Spaces:
Running
Running
alessandro trinca tornidor
feat: add request validations for lambdaGestSample and lambdaSpeechToScore backend modules
5f896de
import json | |
import pickle | |
from pathlib import Path | |
import epitran | |
import pandas as pd | |
from aip_trainer import PROJECT_ROOT_FOLDER, app_logger | |
from aip_trainer.models import RuleBasedModels | |
from aip_trainer.utils.typing_hints import BodyGetSampleRequest | |
class TextDataset: | |
def __init__(self, table, language='-'): | |
self.table_dataframe = table | |
self.number_of_samples = len(table) | |
self.language = language | |
def __getitem__(self, idx): | |
language_sentence = f"{self.language}_sentence" if self.language != '-' else 'sentence' | |
language_series = self.table_dataframe[language_sentence] | |
return [language_series.iloc[idx]] | |
def __len__(self): | |
return self.number_of_samples | |
def get_category_from_df_by_language(self, language: str, category_value:int): | |
selector = self.table_dataframe[f"{language}_category"] == category_value | |
df_by_category = self.table_dataframe[selector] | |
return df_by_category | |
def get_random_sample_from_df(self, language: str, category_value:int): | |
app_logger.info(f"language={language}, category_value={category_value}.") | |
choice = self.table_dataframe.sample(n=1) | |
if category_value !=0: | |
df_language_filtered_by_category_and_language = self.get_category_from_df_by_language(language, category_value) | |
choice = df_language_filtered_by_category_and_language.sample(n=1) | |
return [choice[f"{language}_sentence"].iloc[0]] | |
sample_folder = Path(PROJECT_ROOT_FOLDER / "aip_trainer" / "lambdas") | |
lambda_database = {} | |
lambda_ipa_converter = {} | |
with open(sample_folder / 'data_de_en_with_categories.json', 'r') as src: | |
df = pd.read_json(src) | |
lambda_database['de'] = TextDataset(df, 'de') | |
lambda_database['en'] = TextDataset(df, 'en') | |
lambda_translate_new_sample = False | |
lambda_ipa_converter['de'] = RuleBasedModels.EpitranPhonemConverter( | |
epitran.Epitran('deu-Latn')) | |
lambda_ipa_converter['en'] = RuleBasedModels.EngPhonemConverter() | |
def lambda_handler(event, context): | |
event_body = event["body"] | |
body = BodyGetSampleRequest.model_validate_json(event_body) | |
current_transcript = get_random_selection(body.language, body.category, is_gradio_output=False, transcript=body.transcript) | |
current_transcript = current_transcript[0] if isinstance(current_transcript, list) else current_transcript | |
current_ipa = lambda_ipa_converter[body.language].convertToPhonem(current_transcript) | |
app_logger.info(f"real_transcript='{current_transcript}', ipa_transcript='{current_ipa}'.") | |
result = { | |
'real_transcript': current_transcript, | |
'ipa_transcript': current_ipa, | |
'transcript_translation': "" | |
} | |
return json.dumps(result) | |
def get_random_selection(language: str, category: int, is_gradio_output=True, transcript=None): | |
if transcript is not None and isinstance(transcript, str) and len(transcript) > 0: | |
return transcript | |
lambda_df_lang = lambda_database[language] | |
current_transcript = lambda_df_lang.get_random_sample_from_df(language, category) | |
app_logger.info(f"category={category}, language={language}, current_transcript={current_transcript}.") | |
return current_transcript[0] if is_gradio_output else current_transcript | |
def getSentenceCategory(sentence) -> int: | |
number_of_words = len(sentence.split()) | |
categories_word_limits = [0, 8, 20, 100000] | |
for category in range(len(categories_word_limits) - 1): | |
if categories_word_limits[category] < number_of_words <= categories_word_limits[category + 1]: | |
return category + 1 | |
def get_pickle2json_dataframe( | |
custom_pickle_filename_no_ext: Path | str = 'data_de_en_2', | |
custom_folder: Path = sample_folder | |
): | |
custom_folder = Path(custom_folder) | |
with open(custom_folder / f'{custom_pickle_filename_no_ext}.pickle', 'rb') as handle: | |
df2 = pickle.load(handle) | |
pass | |
df2["de_category"] = df2["de_sentence"].apply(getSentenceCategory) | |
print("de_category added") | |
df2["en_category"] = df2["en_sentence"].apply(getSentenceCategory) | |
print("en_category added") | |
df_json = df2.to_json() | |
with open(custom_folder / f'{custom_pickle_filename_no_ext}.json', 'w') as dst: | |
dst.write(df_json) | |
print("data_de_en_with_categories.json written") | |