#!/usr/bin/env python3 """Code to generate plots for Extended Data Fig. 1.""" import os import matplotlib import matplotlib.pyplot as plt import echonet def main(root=os.path.join("output", "video"), fig_root=os.path.join("figure", "hyperparameter"), FRAMES=(1, 8, 16, 32, 64, 96, None), PERIOD=(1, 2, 4, 6, 8) ): """Generate plots for Extended Data Fig. 1.""" echonet.utils.latexify() os.makedirs(fig_root, exist_ok=True) # Parameters for plotting length sweep MAX = FRAMES[-2] START = 1 # Starting point for normal range TERM0 = 104 # Ending point for normal range BREAK = 112 # Location for break TERM1 = 120 # Starting point for "all" section ALL = 128 # Location of "all" point END = 135 # Ending point for "all" section RATIO = (BREAK - START) / (END - BREAK) # Set up figure fig = plt.figure(figsize=(3 + 2.5 + 1.5, 2.75)) outer = matplotlib.gridspec.GridSpec(1, 3, width_ratios=[3, 2.5, 1.50]) ax = plt.subplot(outer[2]) # Legend ax2 = plt.subplot(outer[1]) # Period plot gs = matplotlib.gridspec.GridSpecFromSubplotSpec( 1, 2, subplot_spec=outer[0], width_ratios=[RATIO, 1], wspace=0.020) # Length plot # Plot legend for (model, color) in zip(["EchoNet-Dynamic (EF)", "R3D", "MC3"], matplotlib.colors.TABLEAU_COLORS): ax.plot([float("nan")], [float("nan")], "-", color=color, label=model) ax.plot([float("nan")], [float("nan")], "-", color="k", label="Pretrained") ax.plot([float("nan")], [float("nan")], "--", color="k", label="Random") ax.set_title("") ax.axis("off") ax.legend(loc="center") # Plot length sweep (panel a) ax0 = plt.subplot(gs[0]) ax1 = plt.subplot(gs[1], sharey=ax0) print("FRAMES") for (model, color) in zip(["r2plus1d_18", "r3d_18", "mc3_18"], matplotlib.colors.TABLEAU_COLORS): for pretrained in [True, False]: loss = [load(root, model, frames, 1, pretrained) for frames in FRAMES] print(model, pretrained) print(" ".join(list(map(lambda x: "{:.1f}".format(x) if x is not None else None, loss)))) l0 = loss[-2] l1 = loss[-1] ax0.plot(FRAMES[:-1] + (TERM0,), loss[:-1] + [l0 + (l1 - l0) * (TERM0 - MAX) / (ALL - MAX)], "-" if pretrained else "--", color=color) ax1.plot([TERM1, ALL], [l0 + (l1 - l0) * (TERM1 - MAX) / (ALL - MAX)] + [loss[-1]], "-" if pretrained else "--", color=color) ax0.scatter(list(map(lambda x: x if x is not None else ALL, FRAMES)), loss, color=color, s=4) ax1.scatter(list(map(lambda x: x if x is not None else ALL, FRAMES)), loss, color=color, s=4) ax0.set_xticks(list(map(lambda x: x if x is not None else ALL, FRAMES))) ax1.set_xticks(list(map(lambda x: x if x is not None else ALL, FRAMES))) ax0.set_xticklabels(list(map(lambda x: x if x is not None else "All", FRAMES))) ax1.set_xticklabels(list(map(lambda x: x if x is not None else "All", FRAMES))) # https://stackoverflow.com/questions/5656798/python-matplotlib-is-there-a-way-to-make-a-discontinuous-axis/43684155 # zoom-in / limit the view to different portions of the data ax0.set_xlim(START, BREAK) # most of the data ax1.set_xlim(BREAK, END) # hide the spines between ax and ax2 ax0.spines['right'].set_visible(False) ax1.spines['left'].set_visible(False) ax1.get_yaxis().set_visible(False) d = 0.015 # how big to make the diagonal lines in axes coordinates # arguments to pass plot, just so we don't keep repeating them kwargs = dict(transform=ax0.transAxes, color='k', clip_on=False, linewidth=1) x0, x1, y0, y1 = ax0.axis() scale = (y1 - y0) / (x1 - x0) / 2 ax0.plot((1 - scale * d, 1 + scale * d), (-d, +d), **kwargs) # top-left diagonal ax0.plot((1 - scale * d, 1 + scale * d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal kwargs.update(transform=ax1.transAxes) # switch to the bottom 1xes x0, x1, y0, y1 = ax1.axis() scale = (y1 - y0) / (x1 - x0) / 2 ax1.plot((-scale * d, scale * d), (-d, +d), **kwargs) # top-right diagonal ax1.plot((-scale * d, scale * d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal # ax0.xaxis.label.set_transform(matplotlib.transforms.blended_transform_factory( # matplotlib.transforms.IdentityTransform(), fig.transFigure # specify x, y transform # )) # changed from default blend (IdentityTransform(), a[0].transAxes) ax0.xaxis.label.set_position((0.6, 0.0)) ax0.text(-0.05, 1.10, "(a)", transform=ax0.transAxes) ax0.set_xlabel("Clip length (frames)") ax0.set_ylabel("Validation Loss") # Plot period sweep (panel b) print("PERIOD") for (model, color) in zip(["r2plus1d_18", "r3d_18", "mc3_18"], matplotlib.colors.TABLEAU_COLORS): for pretrained in [True, False]: loss = [load(root, model, 64 // period, period, pretrained) for period in PERIOD] print(model, pretrained) print(" ".join(list(map(lambda x: "{:.1f}".format(x) if x is not None else None, loss)))) ax2.plot(PERIOD, loss, "-" if pretrained else "--", marker=".", color=color) ax2.set_xticks(PERIOD) ax2.text(-0.05, 1.10, "(b)", transform=ax2.transAxes) ax2.set_xlabel("Sampling Period (frames)") ax2.set_ylabel("Validation Loss") # Save figure plt.tight_layout() plt.savefig(os.path.join(fig_root, "hyperparameter.pdf")) plt.savefig(os.path.join(fig_root, "hyperparameter.eps")) plt.savefig(os.path.join(fig_root, "hyperparameter.png")) plt.close(fig) def load(root, model, frames, period, pretrained): """Loads best validation loss for specified hyperparameter choice.""" pretrained = ("pretrained" if pretrained else "random") f = os.path.join( root, "{}_{}_{}_{}".format(model, frames, period, pretrained), "log.csv") with open(f, "r") as f: for line in f: if "Best validation loss " in line: return float(line.split()[3]) raise ValueError("File missing information.") if __name__ == "__main__": main()