Spaces:
Running
Running
from pathlib import Path | |
import gradio as gr | |
from aip_trainer import PROJECT_ROOT_FOLDER, app_logger, sample_rate_start | |
from aip_trainer.lambdas import js, lambdaGetSample, lambdaSpeechToScore, lambdaTTS | |
css = """ | |
.speech-output-label p {color: grey;} | |
.speech-output-container {align-items: center; min-height: 60px; padding-left: 8px; padding-right: 8px; margin-top: -12px; border-width: 1px; border-style: solid; border-color: lightgrey;} | |
""" | |
def clear(): | |
return None | |
def clear2(): | |
return None, None | |
with gr.Blocks(css=css, head=js.head_driver_tour) as gradio_app: | |
local_storage = gr.BrowserState([0.0, 0.0]) | |
app_logger.info("start gradio app building...") | |
project_root_folder = Path(PROJECT_ROOT_FOLDER) | |
with open(project_root_folder / "aip_trainer" / "lambdas" / "app_description.md", "r", encoding="utf-8") as app_description_src: | |
md_app_description = app_description_src.read() | |
gr.Markdown(md_app_description.format(sample_rate_start=sample_rate_start)) | |
with gr.Row(): | |
with gr.Column(scale=4, min_width=300): | |
with gr.Row(): | |
with gr.Column(scale=2, min_width=80): | |
radio_language = gr.Radio(["de", "en"], label="Language", value="en") | |
with gr.Column(scale=5, min_width=160): | |
radio_difficulty = gr.Radio( | |
label="Difficulty", | |
value=0, | |
choices=[ | |
("random", 0), | |
("easy", 1), | |
("medium", 2), | |
("hard", 3), | |
], | |
) | |
with gr.Column(scale=1, min_width=100): | |
btn_random_phrase = gr.Button(value="Choose a random phrase") | |
with gr.Row(): | |
with gr.Column(scale=7, min_width=300): | |
text_learner_transcription = gr.Textbox( | |
lines=3, | |
label="Learner Transcription", | |
value="Hi there, how are you?", | |
) | |
with gr.Row(): | |
audio_tts = gr.Audio(label="Audio TTS") | |
with gr.Row(): | |
btn_run_tts = gr.Button(value="TTS in browser", elem_id="btn-run-tts-id-element") | |
btn_run_tts_backend = gr.Button(value="TTS backend", elem_id="btn-run-tts-backend-id-element") | |
btn_clear_tts = gr.Button(value="Clear TTS backend") | |
btn_clear_tts.click(clear, inputs=[], outputs=[audio_tts]) | |
with gr.Row(): | |
audio_learner_recording_stt = gr.Audio( | |
label="Learner Recording", | |
sources=["microphone", "upload"], | |
type="filepath", | |
show_download_button=True, | |
) | |
with gr.Column(scale=4, min_width=320): | |
text_transcribed_hidden = gr.Textbox( | |
placeholder=None, label="Transcribed text", visible=False | |
) | |
text_letter_correctness = gr.Textbox( | |
placeholder=None, | |
label="Letters correctness", | |
visible=False, | |
) | |
text_recording_ipa = gr.Textbox( | |
placeholder=None, label="Learner phonetic transcription" | |
) | |
text_ideal_ipa = gr.Textbox( | |
placeholder=None, label="Ideal phonetic transcription" | |
) | |
text_raw_json_output_hidden = gr.Textbox(placeholder=None, label="text_raw_json_output_hidden", visible=False) | |
gr.Markdown("Speech accuracy output", elem_classes="speech-output-label") | |
with gr.Row(elem_classes="speech-output-container"): | |
html_output = gr.HTML( | |
label="Speech accuracy output", | |
elem_id="speech-output", | |
show_label=False, | |
visible=True, | |
render=True, | |
value=" - ", | |
elem_classes="speech-output", | |
) | |
with gr.Row(): | |
gr.Markdown("### Speech accuracy score (%)", elem_classes="speech-accuracy-score-container row1") | |
with gr.Row(): | |
with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col1"): | |
number_pronunciation_accuracy = gr.Number(label="Current score") | |
