Spaces:
Running
Running
alessandro trinca tornidor
test: update test cases for models modules, add preprocessAudioStandalone() function
acfca85
import unittest | |
import numpy as np | |
import torch | |
from torchaudio.transforms import Resample | |
from aip_trainer import pronunciationTrainer, sample_rate_start | |
from aip_trainer.lambdas.lambdaSpeechToScore import soundfile_load | |
from aip_trainer.utils import utilities | |
from tests import EVENTS_FOLDER | |
from tests.lambdas.test_lambdaSpeechToScore import set_seed | |
phrases = { | |
"de": { | |
"real": "Hallo, wie geht es dir?", | |
"transcribed": 'hallo wie geht es dir', | |
"partial": 'hallo wie geht ', | |
"incorrect": 'hail wi git es dir' | |
}, | |
"en": { | |
"real": "Hi there, how are you?", | |
"transcribed": 'i there how are you', | |
"partial": 'i there how', | |
"incorrect": "I here how re youth" | |
} | |
} | |
trainer_SST_lambda_de = pronunciationTrainer.getTrainer("de") | |
trainer_SST_lambda_en = pronunciationTrainer.getTrainer("en") | |
signal_de, samplerate = soundfile_load(str(EVENTS_FOLDER / "test_de_easy.wav")) | |
signal_en, samplerate = soundfile_load(str(EVENTS_FOLDER / "test_en_easy.wav")) | |
transform = Resample(orig_freq=sample_rate_start, new_freq=16000) | |
class TestScore(unittest.TestCase): | |
def test_getTrainer(self): | |
self.assertIsInstance(trainer_SST_lambda_de, pronunciationTrainer.PronunciationTrainer) | |
self.assertIsInstance(trainer_SST_lambda_en, pronunciationTrainer.PronunciationTrainer) | |
def test_exact_transcription_de(self): | |
set_seed() | |
phrase_real = phrases["de"]["real"] | |
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_real) | |
self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haloː,'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːr?')]) | |
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) | |
pronunciation_accuracy, current_words_pronunciation_accuracy = trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words) | |
self.assertEqual(int(pronunciation_accuracy), 100) | |
self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 100, 100]) | |
def test_transcription_de(self): | |
set_seed() | |
phrase_real = phrases["de"]["real"] | |
phrase_transcribed = phrases["de"]["transcribed"] | |
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed) | |
self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haloː'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːɐ̯')]) | |
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) | |
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words) | |
self.assertEqual(int(pronunciation_accuracy), 100) | |
self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 100, 100]) | |
def test_partial_transcription_de(self): | |
set_seed() | |
phrase_real = phrases["de"]["real"] | |
phrase_partial = phrases["de"]["partial"] | |
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_partial) | |
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words) | |
self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haloː'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', '-'), ('diːr?', '-')]) | |
self.assertEqual(mapped_words_indices, [0, 1, 2, -1, -1]) | |
self.assertEqual(int(pronunciation_accuracy), 71) | |
self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 0, 0]) | |
def test_incorrect_transcription_with_correct_words_de(self): | |
set_seed() | |
phrase_real = phrases["de"]["real"] | |
phrase_transcribed_incorrect = phrases["de"]["incorrect"] | |
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed_incorrect) | |
self.assertEqual(real_and_transcribed_words_ipa, [('haloː,', 'haɪ̯l'), ('viː', 'viː'), ('ɡeːt', 'ɡiːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːɐ̯')]) | |
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) | |
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_de.getPronunciationAccuracy(real_and_transcribed_words) | |
self.assertEqual(int(pronunciation_accuracy), 71) | |
for accuracy, expected_accuracy in zip(current_words_pronunciation_accuracy, [60.0, 66.666666, 50.0, 100.0, 100.0]): | |
