Spaces:
Running
Running
File size: 3,535 Bytes
85b7206 0700cb3 85b7206 0700cb3 85b7206 0700cb3 85b7206 0700cb3 85b7206 0700cb3 85b7206 0700cb3 85b7206 0700cb3 85b7206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
from typing import Union
import numpy as np
import onnxruntime
import torch
from faster_whisper import WhisperModel, transcribe
from ModelInterfaces import IASRModel
from constants import sample_rate_resample, app_logger, IS_TESTING, DEVICE
from typing_hints import ParsedWordInfo
device = onnxruntime.get_device()
device = "cpu" if IS_TESTING or device.lower() == DEVICE.lower() else device
app_logger.info(f"device: {device} #")
device_compute = "int8_float16" if device == "cuda" else "int8"
app_logger.info(f"device: {device}, device_compute: {device_compute} #")
def parse_word_info(word_info: transcribe.Word, sample_rate: int) -> ParsedWordInfo:
"""Parse a word info object from WhisperModel into a dictionary with start and end timestamps.
Args:
word_info (transcribe.Word): Word object from WhisperModel.transcribe module
sample_rate (int): Sample rate of the audio
Returns:
ParsedWordInfo: Dictionary with the current single word, start_ts and end_ts keys
"""
start_ts = float(word_info.start) * sample_rate
end_ts = float(word_info.end) * sample_rate
word = word_info.word
return {"word": word, "start_ts": start_ts, "end_ts": end_ts}
class FasterWhisperASRModel(IASRModel):
"""Faster Whisper ASR model wrapper class. This class is used to transcribe audio and store the transcript and word locations."""
def __init__(self, model_name:str="base", language:str=None):
self.asr = WhisperModel(model_name, device=device, compute_type=device_compute)
self._transcript = ""
self._word_locations = []
self.sample_rate = sample_rate_resample
self.language = language
def processAudio(self, audio:Union[np.ndarray, torch.Tensor]) -> None:
"""Transcribe audio and store the transcript and word locations updating self._transcript and self._word_locations,
get these values using getTranscript() and getWordLocations() respectively.
Args:
audio (np.ndarray or torch.Tensor): Audio samples to transcribe.
Returns:
None
"""
# 'audio' can be a path to a file or a numpy array of audio samples.
if isinstance(audio, torch.Tensor):
audio = audio.detach().cpu().numpy()
segments, info = self.asr.transcribe(audio=audio[0], language=self.language, word_timestamps=True, beam_size=5, temperature=0, vad_filter=True) #, "verbose": True})
app_logger.debug(f"segments: type={type(segments)}, segments complete: {segments} #")
app_logger.info(f"info: type={type(info)}, info complete: {info} #")
transcript = []
count = 0
for segment in segments:
app_logger.debug(f"single segment: {type(segment)}, segment: {segment} #")
transcript.append(segment.text)
segment_word_locations = [parse_word_info(word_info, sample_rate=self.sample_rate) for word_info in segment.words]
self._word_locations.extend(segment_word_locations)
app_logger.info(f"elaborated segment {count}: type={type(segment)}, len(words):{len(segment.words)}, text:{segment.text} #")
count += 1
app_logger.info(f"transcript: {transcript} #")
self._transcript = " ".join(transcript)
def getTranscript(self) -> str:
"""Get the transcript of the audio."""
return self._transcript
def getWordLocations(self) -> list[ParsedWordInfo]:
"""Get a list of ParsedWordInfo"""
return self._word_locations
|