Spaces:
Running
Running
File size: 13,711 Bytes
952f04c 41aa31c 952f04c 41aa31c 952f04c dd85b1e 952f04c 41aa31c 952f04c 004feb9 952f04c 41aa31c dd85b1e 952f04c dd85b1e 952f04c dd85b1e 952f04c dd85b1e 41aa31c dd85b1e 952f04c dd85b1e 952f04c 004feb9 952f04c dd85b1e 952f04c dd85b1e 952f04c 106cfa9 004feb9 106cfa9 6789de9 004feb9 106cfa9 6789de9 106cfa9 dd85b1e 106cfa9 dd85b1e 106cfa9 6789de9 dd85b1e 106cfa9 6789de9 106cfa9 dd85b1e 106cfa9 6789de9 106cfa9 6789de9 106cfa9 dd85b1e 952f04c 004feb9 952f04c 41aa31c 952f04c 41aa31c 952f04c dd85b1e 952f04c 00af251 952f04c dd85b1e 952f04c 004feb9 952f04c 29b06fb 952f04c 41aa31c 952f04c 41aa31c 952f04c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# middleschool-cardlist\n",
"\n",
"## Prepare the data\n",
"\n",
"Download raw data from [MTGJSON](https://mtgjson.com/) (uncomment and run only once)\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# !cd data\n",
"# !wget \"https://mtgjson.com/api/v5/AllPrintings.json.bz2\"\n",
"# !bunzip2 AllPrintings.json.bz2\n",
"# !cd -\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Raw data is very large, so let's make JSON files for all relevant sets\n",
"\n",
"Note: this cell can take a couple minutes to run\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"setlist = ['4ED', 'ICE', 'CHR', 'HML', 'ALL', 'MIR', 'VIS', '5ED',\n",
" 'WTH', 'POR', 'TMP', 'STH', 'EXO', 'P02', 'USG', 'ULG',\n",
" '6ED', 'UDS', 'PTK', 'S99', 'MMQ', 'NEM', 'PCY', 'S00',\n",
" 'INV', 'PLS', '7ED', 'APC', 'ODY', 'TOR', 'JUD', 'ONS',\n",
" 'LGN', 'SCG', 'PDRC', 'PHPR', 'ATH', 'BRB', 'BTD', 'DKM']\n",
"for set in setlist:\n",
" # Write a separate JSON document for each Middle School legal set\n",
" command = 'cat data/AllPrintings.json | jq \\'.data.\\\"' + \\\n",
" set + '\\\".cards\\' > data/set_' + set + '.json'\n",
" !{command}\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Concatenate all set files into `middleschool.json`\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"command = \"jq -s add data/set_* > data/middleschool.json\"\n",
"!{command}\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Create a list with each card's oracle ID, English name, and Japanese name\n"
]
},
{
"cell_type": "code",
"execution_count": 151,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5800 cards found\n",
"These are the first and last 5 cards\n",
" oracle_id name name_ja\n",
"0 8adbba6e-03ef-4278-aec5-8a4496b377a8 Abandon Hope 断念\n",
"0 5a70ccfa-d12d-4e62-a1a4-f05cda2fd442 Abandoned Outpost 見捨てられた前哨地\n",
"0 c208b959-d0e4-4a9a-8255-2c7cc7596767 Abbey Gargoyles 修道院のガーゴイル\n",
"0 62e3f285-886c-414e-b4ff-403a7c01c23a Abbey Matron None\n",
"0 d0e1904e-1a37-41f6-8582-b9ea794bb886 Abduction 誘拐\n",
" oracle_id name name_ja\n",
"0 ae8773a3-05f2-4074-9a53-033b0c127235 Zuo Ci, the Mocking Sage 嘲笑する仙人 左慈\n",
"0 c6eaa147-3566-43a9-999a-d58b877496f5 Zur's Weirding ズアーの運命支配\n",
"0 ee0f883f-d7c9-4acf-a78f-f733b6f268d3 Zuran Enchanter None\n",
"0 08cb8a30-9cb4-4517-bee5-8848aa60d1a2 Zuran Orb None\n",
"0 bc7b90b1-3517-4e5d-9bd8-68b4d8a259fd Zuran Spellcaster None\n"
]
}
],
"source": [
"import json\n",
"import pandas as pd\n",
"\n",
"with open(\"data/middleschool.json\") as json_data:\n",
" cards = json.loads(json_data.read())\n",
"\n",
"# Create a pandas DataFrame with all cards from all legal sets\n",
"column_names = ['oracle_id', 'name', 'name_ja']\n",
"middleschool_df = pd.DataFrame(columns=column_names)\n",
"for card in cards:\n",
" oracle_id = card['identifiers']['scryfallOracleId']\n",
" name = card['name']\n",
" lang_ja = [lang for lang in card['foreignData']\n",
" if lang['language'] == 'Japanese']\n",
" # Some cards do not have a Japanese name\n",