self.assertAlmostEqual(accuracy, expected_accuracy, places=2) | |
def test_exact_transcription_en(self): | |
set_seed() | |
phrase_real = phrases["en"]["real"] | |
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_real) | |
self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'haɪ'), ('ðɛr,', 'ðɛr,'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju?')]) | |
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) | |
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words) | |
self.assertEqual(int(pronunciation_accuracy), 100) | |
self.assertEqual(current_words_pronunciation_accuracy, [100, 100, 100, 100, 100]) | |
def test_transcription_en(self): | |
set_seed() | |
phrase_real = phrases["en"]["real"] | |
phrase_transcribed = phrases["en"]["transcribed"] | |
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_transcribed) | |
self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'aɪ'), ('ðɛr,', 'ðɛr'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju')]) | |
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) | |
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words) | |
self.assertEqual(int(pronunciation_accuracy), 94) | |
self.assertEqual(current_words_pronunciation_accuracy, [50.0, 100.0, 100.0, 100.0, 100.0]) | |
def test_partial_transcription_en(self): | |
set_seed() | |
phrase_real = phrases["en"]["real"] | |
phrase_partial = phrases["en"]["partial"] | |
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_partial) | |
self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'aɪ'), ('ðɛr,', 'ðɛr'), ('haʊ', 'haʊ'), ('ər', ''), ('ju?', '')]) | |
self.assertEqual(mapped_words_indices, [0, 1, 2, -1, -1]) | |
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words) | |
self.assertEqual(int(pronunciation_accuracy), 56) | |
self.assertEqual(current_words_pronunciation_accuracy, [50.0, 100.0, 100.0, 0.0, 0.0]) | |
def test_incorrect_transcription_with_correct_words_en(self): | |
set_seed() | |
phrase_real = phrases["en"]["real"] | |
phrase_transcribed_incorrect = phrases["en"]["incorrect"] | |
real_and_transcribed_words, real_and_transcribed_words_ipa, mapped_words_indices = trainer_SST_lambda_en.matchSampleAndRecordedWords(phrase_real, phrase_transcribed_incorrect) | |
self.assertEqual(real_and_transcribed_words_ipa, [('haɪ', 'aɪ'), ('ðɛr,', 'hir'), ('haʊ', 'haʊ'), ('ər', 'ri'), ('ju?', 'juθ')]) | |
self.assertEqual(mapped_words_indices, [0, 1, 2, 3, 4]) | |
pronunciation_accuracy, current_words_pronunciation_accuracy= trainer_SST_lambda_en.getPronunciationAccuracy(real_and_transcribed_words) | |
self.assertEqual(int(pronunciation_accuracy), 69) | |
for accuracy, expected_accuracy in zip(current_words_pronunciation_accuracy, [50.0, 80.0, 100.0, 66.666666, 33.333333]): | |
self.assertAlmostEqual(accuracy, expected_accuracy, places=2) | |
def test_processAudioForGivenText_getTranscriptAndWordsLocations_de(self): | |
set_seed() | |
phrase_real = phrases["de"]["real"] | |
signal_de_shape = signal_de.shape[0] | |
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0) | |
result = trainer_SST_lambda_de.processAudioForGivenText(signal_transformed, phrase_real) | |
expected_result = { | |
'recording_transcript': 'hallo wie geht es dir', | |
'real_and_transcribed_words': [('Hallo,', 'hallo'), ('wie', 'wie'), ('geht', 'geht'), ('es', 'es'), ('dir?', 'dir')], | |
'recording_ipa': 'haloː viː ɡeːt ɛːs diːɐ̯', 'start_time': '0.0 0.3733125 0.60425 0.7966875 0.989125', 'end_time': '0.4733125 0.70425 0.8966875 1.089125 1.3200625', | |
'real_and_transcribed_words_ipa': [('haloː,', 'haloː'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːɐ̯')], | |
'pronunciation_accuracy': 100.0, | |
'pronunciation_categories': [0, 0, 0, 0, 0] | |
} | |
self.assertDictEqual(result, expected_result) | |
transcript, word_locations = trainer_SST_lambda_de.getTranscriptAndWordsLocations(signal_de_shape) | |
assert transcript == phrases["de"]["transcribed"] | |
