alecinvan's picture
Create app.py
b56dea8
raw
history blame
1.18 kB
import gradio as gr
from transformers import BlipForConditionalGeneration, BlipProcessor
import torch
import tempfile
from gtts import gTTS
# Load models
device = "cpu"
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model_image_captioning = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device)
def generate_caption_tts(image):
inputs = processor(images=image, return_tensors="pt")
inputs["max_length"] = 20
inputs["num_beams"] = 5
outputs = model_image_captioning.generate(**inputs)
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
speech = gTTS(caption, lang="en")
tmp_file = tempfile.mkstemp()[1]
speech.save(tmp_file)
return (caption, tmp_file)
title = "Alec图像理解器"
description = "Bootstrapping Language-Image Pre-training model演示:引导语言图像预训练以实现统一视觉语言理解和生成。 请上传您的图像"
iface = gr.Interface(
fn=generate_caption_tts,
title=title,
description=description,
inputs=gr.inputs.Image(shape=(224,224)),
outputs=["text", "audio"]
)
iface.launch(share=True, debug=True)