albarji commited on
Commit
0ff087c
·
1 Parent(s): 9119c1f

Added article text

Browse files
Files changed (1) hide show
  1. app.py +69 -0
app.py CHANGED
@@ -4,6 +4,72 @@ import torch
4
  from diffusers import LMSDiscreteScheduler
5
  from mixdiff import StableDiffusionCanvasPipeline, Text2ImageRegion
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Creater scheduler and model (similar to StableDiffusionPipeline)
8
  scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
9
  pipeline = StableDiffusionCanvasPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler).to("cuda" if torch.cuda.is_available() else "cpu")
@@ -79,4 +145,7 @@ with gr.Blocks(title="Mixture of Diffusers") as demo:
79
  outputs=output
80
  )
81
 
 
 
 
82
  demo.launch(server_name="0.0.0.0")
 
4
  from diffusers import LMSDiscreteScheduler
5
  from mixdiff import StableDiffusionCanvasPipeline, Text2ImageRegion
6
 
7
+ article = """
8
+ ## Motivation
9
+
10
+ Current image generation methods, such as Stable Diffusion, struggle to position objects at specific locations. While the content of the generated image (somewhat) reflects the objects present in the prompt, it is difficult to frame the prompt in a way that creates an specific composition. For instance, take a prompt expressing a complex composition such as
11
+
12
+ > A charming house in the countryside on the left,
13
+ > in the center a dirt road in the countryside crossing pastures,
14
+ > on the right an old and rusty giant robot lying on a dirt road,
15
+ > by jakub rozalski,
16
+ > sunset lighting on the left and center, dark sunset lighting on the right
17
+ > elegant, highly detailed, smooth, sharp focus, artstation, stunning masterpiece
18
+
19
+ Out of a sample of 20 Stable Diffusion generations with different seeds, the generated images that align best with the prompt are the following:
20
+
21
+ <table>
22
+ <tr>
23
+ <td><img src="https://user-images.githubusercontent.com/9654655/195373001-ad23b7c4-f5b1-4e5b-9aa1-294441ed19ed.png" width="300"></td>
24
+ <td><img src="https://user-images.githubusercontent.com/9654655/195373174-8d85dd96-310e-48fa-b112-d9902685f22e.png" width="300"></td>
25
+ <td><img src="https://user-images.githubusercontent.com/9654655/195373200-59eeec1e-e1b8-464d-b72e-e28a9004d269.png" width="300"></td>
26
+ </tr>
27
+ </table>
28
+
29
+ The method proposed here strives to provide a better tool for image composition by using several diffusion processes in parallel, each configured with a specific prompt and settings, and focused on a particular region of the image. You can try it out in the example above! The mixture of diffusion processes is done in a way that harmonizes the generation process, preventing "seam" effects in the generated image.
30
+
31
+ Using several diffusion processes in parallel has also practical advantages when generating very large images, as the GPU memory requirements are similar to that of generating an image of the size of a single tile.
32
+
33
+ ## Usage
34
+
35
+ In this demo you can use Mixture of Diffusers to configure a canvas made up of 3 diffusion regions. Play around with the prompts and guidance values in each region! You can also change increment the overlap between regions if seams appear in the image.
36
+
37
+ In the full version of Mixture of Diffusers you will find further freedom to configure the regions in the canvas. Check the [github repo](https://github.com/albarji/mixture-of-diffusers)!
38
+
39
+ ## Responsible use
40
+
41
+ The same recommendations as in Stable Diffusion apply, so please check the corresponding [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4).
42
+
43
+ More broadly speaking, always bear this in mind: YOU are responsible for the content you create using this tool. Do not fully blame, credit, or place the responsibility on the software.
44
+
45
+ ## Gallery
46
+
47
+ Here are some relevant illustrations I have created using this software (and putting quite a few hours into them!).
48
+
49
+ ### Darkness Dawning
50
+
51
+ ![Darkness Dawning](https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/cd1358aa-80d5-4c59-b95b-cdfde5dcc4f5/dfidq8n-6da9a886-9f1c-40ae-8341-d77af9552395.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcL2NkMTM1OGFhLTgwZDUtNGM1OS1iOTViLWNkZmRlNWRjYzRmNVwvZGZpZHE4bi02ZGE5YTg4Ni05ZjFjLTQwYWUtODM0MS1kNzdhZjk1NTIzOTUucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.ff6XoVBPdUbcTLcuHUpQMPrD2TaXBM_s6HfRhsARDw0)
52
+
53
+ ### Yog-Sothoth
54
+
55
+ ![Yog-Sothoth](https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/cd1358aa-80d5-4c59-b95b-cdfde5dcc4f5/dfidsq4-174dd428-2c5a-48f6-a78f-9441fb3cffea.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcL2NkMTM1OGFhLTgwZDUtNGM1OS1iOTViLWNkZmRlNWRjYzRmNVwvZGZpZHNxNC0xNzRkZDQyOC0yYzVhLTQ4ZjYtYTc4Zi05NDQxZmIzY2ZmZWEucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.X42zWgsk3lYnYwuEgkifRFRH2km-npHvrdleDN3m6bA)
56
+
57
+ ### Looking through the eyes of giants
58
+
59
+ ![Looking through the eyes of giants](https://user-images.githubusercontent.com/9654655/218307148-95ce88b6-b2a3-458d-b469-daf5bd56e3a7.jpg)
60
+
61
+ [Follow me on DeviantArt for more!](https://www.deviantart.com/albarji)
62
+
63
+ ## Acknowledgements
64
+
65
+ First and foremost, my most sincere appreciation for the [Stable Diffusion team](https://stability.ai/blog/stable-diffusion-public-release) for releasing such an awesome model, and for letting me take part of the closed beta. Kudos also to the Hugging Face community and developers for implementing the [Diffusers library](https://github.com/huggingface/diffusers).
66
+
67
+ Thanks to Hugging Face for providing support and a GPU spaces for running this demo. Thanks also to Instituto de Ingeniería del Conocimiento and Grupo de Aprendizaje Automático (Universidad Autónoma de Madrid) for providing GPU resources for testing and experimenting this library.
68
+
69
+ Thanks also to the vibrant communities of the Stable Diffusion discord channel and [Lexica](https://lexica.art/), where I have learned about many amazing artists and styles. And to my friend Abril for sharing many tips on cool artists!
70
+ """
71
+
72
+
73
  # Creater scheduler and model (similar to StableDiffusionPipeline)
74
  scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
75
  pipeline = StableDiffusionCanvasPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=scheduler).to("cuda" if torch.cuda.is_available() else "cpu")
 
145
  outputs=output
146
  )
147
 
148
+ with gr.Row():
149
+ gr.Markdown(article)
150
+
151
  demo.launch(server_name="0.0.0.0")