Spaces:
Sleeping
Sleeping
import spaces | |
import torch | |
import gradio as gr | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
MODEL_NAME = "alakxender/whisper-large-dv-a40" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def transcribe(inputs): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"] | |
return text | |
# Custom CSS with modern Gradio styling | |
custom_css = """ | |
.thaana-textbox textarea { | |
font-size: 18px !important; | |
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma', 'Noto Sans Thaana', 'MV Boli' !important; | |
line-height: 1.8 !important; | |
direction: rtl !important; | |
} | |
""" | |
demo = gr.Blocks(css=custom_css) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(type="filepath", label="Audio file"), | |
], | |
outputs= gr.Textbox( | |
label="", | |
lines=2, | |
elem_classes=["thaana-textbox"], | |
rtl=True | |
), | |
title="Whisper Large V3: Transcribe Audio", | |
description=( | |
"" | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([file_transcribe], ["Audio file"]) | |
demo.queue().launch() | |