Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import streamlit_common.footer | |
import streamlit_common.lib as lib | |
import streamlit_common.locale | |
mslist_path = "static/middleschool_extra_fields_with_banned.csv" | |
_ = streamlit_common.locale.get_locale() | |
def row_to_link(row: pd.DataFrame) -> None: | |
"""Prints a list item with a Scryfall link for the card in the row passed""" | |
cardname = row["name"] | |
if row.name_ja is not "": | |
cardname = f"{cardname} / {row.name_ja}" | |
link = f"[{cardname}]({row.link})" | |
if row.banned: | |
link = f"π² {link} ({_['legality']['banned'][l]})" | |
link = f"- {link}" | |
st.write(link) | |
if "number_shown_results" not in st.session_state: | |
st.session_state["number_shown_results"] = 20 | |
if "lang" not in st.session_state: | |
st.session_state["lang"] = "en" | |
def add_more_results(): | |
st.session_state["number_shown_results"] += 20 | |
def reset_more_results(): | |
st.session_state["number_shown_results"] = 20 | |
st.set_page_config( | |
page_title="Middle School Tutor | Card Search", | |
page_icon="favicon.ico", | |
layout="wide", | |
) | |
lang = st.sidebar.radio( | |
label="Language / θ¨θͺ", | |
options=["English", "ζ₯ζ¬θͺ"], | |
index=1 if st.session_state["lang"] == "ja" else 0, | |
) | |
st.session_state["lang"] = "ja" if lang == "ζ₯ζ¬θͺ" else "en" | |
l = st.session_state["lang"] | |
headcol1, headcol2 = st.columns([1, 7]) | |
headcol1.image("favicon.ico", width=80) | |
headcol2.write(f"# Middle School Tutor") | |
st.write(f'## {_["search"]["title"][l]}') | |
st.write(_["search"]["instructions"][l]) | |
mslist_df = pd.read_csv(mslist_path) | |
mslist_df.fillna("", inplace=True) | |
st.write( | |
f'**{mslist_df[mslist_df["banned"]==False].shape[0]}**{_["search"]["cards_are_legal"][l]}' | |
) | |
results_df = mslist_df | |
# Filter by card name | |
input_name = st.text_input( | |
f'**{_["search"]["search_by_card_name"][l]}**', | |
placeholder=_["search"]["search_by_card_name_placeholder"][l], | |
).strip() | |
exact_match = lib.get_legal_cardnames(input_name, mslist_df) | |
results_en_df = results_df[results_df["name"].str.contains(input_name, case=False)] | |
results_ja_df = results_df[results_df["name_ja"].str.contains(input_name, case=False)] | |
results_df = results_en_df.merge(results_ja_df, how="outer") | |
# Filter by color | |
( | |
colorcol0, | |
colorcol1, | |
colorcol2, | |
colorcol3, | |
colorcol4, | |
colorcol5, | |
colorcol6, | |
) = st.columns(7) | |
colorcol0.write(f'**{_["search"]["search_by_color"][l]}**') | |
if colorcol1.checkbox(_["basic"]["color_w"][l]): | |
results_df = results_df[results_df["w"] == True] | |
if colorcol2.checkbox(_["basic"]["color_u"][l]): | |
results_df = results_df[results_df["u"] == True] | |
if colorcol3.checkbox(_["basic"]["color_b"][l]): | |
results_df = results_df[results_df["b"] == True] | |
if colorcol4.checkbox(_["basic"]["color_r"][l]): | |
results_df = results_df[results_df["r"] == True] | |
if colorcol5.checkbox(_["basic"]["color_g"][l]): | |
results_df = results_df[results_df["g"] == True] | |
if colorcol6.checkbox(_["basic"]["color_c"][l]): | |
results_df = results_df[results_df["c"] == True] | |
# Filter by mana value range | |
min_mv = mslist_df["mv"].min() | |
max_mv = mslist_df["mv"].max() | |
mv_options = [mv for mv in range(min_mv, max_mv + 1)] | |
start_mv, end_mv = st.select_slider( | |
f'**{_["search"]["search_by_mv"][l]}**', options=mv_options, value=(min_mv, max_mv) | |
) | |
cond1 = results_df["mv"] >= start_mv | |
cond2 = results_df["mv"] <= end_mv | |
