from pprint import pformat import gradio as gr import librosa from huggingface_hub import hf_hub_download from pipeline import PreTrainedPipeline HF_HUB_URL = "ales/wav2vec2-cv-be" LM_HUB_FP = "language_model/cv8be_5gram.bin" MODEL_SAMPLING_RATE = 16_000 # 16kHz # download Language Model from HF Hub lm_fp = hf_hub_download(repo_id=HF_HUB_URL, filename=LM_HUB_FP) # init pipeline pipeline = PreTrainedPipeline(model_path=HF_HUB_URL, language_model_fp=lm_fp) def main(recorded_audio_fp: str | None, uploaded_audio_fp: str | None): audio_fp = None if recorded_audio_fp is not None: audio_fp = recorded_audio_fp used_audiofile = "recorded" elif uploaded_audio_fp is not None: audio_fp = uploaded_audio_fp used_audiofile = "uploaded" else: return ( "Памылка! Вы мусіце альбо запісаць, альбо запампаваць аўдыяфайл.", "Error! You have to either record or upload an audiofile.", ) # read audio file inputs = librosa.load(audio_fp, sr=MODEL_SAMPLING_RATE, mono=True)[0] # recognize speech pipeline_res = pipeline(inputs=inputs) text = pipeline_res["text"][0] # unpack batch of size 1 # add technical information to the output tech_data = pipeline_res del tech_data["text"] tech_data["used_audiofile"] = used_audiofile tech_data["recorded_file_present"] = recorded_audio_fp is not None tech_data["uploaded_file_present"] = uploaded_audio_fp is not None tech_data["audiofile_path"] = audio_fp tech_data["model_sampling_rate"] = MODEL_SAMPLING_RATE tech_data["inputs_shape"] = inputs.shape tech_data["inputs_max"] = inputs.max().item() tech_data["inputs_min"] = inputs.min().item() tech_data_str = pformat(tech_data) return text, tech_data_str article = """ The model used can be found here: [ales/wav2vec2-cv-be](https://huggingface.co/ales/wav2vec2-cv-be) ![Page Visits](https://visitor-badge.glitch.me/badge?page_id=huggingface.co/spaces/ales/wav2vec2-cv-be-lm&left_color=darkgray&right_color=crimson&left_text=Page%20Visits) """ iface = gr.Interface( fn=main, inputs=[ gr.Audio( sources=["microphone"], type="filepath", label="Запішыце аўдыяфайл, каб распазнаць маўленьне", ), gr.Audio( sources=["upload"], type="filepath", label="Альбо загрузіце ўжо запісаны аўдыяфайл сюды", ), ], outputs=[ gr.Textbox(label="Распазнаны тэкст"), gr.Textbox(label="Тэхнічная інфармацыя"), ], title="wav2vec2 fine-tuned on CommonVoice 8 Be + Language Model", description=( "Мадэль распазнаваньня беларускага маўленьня, навучаная на датсэце Common Voice 8.\n" "Акустычная мадэль + моўная мадэль." ), article=article, ) iface.launch()