File size: 1,609 Bytes
b787616
 
d9b4271
14f90e3
ea3872d
b787616
82e5d3a
b787616
0b21467
 
 
 
 
b787616
 
50e3646
d9b4271
 
b787616
 
 
 
8ceea03
b787616
 
ea3872d
14f90e3
50e3646
 
 
 
 
8ceea03
50e3646
b787616
ea3872d
81025f5
 
 
ea3872d
14f90e3
ea3872d
8ceea03
82e5d3a
 
14f90e3
 
d9b4271
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import streamlit as st
import pandas as pd
import streamlit_common.footer
import streamlit_common.lib as lib

mslist_path = "output/middleschool.csv"
number_shown_results = 20

st.set_page_config(
    page_title="Middle School | Card Search",
    page_icon="🃏",
    layout="wide",
)
st.write(
    """
    # Middle School Card Search

    Enter any English or Japanese text to find all Middle School legal card titles which include it.
    """
)

mslist_df = pd.read_csv(mslist_path)
mslist_df.fillna("", inplace=True)
st.write(mslist_df.shape[0], "cards are legal")

name_input = st.text_input(f"Search by card name").strip()
exact_match = lib.get_legal_cardnames(name_input, mslist_df)
results_en_df = mslist_df[
    mslist_df["name"].str.contains(name_input.lower(), case=False)
]
results_ja_df = mslist_df[
    mslist_df["name_ja"].str.contains(name_input.lower(), case=False)
]
results_df = results_en_df.merge(results_ja_df, how="outer")
if name_input:
    if exact_match is not None:
        cardname = exact_match[0]
        if exact_match[1] is not None:
            cardname = f"{cardname} / {exact_match[1]}"
        st.write(
            f"✅ [{cardname}]({lib.compose_scryfall_url(exact_match[0])}) is an exact match"
        )
    st.write(results_df.shape[0], f'cards found by "{name_input}"')
    if results_df.shape[0] > number_shown_results:
        st.write(f"Top {number_shown_results} results:")
    results_df["link"] = results_df["name"].apply(lib.compose_scryfall_url)
    results_df[:number_shown_results].transpose().apply(lib.row_to_link)

streamlit_common.footer.write_footer()