Spaces:
Running
Running
File size: 2,608 Bytes
b787616 82e5d3a d9b4271 82e5d3a ea3872d 82e5d3a ea3872d 81025f5 82e5d3a b787616 81025f5 ea3872d 81025f5 ea3872d 81025f5 ea3872d 81025f5 ea3872d b787616 82e5d3a b787616 0b21467 b787616 50e3646 d9b4271 b787616 8ceea03 b787616 ea3872d 50e3646 8ceea03 50e3646 b787616 ea3872d 81025f5 ea3872d 81025f5 ea3872d 8ceea03 82e5d3a d9b4271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import streamlit as st
import pandas as pd
import urllib.parse
import streamlit_common.footer
def compose_scryfall_url(x: str) -> str:
return f"https://scryfall.com/search?q=prefer%3Aoldest%20!%22{urllib.parse.quote_plus(x)}%22"
def row_to_link(x: pd.DataFrame) -> None:
cardname = x["name"]
if x.name_ja is not "":
cardname = f"{cardname} / {x.name_ja}"
st.markdown(f"- [{cardname}]({x.link})")
def is_legal(cardname: str) -> list:
english_match = mslist_df[mslist_df["name"].str.lower() == cardname.lower()]
cardname_en_list = None
if english_match.shape[0] > 0:
cardname_en_list = english_match["name"].to_list()
cardname_ja_list = english_match["name_ja"].to_list()
japanese_match = mslist_df[mslist_df["name_ja"] == cardname]
if japanese_match.shape[0] > 0:
cardname_en_list = japanese_match["name"].to_list()
cardname_ja_list = japanese_match["name_ja"].to_list()
if cardname_en_list is not None and len(cardname_en_list) > 0:
return [
cardname_en_list[0] or None,
cardname_ja_list[0] or None,
]
return None
mslist_path = "output/middleschool.csv"
number_shown_results = 20
st.set_page_config(
page_title="Middle School | Card Search",
page_icon="🃏",
layout="wide",
)
st.write(
"""
# Middle School Card Search
Enter any English or Japanese text to find all Middle School legal card titles which include it.
"""
)
mslist_df = pd.read_csv(mslist_path)
mslist_df.fillna("", inplace=True)
st.write(mslist_df.shape[0], "cards are legal")
name_input = st.text_input(f"Search by card name").strip()
exact_match = is_legal(name_input)
results_en_df = mslist_df[
mslist_df["name"].str.contains(name_input.lower(), case=False)
]
results_ja_df = mslist_df[
mslist_df["name_ja"].str.contains(name_input.lower(), case=False)
]
results_df = results_en_df.merge(results_ja_df, how="outer")
if name_input:
if exact_match is not None:
cardname = exact_match[0]
if exact_match[1] is not None:
cardname = f"{cardname} / {exact_match[1]}"
st.write(
f"✅ [{cardname}]({compose_scryfall_url(exact_match[0])}) is an exact match"
)
st.write(results_df.shape[0], f'cards found by "{name_input}"')
if results_df.shape[0] > number_shown_results:
st.write(f"Top {number_shown_results} results:")
results_df["link"] = results_df["name"].apply(compose_scryfall_url)
results_df[:number_shown_results].transpose().apply(row_to_link)
streamlit_common.footer.write_footer()
|