library(ggplot2) library(stringr) library(plyr) library(dplyr) library(lubridate) library(reshape2) library(scales) library(ggthemes) library(Metrics) data <- read.csv("r2plus1d_18_32_2_pretrained_test_predictions.csv", header = FALSE) str(data) dataNoAugmentation <- data[data$V2 == 0,] str(dataNoAugmentation) dataGlobalAugmentation <- data %>% group_by(V1) %>% summarize(meanPrediction = mean(V3), sdPred = sd(V3)) str(dataGlobalAugmentation) sizeData <- read.csv("size.csv") sizeData <- sizeData[sizeData$ComputerSmall == 1,] str(sizeData) sizeRelevantFrames <- sizeData[c(1,2)] sizeRelevantFrames$Frame <- sizeRelevantFrames$Frame - 32 sizeRelevantFrames[sizeRelevantFrames$Frame < 0,]$Frame <- 0 beatByBeat <- merge(sizeRelevantFrames, data, by.x = c("Filename", "Frame"), by.y = c("V1", "V2")) beatByBeat <- beatByBeat %>% group_by(Filename) %>% summarize(meanPrediction = mean(V3), sdPred = sd(V3)) str(beatByBeat) ### For use, need to specify file directory fileLocation <- "/Users/davidouyang/Local Medical Data/" ActualNumbers <- read.csv(paste0(fileLocation, "FileList.csv", sep = "")) ActualNumbers <- ActualNumbers[c(1,2)] str(ActualNumbers) dataNoAugmentation <- merge(dataNoAugmentation, ActualNumbers, by.x = "V1", by.y = "Filename", all.x = TRUE) dataNoAugmentation$AbsErr <- abs(dataNoAugmentation$V3 - dataNoAugmentation$EF) str(dataNoAugmentation) summary(abs(dataNoAugmentation$V3 - dataNoAugmentation$EF)) # Mean of 4.216 rmse(dataNoAugmentation$V3,dataNoAugmentation$EF) ## 5.56 modelNoAugmentation <- lm(dataNoAugmentation$EF ~ dataNoAugmentation$V3) summary(modelNoAugmentation)$r.squared # 0.79475 beatByBeat <- merge(beatByBeat, ActualNumbers, by.x = "Filename", by.y = "Filename", all.x = TRUE) summary(abs(beatByBeat$meanPrediction - beatByBeat$EF)) # Mean of 4.051697 rmse(beatByBeat$meanPrediction, beatByBeat$EF) # 5.325237 modelBeatByBeat <- lm(beatByBeat$EF ~ beatByBeat$meanPrediction) summary(modelBeatByBeat)$r.squared # 0.8093174 beatByBeatAnalysis <- merge(sizeRelevantFrames, data, by.x = c("Filename", "Frame"), by.y = c("V1", "V2")) str(beatByBeatAnalysis) MAEdata <- data.frame(counter = 1:500) MAEdata$sample <- -9999 MAEdata$error <- -9999 str(MAEdata) for (i in 1:500){ samplingBeat <- sample_n(beatByBeatAnalysis %>% group_by(Filename), 1 + floor((i-1)/100), replace = TRUE) %>% group_by(Filename) %>% dplyr::summarize(meanPred = mean(V3)) samplingBeat <- merge(samplingBeat, ActualNumbers, by.x = "Filename", by.y = "Filename", all.x = TRUE) samplingBeat$error <- abs(samplingBeat$meanPred - samplingBeat$EF) MAEdata$sample[i] <- 1 + floor((i-1)/100) MAEdata$error[i] <- mean(samplingBeat$error ) } str(MAEdata) beatBoxPlot <- ggplot(data = MAEdata) + geom_boxplot(aes(x = sample, y = error, group = sample), outlier.shape = NA ) + theme_classic() + theme(legend.position = "none", axis.text.y = element_text( size=7)) + xlab("Number of Sampled Beats") + ylab("Mean Absolute Error") + scale_fill_brewer(palette = "Set1", direction = -1) beatBoxPlot