" if (len(lang_ja) > 0):\n",
" name_ja = lang_ja[0]['name']\n",
" else:\n",
" name_ja = None\n",
" temporary_df = pd.DataFrame({\n",
" 'oracle_id': [oracle_id],\n",
" 'name': [name],\n",
" 'name_ja': [name_ja]\n",
" })\n",
" middleschool_df = pd.concat([middleschool_df, temporary_df])\n",
"\n",
"# For cards with multiple occurrences, put the rows that have the Japanese name on top\n",
"middleschool_df = middleschool_df.sort_values(by=['name', 'name_ja'])\n",
"# For cards with multiple occurrences, delete all rows except for the top one\n",
"middleschool_df = middleschool_df.drop_duplicates(subset=['oracle_id'])\n",
"print(middleschool_df.shape[0], 'cards found')\n",
"print('These are the first and last 5 cards')\n",
"print(middleschool_df.head())\n",
"print(middleschool_df.tail())\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Remove Japanese card names that are wrong on MTGJSON"
]
},
{
"cell_type": "code",
"execution_count": 152,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Before:\n",
" oracle_id name name_ja\n",
"0 0fe602b7-9f88-4d3d-af24-7790df867ed5 Aether Barrier Æther Barrier\n",
"0 1e33f39b-a61a-4a09-a541-16cc1bd53d02 Aether Burst Æther Burst\n",
"0 15e83068-6253-4c65-8679-7295f3dc2075 Aether Charge Æther Charge\n",
"0 a3c35742-e306-49b6-b042-db4f685c6f86 Aether Flash Æther Flash\n",
"0 6697fe5b-90ac-4321-aa2f-cdc6ec283cb4 Aether Mutation Aether Mutation\n",
"0 61105cb5-d7a1-4021-a006-dd1b947dfa68 Aether Sting Æther Sting\n",
"0 ff4297d3-3d96-4bd6-a606-1bdc20a6df2b Aether Storm Æther Storm\n",
"0 2fbf95b4-bcf4-4b5e-b5dc-0294f2b48d3e Aether Tide Æther Tide\n",
"0 a61ceda1-5993-479e-945f-15753eeb7049 Tainted Aether Tainted Æther\n",
"0 05a7ca83-e820-433f-b9e9-151e817d3708 Tar Pit Warrior Tar Pit Warrior\n",
"After:\n",
" oracle_id name name_ja\n",
"0 0fe602b7-9f88-4d3d-af24-7790df867ed5 Aether Barrier None\n",
"0 1e33f39b-a61a-4a09-a541-16cc1bd53d02 Aether Burst None\n",
"0 15e83068-6253-4c65-8679-7295f3dc2075 Aether Charge None\n",
"0 a3c35742-e306-49b6-b042-db4f685c6f86 Aether Flash None\n",
"0 6697fe5b-90ac-4321-aa2f-cdc6ec283cb4 Aether Mutation None\n",
"0 61105cb5-d7a1-4021-a006-dd1b947dfa68 Aether Sting None\n",
"0 ff4297d3-3d96-4bd6-a606-1bdc20a6df2b Aether Storm None\n",
"0 2fbf95b4-bcf4-4b5e-b5dc-0294f2b48d3e Aether Tide None\n",
"0 a61ceda1-5993-479e-945f-15753eeb7049 Tainted Aether None\n",
"0 05a7ca83-e820-433f-b9e9-151e817d3708 Tar Pit Warrior None\n"
]
}
],
"source": [
"wrongnames = ['Aether Barrier', 'Aether Burst', 'Aether Charge', 'Aether Flash', 'Aether Mutation',\n",
" 'Aether Sting', 'Aether Storm', 'Aether Tide', 'Tainted Aether', 'Tar Pit Warrior']\n",
"print('Before:')\n",
"print(middleschool_df.loc[middleschool_df['name'].isin(wrongnames)])\n",
"middleschool_df.loc[middleschool_df['name'].isin(wrongnames), 'name_ja'] = None\n",
"print('After:')\n",
"print(middleschool_df.loc[middleschool_df['name'].isin(wrongnames)])\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Find Japanese names for cards that were not released in Japanese in Middle School legal sets"
]
},
{
"cell_type": "code",
"execution_count": 153,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"................................................................................\n",
"................................................................................\n",
"................................................................................\n",
"................................................................................\n",
"................................................................................\n",
"................................................................................\n",
"......................"
