ai-pronunciation-trainer / unitTests.py
thiagohgl's picture
First repository code commit
28d0c5f
raw
history blame
3.24 kB
import unittest
import ModelInterfaces
import lambdaGetSample
import RuleBasedModels
import epitran
import json
import pronunciationTrainer
def test_category(category: int, threshold_min: int, threshold_max: int):
event = {'body': json.dumps({'category': category, 'language': 'de'})}
for _ in range(1000):
response = lambdaGetSample.lambda_handler(event, [])
response_dict = json.loads(response)
number_of_words = len(
response_dict['real_transcript'][0].split())
length_valid = number_of_words > threshold_min and number_of_words <= threshold_max
if not length_valid:
print('Category ', category,
' had a sentence with length ', number_of_words)
return False
return True
class TestDataset(unittest.TestCase):
def test_random_sentences(self):
self.assertFalse(test_category(0, 0, 8))
def test_easy_sentences(self):
self.assertTrue(test_category(1, 0, 8))
def test_normal_sentences(self):
self.assertTrue(test_category(2, 8, 20))
def test_hard_sentences(self):
self.assertTrue(test_category(3, 20, 10000))
def check_phonem_converter(converter: ModelInterfaces.ITextToPhonemModel, input: str, expected_output: str):
output = converter.convertToPhonem(input)
is_correct = output == expected_output
if not is_correct:
print('Conversion from "', input, '" should be "',
expected_output, '", but was "', output, '"')
return is_correct
class TestPhonemConverter(unittest.TestCase):
def test_english(self):
phonem_converter = RuleBasedModels.EngPhonemConverter()
self.assertTrue(check_phonem_converter(
phonem_converter, 'Hello, this is a test', 'hɛˈloʊ, ðɪs ɪz ə tɛst'))
def test_german(self):
phonem_converter = RuleBasedModels.EpitranPhonemConverter(
epitran.Epitran('deu-Latn'))
self.assertTrue(check_phonem_converter(
phonem_converter, 'Hallo, das ist ein Test', 'haloː, dɑːs ɪst ain tɛst'))
trainer_SST_lambda = {}
trainer_SST_lambda['de'] = pronunciationTrainer.getTrainer("de")
class TestScore(unittest.TestCase):
def test_exact_transcription(self):
words_real = 'Ich habe sehr viel glück, am leben und gesund zu sein'
real_and_transcribed_words, _, _ = trainer_SST_lambda['de'].matchSampleAndRecordedWords(
words_real, words_real)
pronunciation_accuracy, _ = trainer_SST_lambda['de'].getPronunciationAccuracy(
real_and_transcribed_words)
self.assertTrue(int(pronunciation_accuracy) == 100)
def test_incorrect_transcription(self):
words_real = 'Ich habe sehr viel glück, am leben und gesund zu sein'
words_transcribed = 'Ic hab zeh viel guck am und gesund tu sein'
real_and_transcribed_words, _, _ = trainer_SST_lambda['de'].matchSampleAndRecordedWords(
words_real, words_transcribed)
pronunciation_accuracy, _ = trainer_SST_lambda['de'].getPronunciationAccuracy(
real_and_transcribed_words)
self.assertTrue(int(pronunciation_accuracy) == 71)
if __name__ == '__main__':
unittest.main()