File size: 10,944 Bytes
e2f3a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf2993
e2f3a00
 
 
 
 
 
 
 
 
 
 
 
baf2993
e2f3a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf2993
 
 
e2f3a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf2993
 
e2f3a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baf2993
 
e2f3a00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import json
import os
import platform
import unittest

from aip_trainer import app_logger
from aip_trainer.lambdas import lambdaSpeechToScore
from tests import EVENTS_FOLDER


text_dict = {"de": "Ich bin Alex, wer bist du?", "en": "Hi there, how are you?"}
expected_output = {
    "de": {
        "real_transcript": text_dict["de"],
        "ipa_transcript": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bksv\u025b\u02d0 b\u025bst\u025b\u02d0 du\u02d0",
        "pronunciation_accuracy": 63.0,
        "real_transcripts": text_dict["de"],
        "matched_transcripts": "ich bin alexwe - beste du",
        "real_transcripts_ipa": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bks, v\u0250 b\u026ast du\u02d0?",
        "matched_transcripts_ipa": "\u026a\u00e7 bi\u02d0n a\u02d0l\u025bksv\u0259 - b\u0259st\u0259 du\u02d0",
        "pair_accuracy_category": "0 0 2 2 2 0",
        "start_time": "0.0 0.3075 0.62525 2.1346875 1.5785625 2.1346875",
        "end_time": "0.328 0.6458125 1.44025 2.4730625 2.15525 2.4730625",
        "is_letter_correct_all_words": "111 111 11111 000 1011 111 ",
    },
    "en": {
        "real_transcript": text_dict["en"],
        "ipa_transcript": "ha\u026a ha\u028a \u0259r ju",
        "pronunciation_accuracy": 69.0,
        "real_transcripts": text_dict["en"],
        "matched_transcripts": "hi - how are you",
        "real_transcripts_ipa": "ha\u026a \u00f0\u025br, ha\u028a \u0259r ju?",
        "matched_transcripts_ipa": "ha\u026a  ha\u028a \u0259r ju",
        "pair_accuracy_category": "0 2 0 0 0",
        "start_time": "0.2245625 1.3228125 0.852125 1.04825 1.3228125",
        "end_time": "0.559875 1.658125 1.14825 1.344375 1.658125",
        "is_letter_correct_all_words": "11 000001 111 111 1111 ",
    },
}


def assert_raises_get_speech_to_score_dict(self, real_text, file_bytes_or_audiotmpfile, language, exc, error_message):
    from aip_trainer.lambdas import lambdaSpeechToScore

    with self.assertRaises(exc):
        try:
            lambdaSpeechToScore.get_speech_to_score_dict(
                real_text, file_bytes_or_audiotmpfile, language, remove_random_file=False
            )
        except exc as e:
            self.assertEqual(str(e), error_message)
            raise e


def check_value_by_field(value, match):
    import re

    assert len(value.strip()) > 0
    for word in value.lstrip().rstrip().split(" "):
        word_check = re.findall(match, word.strip())
        assert len(word_check) == 1
        assert word_check[0] == word.strip()


def check_output_by_field(output, key, match, expected_output):
    check_value_by_field(output[key], match)
    output[key] = expected_output[key]
    return output


def check_output(self, output, expected_output):
    self.maxDiff = None
    try:
        assert len(output["matched_transcripts"].strip()) > 0
        assert len(output["matched_transcripts_ipa"].strip()) > 0
        assert len(output["ipa_transcript"].strip()) > 0
        assert len(output["real_transcripts_ipa"].strip()) > 0
        output = check_output_by_field(
            output, "is_letter_correct_all_words", "[01]+", expected_output
        )
        output = check_output_by_field(output, "end_time", "\d+\.\d+", expected_output)
        output = check_output_by_field(
            output, "start_time", "\d+\.\d+", expected_output
        )
        pronunciation_accuracy = output["pronunciation_accuracy"]
        assert isinstance(pronunciation_accuracy, float)
        assert pronunciation_accuracy <= 100
        output["matched_transcripts"] = expected_output["matched_transcripts"]
        output["matched_transcripts_ipa"] = expected_output["matched_transcripts_ipa"]
        output["pronunciation_accuracy"] = expected_output["pronunciation_accuracy"]
        output["pair_accuracy_category"] = expected_output["pair_accuracy_category"]
        output["ipa_transcript"] = expected_output["ipa_transcript"]
        output["real_transcript"] = expected_output["real_transcript"]
        output["real_transcripts_ipa"] = expected_output["real_transcripts_ipa"]
        self.assertDictEqual(expected_output, output)
    except Exception as e:
        app_logger.error(f"e:{e}.")
        raise e


class TestGetAccuracyFromRecordedAudio(unittest.TestCase):
    def setUp(self):
        if platform.system() == "Windows" or platform.system() == "Win32":
            os.environ["PYTHONUTF8"] = "1"

    def tearDown(self):
        if (
            platform.system() == "Windows" or platform.system() == "Win32"
        ) and "PYTHONUTF8" in os.environ:
            del os.environ["PYTHONUTF8"]

    def test_GetAccuracyFromRecordedAudio(self):
        with open(EVENTS_FOLDER / "GetAccuracyFromRecordedAudio.json", "r") as src:
            inputs_outputs = json.load(src)
        inputs = inputs_outputs["inputs"]
        outputs = inputs_outputs["outputs"]
        for event_name, event_content in inputs.items():
            current_expected_output = outputs[event_name]
            output = lambdaSpeechToScore.lambda_handler(event_content, [])
            output = json.loads(output)
            app_logger.info(
                f"output type:{type(output)}, expected_output type:{type(current_expected_output)}."
            )
            check_output(self, output, current_expected_output)