with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col2"): | |
number_score_de = gr.Number(label="Global score DE", value=0, interactive=False) | |
with gr.Column(min_width=100, elem_classes="speech-accuracy-score-container row2 col3"): | |
number_score_en = gr.Number(label="Global score EN", value=0, interactive=False) | |
with gr.Row(): | |
btn = gr.Button(value="Recognize speech accuracy") | |
with gr.Accordion("Click here to expand the table examples", open=False): | |
examples_text = gr.Examples( | |
examples=[ | |
["Hallo, wie geht es dir?", "de", 1], | |
["Hi there, how are you?", "en", 1], | |
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau.", "de", 2,], | |
["Rome is home to some of the most beautiful monuments in the world.", "en", 2], | |
["Die König-Ludwig-Eiche ist ein Naturdenkmal im Staatsbad Brückenau, einem Ortsteil des drei Kilometer nordöstlich gelegenen Bad Brückenau im Landkreis Bad Kissingen in Bayern.", "de", 3], | |
["Some machine learning models are designed to understand and generate human-like text based on the input they receive.", "en", 3], | |
], | |
inputs=[text_learner_transcription, radio_language, radio_difficulty], | |
) | |
def get_updated_score_by_language(text: str, audio_rec: str | Path, lang: str, score_de: float, score_en: float): | |
_transcribed_text, _letter_correctness, _pronunciation_accuracy, _recording_ipa, _ideal_ipa, _res = lambdaSpeechToScore.get_speech_to_score_tuple(text, audio_rec, lang) | |
output = { | |
text_transcribed_hidden: _transcribed_text, | |
text_letter_correctness: _letter_correctness, | |
number_pronunciation_accuracy: _pronunciation_accuracy, | |
text_recording_ipa: _recording_ipa, | |
text_ideal_ipa: _ideal_ipa, | |
text_raw_json_output_hidden: _res, | |
} | |
match lang: | |
case "de": | |
return { | |
number_score_de: float(score_de) + float(_pronunciation_accuracy), | |
number_score_en: float(score_en), | |
**output | |
} | |
case "en": | |
return { | |
number_score_en: float(score_en) + float(_pronunciation_accuracy), | |
number_score_de: float(score_de), | |
**output | |
} | |
case _: | |
raise NotImplementedError(f"Language {lang} not supported") | |
btn.click( | |
get_updated_score_by_language, | |
inputs=[text_learner_transcription, audio_learner_recording_stt, radio_language, number_score_de, number_score_en], | |
outputs=[ | |
text_transcribed_hidden, | |
text_letter_correctness, | |
number_pronunciation_accuracy, | |
text_recording_ipa, | |
text_ideal_ipa, | |
text_raw_json_output_hidden, | |
number_score_de, number_score_en | |
], | |
) | |
btn_run_tts.click(fn=None, inputs=[text_learner_transcription, radio_language], outputs=audio_tts, js=js.js_play_audio) | |
btn_run_tts_backend.click( | |
fn=lambdaTTS.get_tts, | |
inputs=[text_learner_transcription, radio_language], | |
outputs=audio_tts, | |
) | |
btn_random_phrase.click( | |
lambdaGetSample.get_random_selection, | |
inputs=[radio_language, radio_difficulty], | |
outputs=[text_learner_transcription], | |
) | |
btn_random_phrase.click( | |
clear2, | |
inputs=[], | |
outputs=[audio_learner_recording_stt, audio_tts] | |
) | |
html_output.change( | |
None, | |
inputs=[text_transcribed_hidden, text_letter_correctness], | |
outputs=[html_output], | |
js=js.js_update_ipa_output, | |
) | |
def load_from_local_storage(saved_values): | |
print("loading from local storage", saved_values) | |
return saved_values[0], saved_values[1] | |
def save_to_local_storage(score_de, score_en): | |
return [score_de, score_en] | |
if __name__ == "__main__": | |
gradio_app.launch() | |