]
}
],
"source": [
"import time\n",
"from requests_html import HTMLSession\n",
"session = HTMLSession()\n",
"\n",
"\n",
"def find_japanese_name(name):\n",
" url = 'http://whisper.wisdom-guild.net/card/' + name + '/'\n",
" r = session.get(url)\n",
" # Find the text on the <title> element in the HTML document\n",
" title = r.html.find('title')[0].text\n",
" # Find the position of the English card name within the title\n",
" idx = title.find(name)\n",
" # The Japanese name should be before the English name,\n",
" # so if idx is 0, there is no Japanese name\n",
" if idx == 0:\n",
" return None\n",
" # If the exact English card name can't be found, we look for a '/'\n",
" if idx == -1:\n",
" idx = title.find('/')\n",
" # No '/' means no Japanese name\n",
" if idx == -1:\n",
" return None\n",
" # Take only the Japanese name from the title\n",
" name_ja = title[0:idx]\n",
" else:\n",
" # Take only the Japanese name from the title\n",
" name_ja = title[0:idx - 1]\n",
" return name_ja\n",
"\n",
"\n",
"english_only_cards = middleschool_df[middleschool_df['name_ja'].isnull()]\n",
"name_list = english_only_cards['name'].to_list()\n",
"for idx, name in enumerate(name_list):\n",
" middleschool_df.loc[middleschool_df['name'] ==\n",
" name, 'name_ja'] = find_japanese_name(name)\n",
" # print(middleschool_df.loc[middleschool_df['name'] == name])\n",
" print('.', end='')\n",
" if idx % 80 == 79:\n",
" print()\n",
" time.sleep(1)\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Exclude all cards banned in Middle School"
]
},
{
"cell_type": "code",
"execution_count": 154,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cards legal by set: 5800\n",
"Banned cards: 26\n",
"Cards legal by set and not banned: 5774\n"
]
}
],
"source": [
"banlist = [\"Amulet of Quoz\",\n",
" \"Balance\",\n",
" \"Brainstorm\",\n",
" \"Bronze Tablet\",\n",
" \"Channel\",\n",
" \"Dark Ritual\",\n",
" \"Demonic Consultation\",\n",
" \"Flash\",\n",
" \"Goblin Recruiter\",\n",
" \"Imperial Seal\",\n",
" \"Jeweled Bird\",\n",
" \"Mana Crypt\",\n",
" \"Mana Vault\",\n",
" \"Memory Jar\",\n",
" \"Mind's Desire\",\n",
" \"Mind Twist\",\n",
" \"Rebirth\",\n",
" \"Strip Mine\",\n",
" \"Tempest Efreet\",\n",
" \"Timmerian Fiends\",\n",
" \"Tolarian Academy\",\n",
" \"Vampiric Tutor\",\n",
" \"Windfall\",\n",
" \"Yawgmoth's Bargain\",\n",
" \"Yawgmoth's Will\"]\n",
"print('Cards legal by set:', middleschool_df.shape[0])\n",
"# Find the rows with the banned cards\n",
"banned_df = middleschool_df[pd.DataFrame(\n",
" middleschool_df.name.tolist()).isin(banlist).any(axis=1).values]\n",
"print('Banned cards:', banned_df.shape[0])\n",
"# Append the banned cards to the main Middle School DataFrame,\n",
"# then remove any rows that appear twice,\n",
"# effectively leaving only the legal cards\n",
"middleschool_df = pd.concat(\n",
" [middleschool_df, banned_df]).drop_duplicates(keep=False)\n",
"print('Cards legal by set and not banned:', middleschool_df.shape[0])\n",
"middleschool_df = middleschool_df.reset_index(drop=True)\n",
"middleschool_df = middleschool_df[['oracle_id', 'name', 'name_ja']]\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Save the list to a CSV file and a JSON file\n"
]
},
{
"cell_type": "code",
"execution_count": 155,
"metadata": {},
"outputs": [],
"source": [
"middleschool_df.to_csv('output/middleschool.csv')\n",
"middleschool_df.to_json('output/middleschool.json')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Feel free to delete everything in the `data` directory after you are done"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|