    def test_get_speech_to_score_en_ok(self):
        from aip_trainer.lambdas import lambdaSpeechToScore

        language = "en"
        path = EVENTS_FOLDER / f"test_{language}.wav"
        output = lambdaSpeechToScore.get_speech_to_score_dict(
            real_text=text_dict[language],
            file_bytes_or_audiotmpfile=str(path),
            language=language,
            remove_random_file=False,
        )
        check_output(self, output, expected_output[language])

    def test_get_speech_to_score_en_ok_remove_input_file(self):
        import shutil
        from aip_trainer.lambdas import lambdaSpeechToScore

        language = "en"
        path = EVENTS_FOLDER / f"test_{language}.wav"
        path2 = EVENTS_FOLDER / f"test2_{language}.wav"
        shutil.copy(path, path2)
        assert path2.exists() and path2.is_file()
        output = lambdaSpeechToScore.get_speech_to_score_dict(
            real_text=text_dict[language],
            file_bytes_or_audiotmpfile=str(path2),
            language=language,
            remove_random_file=True,
        )
        assert not path2.exists()
        check_output(self, output, expected_output[language])

    def test_get_speech_to_score_de_ok(self):
        from aip_trainer.lambdas import lambdaSpeechToScore

        language = "de"
        path = EVENTS_FOLDER / f"test_{language}.wav"
        output = lambdaSpeechToScore.get_speech_to_score_dict(
            real_text=text_dict[language],
            file_bytes_or_audiotmpfile=str(path),
            language=language,
            remove_random_file=False,
        )
        check_output(self, output, expected_output[language])

    def test_get_speech_to_score_de_ok_remove_input_file(self):
        import shutil
        from aip_trainer.lambdas import lambdaSpeechToScore

        language = "de"
        path = EVENTS_FOLDER / f"test_{language}.wav"
        path2 = EVENTS_FOLDER / f"test2_{language}.wav"
        shutil.copy(path, path2)
        assert path2.exists() and path2.is_file()
        output = lambdaSpeechToScore.get_speech_to_score_dict(
            real_text=text_dict[language],
            file_bytes_or_audiotmpfile=str(path2),
            language=language,
            remove_random_file=True,
        )
        assert not path2.exists()
        check_output(self, output, expected_output[language])

    def test_get_speech_to_score_tuple_de_ok(self):
        from aip_trainer.lambdas import lambdaSpeechToScore

        language = "de"
        path = EVENTS_FOLDER / f"test_{language}.wav"
        (
            real_transcripts,
            is_letter_correct_all_words,
            pronunciation_accuracy,
            ipa_transcript,
            real_transcripts_ipa,
            dumped,
        ) = lambdaSpeechToScore.get_speech_to_score_tuple(
            real_text=text_dict[language],
            file_bytes_or_audiotmpfile=str(path),
            language=language,
            remove_random_file=False,
        )
        assert real_transcripts == text_dict[language]
        check_value_by_field(is_letter_correct_all_words, "[01]+")
        assert isinstance(pronunciation_accuracy, float)
        assert pronunciation_accuracy <= 100
        assert len(ipa_transcript.strip()) > 0
        assert len(real_transcripts_ipa.strip()) > 0
        check_output(self, json.loads(dumped), expected_output[language])

    def test_get_speech_to_score_tuple_en_ok(self):
        from aip_trainer.lambdas import lambdaSpeechToScore

        language = "en"
        path = EVENTS_FOLDER / f"test_{language}.wav"
        (
            real_transcripts,
            is_letter_correct_all_words,
            pronunciation_accuracy,
            ipa_transcript,
            real_transcripts_ipa,
            dumped,
        ) = lambdaSpeechToScore.get_speech_to_score_tuple(
            real_text=text_dict[language],
            file_bytes_or_audiotmpfile=str(path),
            language=language,
            remove_random_file=False,
        )
        assert real_transcripts == text_dict[language]
        check_value_by_field(is_letter_correct_all_words, "[01]+")
        assert isinstance(pronunciation_accuracy, float)
        assert pronunciation_accuracy <= 100
        assert len(ipa_transcript.strip()) > 0
        assert len(real_transcripts_ipa.strip()) > 0
        check_output(self, json.loads(dumped), expected_output[language])

    def test_get_speech_to_score_dict__de_empty_input_text(self):
        language = "de"
        path = EVENTS_FOLDER / f"test_{language}.wav"
        assert_raises_get_speech_to_score_dict(self, "", str(path), language, ValueError, "cannot read an empty/None text: ''...")

    def test_get_speech_to_score_dict__en_empty_input_text(self):
        language = "en"
        path = EVENTS_FOLDER / f"test_{language}.wav"
        assert_raises_get_speech_to_score_dict(self, "", str(path), language, ValueError, "cannot read an empty/None text: ''...")

    def test_get_speech_to_score_dict__de_empty_input_file(self):
        language = "de"
        assert_raises_get_speech_to_score_dict(self, "text fake", "", language, ValueError, "cannot read an empty/None file: ''...")

    def test_get_speech_to_score_dict__en_empty_input_file(self):
        language = "en"
        assert_raises_get_speech_to_score_dict(self, "text fake", "", language, ValueError, "cannot read an empty/None file: ''...")
    
    def test_get_speech_to_score_dict__empty_language(self):
        assert_raises_get_speech_to_score_dict(self, "text fake", "fake_file", "", NotImplementedError, "Not tested/supported with '' language...")


if __name__ == "__main__":
    unittest.main()