results_df = results_df[cond1 & cond2] | |
# Filter by type (select) | |
col1, col2 = st.columns(2) | |
type_list = streamlit_common.locale.get_type_options() | |
select_types = col1.multiselect( | |
f'**{_["search"]["select_type"][l]}**', | |
type_list[l], | |
placeholder=_["search"]["select_type_placeholder"][l], | |
) | |
for cardtype in select_types: | |
type_to_search = cardtype | |
if l == "ja": | |
type_to_search = type_list["en"][type_list["ja"].index(cardtype)] | |
results_df = results_df[results_df["type"].str.contains(type_to_search, case=False)] | |
# Filter by type (text input) | |
input_type = col2.text_input( | |
f'**{_["search"]["search_by_type"][l]}**', | |
placeholder=_["search"]["search_by_type_placeholder"][l], | |
).strip() | |
results_df = results_df[results_df["type"].str.contains(input_type, case=False)] | |
# Filter by text | |
input_text = st.text_input( | |
f'**{_["search"]["search_by_text"][l]}**', | |
placeholder=_["search"]["search_by_text_placeholder"][l], | |
).strip() | |
results_df = results_df[results_df["text"].str.contains(input_text, case=False)] | |
# Filter by power and toughness ranges | |
powtou_df = mslist_df[mslist_df["power"].isin(range(0, 100))] | |
min_pow = int(powtou_df["power"].min(skipna=True)) | |
max_pow = int(powtou_df["power"].max(skipna=True)) | |
pow_range = range(min_pow, max_pow + 1) | |
pow_options = [pow for pow in pow_range] | |
start_pow, end_pow = st.select_slider( | |
f'**{_["search"]["search_by_pow"][l]}**', | |
options=pow_options, | |
value=(min_pow, max_pow), | |
) | |
if start_pow > min_pow or end_pow < max_pow: | |
results_df = results_df[results_df["power"].isin(pow_range)] | |
results_df = results_df[results_df["power"] >= start_pow] | |
results_df = results_df[results_df["power"] <= end_pow] | |
min_tou = int(powtou_df["toughness"].min(skipna=True)) | |
max_tou = int(powtou_df["toughness"].max(skipna=True)) | |
tou_range = range(min_tou, max_tou + 1) | |
tou_options = [tou for tou in tou_range] | |
start_tou, end_tou = st.select_slider( | |
f'**{_["search"]["search_by_tou"][l]}**', | |
options=tou_options, | |
value=(min_tou, max_tou), | |
) | |
if start_tou > min_tou or end_tou < max_tou: | |
results_df = results_df[results_df["toughness"].isin(tou_range)] | |
results_df = results_df[results_df["toughness"] >= start_tou] | |
results_df = results_df[results_df["toughness"] <= end_tou] | |
if results_df.shape[0] < mslist_df.shape[0]: | |
if exact_match[0]: | |
cardname = exact_match[1] | |
if exact_match[2] is not None: | |
cardname = f"{cardname} / {exact_match[2]}" | |
if exact_match[3]: | |
st.write( | |
f'π² [{cardname}]({lib.compose_scryfall_url(exact_match[1])}) {_["search"]["banned_match"][l]}' | |
) | |
else: | |
st.write( | |
f'β [{cardname}]({lib.compose_scryfall_url(exact_match[1])}) {_["search"]["exact_match"][l]}' | |
) | |
st.write(f'**{results_df.shape[0]}**{_["search"]["cards_found"][l]}') | |
if results_df.shape[0] > st.session_state["number_shown_results"]: | |
st.write(_["search"]["top_results"][l]) | |
results_df["link"] = results_df["name"].apply(lib.compose_scryfall_url) | |
results_df[: st.session_state["number_shown_results"]].transpose().apply( | |
row_to_link | |
) | |
if results_df.shape[0] > st.session_state["number_shown_results"]: | |
st.button(label=_["search"]["see_more"][l], on_click=add_more_results) | |
if st.session_state["number_shown_results"] > 20: | |
st.button( | |
label=_["search"]["see_20"][l], | |
on_click=reset_more_results, | |
) | |
streamlit_common.footer.write_footer() | |