alakxender's picture
r
0f67039
import spaces
import torch
import gradio as gr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "alakxender/whisper-large-dv-a40"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
@spaces.GPU
def transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
return text
# Custom CSS with modern Gradio styling
custom_css = """
.thaana-textbox textarea {
font-size: 18px !important;
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma', 'Noto Sans Thaana', 'MV Boli' !important;
line-height: 1.8 !important;
direction: rtl !important;
}
"""
demo = gr.Blocks(css=custom_css)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(type="filepath", label="Audio file"),
],
outputs= gr.Textbox(
label="",
lines=2,
elem_classes=["thaana-textbox"],
rtl=True
),
title="Whisper Large V3: Transcribe Audio",
description=(
""
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([file_transcribe], ["Audio file"])
demo.queue().launch()