alessandro trinca tornidor
feat: first working driver.js guided tour
183d840
raw
history blame
8.97 kB
from pathlib import Path
import gradio as gr
from aip_trainer import PROJECT_ROOT_FOLDER, app_logger, sample_rate_start
from aip_trainer.lambdas import js, lambdaGetSample, lambdaSpeechToScore, lambdaTTS
css = """
.speech-output-label p {color: grey;}
.speech-output-container {align-items: center; min-height: 60px; padding-left: 8px; padding-right: 8px; margin-top: -12px; border-width: 1px; border-style: solid; border-color: lightgrey;}
"""
def clear():
return None
def clear2():
return None, None
with gr.Blocks(css=css, head=js.head_driver_tour) as gradio_app:
local_storage = gr.BrowserState([0.0, 0.0])
app_logger.info("start gradio app building...")
project_root_folder = Path(PROJECT_ROOT_FOLDER)
with open(project_root_folder / "aip_trainer" / "lambdas" / "app_description.md", "r", encoding="utf-8") as app_description_src:
md_app_description = app_description_src.read()
gr.Markdown(md_app_description.format(sample_rate_start=sample_rate_start))
with gr.Row():
with gr.Column(scale=4, min_width=300):
with gr.Row():
with gr.Column(scale=2, min_width=80):
radio_language = gr.Radio(["de", "en"], label="Language", value="en")
with gr.Column(scale=5, min_width=160):
radio_difficulty = gr.Radio(
label="Difficulty",
value=0,
choices=[
("random", 0),
("easy", 1),
("medium", 2),
("hard", 3),
],
)
with gr.Column(scale=1, min_width=100):
btn_random_phrase = gr.Button(value="Choose a random phrase")
with gr.Row():
with gr.Column(scale=7, min_width=300):
text_learner_transcription = gr.Textbox(
lines=3,
label="Learner Transcription",
value="Hi there, how are you?",
)
with gr.Row():
audio_tts = gr.Audio(label="Audio TTS")
with gr.Row():
btn_run_tts = gr.Button(value="TTS in browser", elem_id="btn-run-tts-id-element")
btn_run_tts_backend = gr.Button(value="TTS backend", elem_id="btn-run-tts-backend-id-element")
btn_clear_tts = gr.Button(value="Clear TTS backend")
btn_clear_tts.click(clear, inputs=[], outputs=[audio_tts])
with gr.Row():
audio_learner_recording_stt = gr.Audio(
label="Learner Recording",
sources=["microphone", "upload"],
type="filepath",
show_download_button=True,
)
with gr.Column(scale=4, min_width=320):
text_transcribed_hidden = gr.Textbox(
placeholder=None, label="Transcribed text", visible=False
)
text_letter_correctness = gr.Textbox(
placeholder=None,
label="Letters correctness",
visible=False,
)
text_recording_ipa = gr.Textbox(
placeholder=None, label="Learner phonetic transcription"
)
text_ideal_ipa = gr.Textbox(
placeholder=None, label="Ideal phonetic transcription"
)
text_raw_json_output_hidden = gr.Textbox(placeholder=None, label="text_raw_json_output_hidden", visible=False)
gr.Markdown("Speech accuracy output", elem_classes="speech-output-label")
with gr.Row(elem_classes="speech-output-container"):
html_output = gr.HTML(
label="Speech accuracy output",
elem_id="speech-output",
show_label=False,
visible=True,
render=True,
value=" - ",
elem_classes="speech-output",
)
with gr.Row():
gr.Markdown("### Speech accuracy score (%)", elem_classes="speech-accuracy-score-container row1")
with gr.Row():
with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col1"):
number_pronunciation_accuracy = gr.Number(label="Current score")
with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col2"):
number_score_de = gr.Number(label="Global score DE", value=0, interactive=False)
with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col3"):
number_score_en = gr.Number(label="Global score EN", value=0, interactive=False)
with gr.Row():
btn = gr.Button(value="Recognize speech accuracy")
with gr.Accordion("Click here to expand the table examples", open=False):
examples_text = gr.Examples(
examples=[
["Hallo, wie geht es dir?", "de", 1],
["Hi there, how are you?", "en", 1],
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau.", "de", 2,],
["Rome is home to some of the most beautiful monuments in the world.", "en", 2],
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau, einem Ortsteil des drei Kilometer nordöstlich gelegenen Bad Brückenau im Landkreis Bad Kissingen in Bayern.", "de", 3],
["Some machine learning models are designed to understand and generate human-like text based on the input they receive.", "en", 3],
],
inputs=[text_learner_transcription, radio_language, radio_difficulty],
)
def get_updated_score_by_language(text: str, audio_rec: str | Path, lang: str, score_de: float, score_en: float):
_transcribed_text, _letter_correctness, _pronunciation_accuracy, _recording_ipa, _ideal_ipa, _res = lambdaSpeechToScore.get_speech_to_score_tuple(text, audio_rec, lang)
output = {
text_transcribed_hidden: _transcribed_text,
text_letter_correctness: _letter_correctness,
number_pronunciation_accuracy: _pronunciation_accuracy,
text_recording_ipa: _recording_ipa,
text_ideal_ipa: _ideal_ipa,
text_raw_json_output_hidden: _res,
}
match lang:
case "de":
return {
number_score_de: float(score_de) + float(_pronunciation_accuracy),
number_score_en: float(score_en),
**output
}
case "en":
return {
number_score_en: float(score_en) + float(_pronunciation_accuracy),
number_score_de: float(score_de),
**output
}
case _:
raise NotImplementedError(f"Language {lang} not supported")
btn.click(
get_updated_score_by_language,
inputs=[text_learner_transcription, audio_learner_recording_stt, radio_language, number_score_de, number_score_en],
outputs=[
text_transcribed_hidden,
text_letter_correctness,
number_pronunciation_accuracy,
text_recording_ipa,
text_ideal_ipa,
text_raw_json_output_hidden,
number_score_de, number_score_en
],
)
btn_run_tts.click(fn=None, inputs=[text_learner_transcription, radio_language], outputs=audio_tts, js=js.js_play_audio)
btn_run_tts_backend.click(
fn=lambdaTTS.get_tts,
inputs=[text_learner_transcription, radio_language],
outputs=audio_tts,
)
btn_random_phrase.click(
lambdaGetSample.get_random_selection,
inputs=[radio_language, radio_difficulty],
outputs=[text_learner_transcription],
)
btn_random_phrase.click(
clear2,
inputs=[],
outputs=[audio_learner_recording_stt, audio_tts]
)
html_output.change(
None,
inputs=[text_transcribed_hidden, text_letter_correctness],
outputs=[html_output],
js=js.js_update_ipa_output,
)
@gradio_app.load(inputs=[local_storage], outputs=[number_score_de, number_score_en])
def load_from_local_storage(saved_values):
print("loading from local storage", saved_values)
return saved_values[0], saved_values[1]
@gr.on([number_score_de.change, number_score_en.change], inputs=[number_score_de, number_score_en], outputs=[local_storage])
def save_to_local_storage(score_de, score_en):
return [score_de, score_en]
if __name__ == "__main__":
gradio_app.launch()