Spaces:
Running
Running
File size: 6,303 Bytes
b787616 d9b4271 14f90e3 59718b5 ea3872d 24d3971 59718b5 b787616 dda161c b6d4315 dda161c 0b21467 c751fd4 0b21467 6085806 b6d4315 b787616 b6d4315 c751fd4 59718b5 b787616 8ceea03 59718b5 b787616 24d3971 dbc1992 24d3971 50e3646 24d3971 dc2bac2 dbc1992 c955f0a dc2bac2 c955f0a dc2bac2 c955f0a dc2bac2 c955f0a dc2bac2 c955f0a dc2bac2 c955f0a dc2bac2 21f99c2 fd1f4c2 b7f5781 21f99c2 b7f5781 14ce0f4 21f99c2 dbc1992 14ce0f4 dbc1992 21f99c2 14ce0f4 21f99c2 dbc1992 24d3971 dbc1992 24d3971 fd1f4c2 24d3971 0ff4e79 ea3872d 59718b5 ea3872d 59718b5 dda161c 59718b5 dda161c 14f90e3 dda161c d9b4271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import streamlit as st
import pandas as pd
import streamlit_common.footer
import streamlit_common.lib as lib
import streamlit_common.locale
mslist_path = "output/middleschool_extra_fields.csv"
_ = streamlit_common.locale.get_locale()
if "number_shown_results" not in st.session_state:
st.session_state["number_shown_results"] = 20
if "lang" not in st.session_state:
st.session_state["lang"] = "en"
def add_more_results():
st.session_state["number_shown_results"] += 20
def reset_more_results():
st.session_state["number_shown_results"] = 20
st.set_page_config(
page_title="Middle School Tutor | Card Search",
page_icon="favicon.ico",
layout="wide",
)
lang = st.sidebar.radio(
label="Language / 言語",
options=["English", "日本語"],
index=1 if st.session_state["lang"] == "ja" else 0,
)
st.session_state["lang"] = "ja" if lang == "日本語" else "en"
l = st.session_state["lang"]
headcol1, headcol2 = st.columns([1, 7])
headcol1.image("favicon.ico", width=80)
headcol2.write(f"# Middle School Tutor")
st.write(f'## {_["search"]["title"][l]}')
st.write(_["search"]["instructions"][l])
mslist_df = pd.read_csv(mslist_path)
mslist_df.fillna("", inplace=True)
st.write(f'**{mslist_df.shape[0]}**{_["search"]["cards_are_legal"][l]}')
results_df = mslist_df
# Filter by card name
input_name = st.text_input(
f'**{_["search"]["search_by_card_name"][l]}**',
placeholder=_["search"]["search_by_card_name_placeholder"][l],
).strip()
exact_match = lib.get_legal_cardnames(input_name, mslist_df)
results_en_df = results_df[results_df["name"].str.contains(input_name, case=False)]
results_ja_df = results_df[results_df["name_ja"].str.contains(input_name, case=False)]
results_df = results_en_df.merge(results_ja_df, how="outer")
# Filter by color
(
colorcol0,
colorcol1,
colorcol2,
colorcol3,
colorcol4,
colorcol5,
colorcol6,
) = st.columns(7)
colorcol0.write(f'**{_["search"]["search_by_color"][l]}**')
if colorcol1.checkbox(_["basic"]["color_w"][l]):
results_df = results_df[results_df["w"] == True]
if colorcol2.checkbox(_["basic"]["color_u"][l]):
results_df = results_df[results_df["u"] == True]
if colorcol3.checkbox(_["basic"]["color_b"][l]):
results_df = results_df[results_df["b"] == True]
if colorcol4.checkbox(_["basic"]["color_r"][l]):
results_df = results_df[results_df["r"] == True]
if colorcol5.checkbox(_["basic"]["color_g"][l]):
results_df = results_df[results_df["g"] == True]
if colorcol6.checkbox(_["basic"]["color_c"][l]):
results_df = results_df[results_df["c"] == True]
# Filter by mana value range
min_mv = mslist_df["mv"].min()
max_mv = mslist_df["mv"].max()
mv_options = [mv for mv in range(min_mv, max_mv + 1)]
