org/document/4729737/keywords#keywords'>Simaan et al 2008</a>. Below you can input values of predicted parameters and output a simulated pressure-volume loop predicted from the <a href='https://ieeexplore.ieee.org/document/4729737/keywords#keywords'>Simaan et al 2008</a> model, which is an ordinary differential equation. Tune parameters and press 'Run simulation.'
|
532 |
"""
|
533 |
|
534 |
gr.Markdown(title)
|
|
|
556 |
Vd = gr.Number(label="Theoretical zero pressure volume (Vd) ml:")
|
557 |
Tc = gr.Number(label="Cycle duration (Tc) s:")
|
558 |
start_v = gr.Number(label="Initial volume (start_v) ml:")
|
559 |
+
|
560 |
+
|
561 |
+
gr.Markdown(description2)
|
562 |
|
563 |
+
simulation_button = gr.Button("Run simulation")
|
564 |
|
565 |
|
566 |
with gr.Row():
|