File size: 7,262 Bytes
74a35d9
28d0c5f
74a35d9
 
28d0c5f
74a35d9
 
 
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d46b8e0
74a35d9
 
28d0c5f
 
 
 
 
 
 
 
 
 
d46b8e0
28d0c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import time
from string import punctuation

import numpy as np
from dtwalign import dtw_from_distance_matrix
from ortools.sat.python import cp_model

from . import WordMetrics, app_logger

offset_blank = 1
TIME_THRESHOLD_MAPPING = 5.0


def get_word_distance_matrix(words_estimated: list, words_real: list) -> np.array:
    number_of_real_words = len(words_real)
    number_of_estimated_words = len(words_estimated)

    word_distance_matrix = np.zeros(
        (number_of_estimated_words+offset_blank, number_of_real_words))
    for idx_estimated in range(number_of_estimated_words):
        for idx_real in range(number_of_real_words):
            word_distance_matrix[idx_estimated, idx_real] = WordMetrics.edit_distance_python(
                words_estimated[idx_estimated], words_real[idx_real])

    if offset_blank == 1:
        for idx_real in range(number_of_real_words):
            word_distance_matrix[number_of_estimated_words,
                                 idx_real] = len(words_real[idx_real])
    return word_distance_matrix


def get_best_path_from_distance_matrix(word_distance_matrix):
    modelCpp = cp_model.CpModel()

    number_of_real_words = word_distance_matrix.shape[1]
    number_of_estimated_words = word_distance_matrix.shape[0]-1

    number_words = np.maximum(number_of_real_words, number_of_estimated_words)

    estimated_words_order = [modelCpp.NewIntVar(0, int(
        number_words - 1 + offset_blank), 'w%i' % i) for i in range(number_words+offset_blank)]

    # They are in ascending order
    for word_idx in range(number_words-1):
        modelCpp.Add(
            estimated_words_order[word_idx+1] >= estimated_words_order[word_idx])

    total_phoneme_distance = 0
    real_word_at_time = {}
    for idx_estimated in range(number_of_estimated_words):
        for idx_real in range(number_of_real_words):
            real_word_at_time[idx_estimated, idx_real] = modelCpp.NewBoolVar(
                'real_word_at_time'+str(idx_real)+'-'+str(idx_estimated))
            modelCpp.Add(estimated_words_order[idx_estimated] == idx_real).OnlyEnforceIf(
                real_word_at_time[idx_estimated, idx_real])
            total_phoneme_distance += word_distance_matrix[idx_estimated,
                                                           idx_real]*real_word_at_time[idx_estimated, idx_real]

    # If no word in time, difference is calculated from empty string
    for idx_real in range(number_of_real_words):
        word_has_a_match = modelCpp.NewBoolVar(
            'word_has_a_match'+str(idx_real))
        modelCpp.Add(sum([real_word_at_time[idx_estimated, idx_real] for idx_estimated in range(
            number_of_estimated_words)]) == 1).OnlyEnforceIf(word_has_a_match)
        total_phoneme_distance += word_distance_matrix[number_of_estimated_words,
                                                       idx_real]*word_has_a_match.Not()

    # Loss should be minimized
    modelCpp.Minimize(total_phoneme_distance)

    solver = cp_model.CpSolver()
    solver.parameters.max_time_in_seconds = TIME_THRESHOLD_MAPPING
    status = solver.Solve(modelCpp)

    mapped_indices = []
    try:
        for word_idx in range(number_words):
            mapped_indices.append(
                (solver.Value(estimated_words_order[word_idx])))

        return np.array(mapped_indices, dtype=int)
    except Exception as ex:
        app_logger.error(f"ex:{ex}.")
        return []


def get_resulting_string(mapped_indices: np.array, words_estimated: list, words_real: list) -> list:
    mapped_words = []
    mapped_words_indices = []
    WORD_NOT_FOUND_TOKEN = '-'
    number_of_real_words = len(words_real)
    for word_idx in range(number_of_real_words):
        position_of_real_word_indices = np.where(
            mapped_indices == word_idx)[0].astype(int)

        if len(position_of_real_word_indices) == 0:
            mapped_words.append(WORD_NOT_FOUND_TOKEN)
            mapped_words_indices.append(-1)
            continue

        if len(position_of_real_word_indices) == 1:
            mapped_words.append(
                words_estimated[position_of_real_word_indices[0]])
            mapped_words_indices.append(position_of_real_word_indices[0])
            continue
        # Check which index gives the lowest error
        if len(position_of_real_word_indices) > 1:
            error = 99999
            best_possible_combination = ''
            best_possible_idx = -1
            for single_word_idx in position_of_real_word_indices:
                idx_above_word = single_word_idx >= len(words_estimated)
                if idx_above_word:
                    continue
                error_word = WordMetrics.edit_distance_python(
                    words_estimated[single_word_idx], words_real[word_idx])
                if error_word < error:
                    error = error_word*1
                    best_possible_combination = words_estimated[single_word_idx]
                    best_possible_idx = single_word_idx

            mapped_words.append(best_possible_combination)
            mapped_words_indices.append(best_possible_idx)
            continue

    return mapped_words, mapped_words_indices


def get_best_mapped_words(words_estimated: list, words_real: list) -> list:

    word_distance_matrix = get_word_distance_matrix(
        words_estimated, words_real)

    start = time.time()
    mapped_indices = get_best_path_from_distance_matrix(word_distance_matrix)

    duration_of_mapping = time.time()-start
    # In case or-tools doesn't converge, go to a faster, low-quality solution
    if len(mapped_indices) == 0 or duration_of_mapping > TIME_THRESHOLD_MAPPING+0.5:
        mapped_indices = (dtw_from_distance_matrix(
            word_distance_matrix)).path[:len(words_estimated), 1]

    mapped_words, mapped_words_indices = get_resulting_string(
        mapped_indices, words_estimated, words_real)

    return mapped_words, mapped_words_indices


# Faster, but not optimal
def get_best_mapped_words_dtw(words_estimated: list, words_real: list) -> list:

    from dtwalign import dtw_from_distance_matrix
    word_distance_matrix = get_word_distance_matrix(
        words_estimated, words_real)
    mapped_indices = dtw_from_distance_matrix(
        word_distance_matrix).path[:-1, 0]

    mapped_words, mapped_words_indices = get_resulting_string(
        mapped_indices, words_estimated, words_real)
    return mapped_words, mapped_words_indices


def getWhichLettersWereTranscribedCorrectly(real_word, transcribed_word):
    is_leter_correct = [None]*len(real_word)
    for idx, letter in enumerate(real_word):
        if letter == transcribed_word[idx] or letter in punctuation:
            is_leter_correct[idx] = 1
        else:
            is_leter_correct[idx] = 0
    return is_leter_correct


def parseLetterErrorsToHTML(word_real, is_leter_correct):
    word_colored = ''
    correct_color_start = '*'
    correct_color_end = '*'
    wrong_color_start = '-'
    wrong_color_end = '-'
    for idx, letter in enumerate(word_real):
        if is_leter_correct[idx] == 1:
            word_colored += correct_color_start + letter+correct_color_end
        else:
            word_colored += wrong_color_start + letter+wrong_color_end
    return word_colored