start_mv, end_mv = st.select_slider(
f'**{_["search"]["search_by_mv"][l]}**', options=mv_options, value=(min_mv, max_mv)
)
cond1 = results_df["mv"] >= start_mv
cond2 = results_df["mv"] <= end_mv
results_df = results_df[cond1 & cond2]
# Filter by type (select)
col1, col2 = st.columns(2)
type_list = streamlit_common.locale.get_type_options()
select_types = col1.multiselect(
f'**{_["search"]["select_type"][l]}**',
type_list[l],
placeholder=_["search"]["select_type_placeholder"][l],
)
for cardtype in select_types:
type_to_search = cardtype
if l == "ja":
type_to_search = type_list["en"][type_list["ja"].index(cardtype)]
results_df = results_df[results_df["type"].str.contains(type_to_search, case=False)]
# Filter by type (text input)
input_type = col2.text_input(
f'**{_["search"]["search_by_type"][l]}**',
placeholder=_["search"]["search_by_type_placeholder"][l],
).strip()
results_df = results_df[results_df["type"].str.contains(input_type, case=False)]
# Filter by text
input_text = st.text_input(
f'**{_["search"]["search_by_text"][l]}**',
placeholder=_["search"]["search_by_text_placeholder"][l],
).strip()
results_df = results_df[results_df["text"].str.contains(input_text, case=False)]
# Filter by power and toughness ranges
powtou_df = mslist_df[mslist_df["power"].isin(range(0, 100))]
min_pow = int(powtou_df["power"].min(skipna=True))
max_pow = int(powtou_df["power"].max(skipna=True))
pow_range = range(min_pow, max_pow + 1)
pow_options = [pow for pow in pow_range]
start_pow, end_pow = st.select_slider(
f'**{_["search"]["search_by_pow"][l]}**',
options=pow_options,
value=(min_pow, max_pow),
)
if start_pow > min_pow or end_pow < max_pow:
results_df = results_df[results_df["power"].isin(pow_range)]
results_df = results_df[results_df["power"] >= start_pow]
results_df = results_df[results_df["power"] <= end_pow]
min_tou = int(powtou_df["toughness"].min(skipna=True))
max_tou = int(powtou_df["toughness"].max(skipna=True))
tou_range = range(min_tou, max_tou + 1)
tou_options = [tou for tou in tou_range]
start_tou, end_tou = st.select_slider(
f'**{_["search"]["search_by_tou"][l]}**',
options=tou_options,
value=(min_tou, max_tou),
)
if start_tou > min_tou or end_tou < max_tou:
results_df = results_df[results_df["toughness"].isin(tou_range)]
results_df = results_df[results_df["toughness"] >= start_tou]
results_df = results_df[results_df["toughness"] <= end_tou]
if results_df.shape[0] < mslist_df.shape[0]:
if exact_match[0]:
cardname = exact_match[1]
if exact_match[2] is not None:
cardname = f"{cardname} / {exact_match[2]}"
st.write(
f'✅ [{cardname}]({lib.compose_scryfall_url(exact_match[1])}) {_["search"]["exact_match"][l]}'
)
st.write(f'**{results_df.shape[0]}**{_["search"]["cards_found"][l]}')
if results_df.shape[0] > st.session_state["number_shown_results"]:
st.write(_["search"]["top_results"][l])
results_df["link"] = results_df["name"].apply(lib.compose_scryfall_url)
results_df[: st.session_state["number_shown_results"]].transpose().apply(
lib.row_to_link
)
if results_df.shape[0] > st.session_state["number_shown_results"]:
st.button(label=_["search"]["see_more"][l], on_click=add_more_results)
if st.session_state["number_shown_results"] > 20:
st.button(
label=_["search"]["see_20"][l],
on_click=reset_more_results,
)
streamlit_common.footer.write_footer()
|