Spaces:
Running
Running
File size: 4,259 Bytes
28d0c5f 74a35d9 3fdcb38 74a35d9 3fdcb38 74a35d9 28d0c5f e8a1983 28d0c5f 3fdcb38 28d0c5f 3fdcb38 28d0c5f 74a35d9 28d0c5f 3fdcb38 28d0c5f 3fdcb38 28d0c5f 3fdcb38 023235e 3fdcb38 bafb40b 023235e 3fdcb38 023235e 3fdcb38 28d0c5f bafb40b 28d0c5f 3fdcb38 e8a1983 3fdcb38 7aaf29c 3fdcb38 7aaf29c 3fdcb38 7aaf29c 3fdcb38 7aaf29c 3fdcb38 7aaf29c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import json
import pickle
from pathlib import Path
import epitran
import pandas as pd
from aip_trainer import PROJECT_ROOT_FOLDER, app_logger
from aip_trainer.models import RuleBasedModels
class TextDataset:
def __init__(self, table, language='-'):
self.table_dataframe = table
self.number_of_samples = len(table)
self.language = language
def __getitem__(self, idx):
language_sentence = f"{self.language}_sentence" if self.language != '-' else 'sentence'
language_series = self.table_dataframe[language_sentence]
return [language_series.iloc[idx]]
def __len__(self):
return self.number_of_samples
def get_category_from_df_by_language(self, language: str, category_value:int):
selector = self.table_dataframe[f"{language}_category"] == category_value
df_by_category = self.table_dataframe[selector]
return df_by_category
def get_random_sample_from_df(self, language: str, category_value:int):
app_logger.info(f"language={language}, category_value={category_value}.")
choice = self.table_dataframe.sample(n=1)
if category_value !=0:
df_language_filtered_by_category_and_language = self.get_category_from_df_by_language(language, category_value)
choice = df_language_filtered_by_category_and_language.sample(n=1)
return [choice[f"{language}_sentence"].iloc[0]]
sample_folder = Path(PROJECT_ROOT_FOLDER / "aip_trainer" / "lambdas")
lambda_database = {}
lambda_ipa_converter = {}
with open(sample_folder / 'data_de_en_with_categories.json', 'r') as src:
df = pd.read_json(src)
lambda_database['de'] = TextDataset(df, 'de')
lambda_database['en'] = TextDataset(df, 'en')
lambda_translate_new_sample = False
lambda_ipa_converter['de'] = RuleBasedModels.EpitranPhonemConverter(
epitran.Epitran('deu-Latn'))
lambda_ipa_converter['en'] = RuleBasedModels.EngPhonemConverter()
def lambda_handler(event, context):
body = json.loads(event['body'])
try:
category = int(body['category'])
except KeyError:
category = 0
language = body['language']
try:
current_transcript = str(body["transcript"])
except KeyError:
current_transcript = get_random_selection(language, category, is_gradio_output=False)
current_transcript = current_transcript if isinstance(current_transcript, str) else current_transcript[0]
current_ipa = lambda_ipa_converter[language].convertToPhonem(current_transcript)
app_logger.info(f"real_transcript='{current_transcript}', ipa_transcript='{current_ipa}'.")
result = {
'real_transcript': current_transcript,
'ipa_transcript': current_ipa,
'transcript_translation': ""
}
return json.dumps(result)
def get_random_selection(language: str, category: int, is_gradio_output=True):
lambda_df_lang = lambda_database[language]
current_transcript = lambda_df_lang.get_random_sample_from_df(language, category)
app_logger.info(f"category={category}, language={language}, current_transcript={current_transcript}.")
return current_transcript[0] if is_gradio_output else current_transcript
def getSentenceCategory(sentence) -> int:
number_of_words = len(sentence.split())
categories_word_limits = [0, 8, 20, 100000]
for category in range(len(categories_word_limits) - 1):
if categories_word_limits[category] < number_of_words <= categories_word_limits[category + 1]:
return category + 1
def get_pickle2json_dataframe(
custom_pickle_filename_no_ext: Path | str = 'data_de_en_2',
custom_folder: Path = sample_folder
):
custom_folder = Path(custom_folder)
with open(custom_folder / f'{custom_pickle_filename_no_ext}.pickle', 'rb') as handle:
df2 = pickle.load(handle)
pass
df2["de_category"] = df2["de_sentence"].apply(getSentenceCategory)
print("de_category added")
df2["en_category"] = df2["en_sentence"].apply(getSentenceCategory)
print("en_category added")
df_json = df2.to_json()
with open(custom_folder / f'{custom_pickle_filename_no_ext}.json', 'w') as dst:
dst.write(df_json)
print("data_de_en_with_categories.json written")
|