assert word_locations == [(0, 7573), (5973, 11268), (9668, 14347), (12747, 17426), (15826, 21121)] | |
def test_processAudioForGivenText_de(self): | |
set_seed() | |
phrase_real = phrases["de"]["real"] | |
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0) | |
expected_result = { | |
'recording_transcript': 'hallo wie geht es dir', | |
'real_and_transcribed_words': [('Hallo,', 'hallo'), ('wie', 'wie'), ('geht', 'geht'), ('es', 'es'), ('dir?', 'dir')], | |
'recording_ipa': 'haloː viː ɡeːt ɛːs diːɐ̯', 'start_time': '0.0 0.3733125 0.60425 0.7966875 0.989125', 'end_time': '0.4733125 0.70425 0.8966875 1.089125 1.3200625', | |
'real_and_transcribed_words_ipa': [('haloː,', 'haloː'), ('viː', 'viː'), ('ɡeːt', 'ɡeːt'), ('ɛːs', 'ɛːs'), ('diːr?', 'diːɐ̯')], | |
'pronunciation_accuracy': 100.0, | |
'pronunciation_categories': [0, 0, 0, 0, 0], | |
"start_time": "0.0 0.3733125 0.60425 0.7966875 0.989125", | |
"end_time": "0.4733125 0.70425 0.8966875 1.089125 1.3200625", | |
} | |
result = trainer_SST_lambda_de.processAudioForGivenText(signal_transformed, phrase_real) | |
self.assertDictEqual(result, expected_result) | |
def test_removePunctuation_de(self): | |
word = "glück," | |
cleaned_word = trainer_SST_lambda_de.removePunctuation(word) | |
self.assertEqual(cleaned_word, "glück") | |
word = "glück,\n\rhallo..." | |
cleaned_word = trainer_SST_lambda_de.removePunctuation(word) | |
self.assertEqual(cleaned_word, "glück\n\rhallo") | |
def test_getWordsPronunciationCategory_de(self): | |
accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5] | |
expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] | |
categories = trainer_SST_lambda_de.getWordsPronunciationCategory(accuracies) | |
self.assertEqual(categories, expected_categories) | |
def test_preprocessAudio_de(self): | |
output_hash = utilities.hash_calculate(signal_de, is_file=False) | |
assert output_hash == b'D9pMFzYL1BSPPg89ZCQE61xzb7QICXolYtC9EJRpvS0=' | |
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0) | |
preprocessed_audio = trainer_SST_lambda_de.preprocessAudio(signal_transformed) | |
self.assertIsInstance(preprocessed_audio, torch.Tensor) | |
self.assertEqual(preprocessed_audio.shape, (1, 23400)) | |
output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False) | |
assert output_hash == b'Ri/1rmgYmRSWaAw/Y3PoLEu1woiczhSUdUCbaMf++EM=' | |
def test_preprocessAudioStandalone_de(self): | |
output_hash = utilities.hash_calculate(signal_de, is_file=False) | |
assert output_hash == b'D9pMFzYL1BSPPg89ZCQE61xzb7QICXolYtC9EJRpvS0=' | |
signal_transformed = transform(torch.Tensor(signal_de)).unsqueeze(0) | |
preprocessed_audio = pronunciationTrainer.preprocessAudioStandalone(signal_transformed) | |
self.assertIsInstance(preprocessed_audio, torch.Tensor) | |
self.assertEqual(preprocessed_audio.shape, (1, 23400)) | |
output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False) | |
assert output_hash == b'Ri/1rmgYmRSWaAw/Y3PoLEu1woiczhSUdUCbaMf++EM=' | |
def test_processAudioForGivenText_getTranscriptAndWordsLocations_en(self): | |
set_seed() | |
phrase_real = phrases["en"]["real"] | |
signal_en_shape = signal_en.shape[0] | |
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0) | |
result = trainer_SST_lambda_en.processAudioForGivenText(signal_transformed, phrase_real) | |
expected_result = { | |
'recording_transcript': 'i there how are you', | |
'real_and_transcribed_words': [('Hi', 'i'), ('there,', 'there'), ('how', 'how'), ('are', 'are'), ('you?', 'you')], | |
'recording_ipa': 'aɪ ðɛr haʊ ər ju', 'start_time': '0.0 0.0625 0.2875 0.475 0.7', 'end_time': '0.1625 0.3875 0.575 0.8 0.9875', | |
'real_and_transcribed_words_ipa': [('haɪ', 'aɪ'), ('ðɛr,', 'ðɛr'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju')], | |
'pronunciation_accuracy': 94.0, 'pronunciation_categories': [2, 0, 0, 0, 0] | |
} | |
self.assertDictEqual(result, expected_result) | |
transcript, word_locations = trainer_SST_lambda_en.getTranscriptAndWordsLocations(signal_en_shape) | |
assert transcript == phrases["en"]["transcribed"] | |
assert word_locations == [(0, 2600), (1000, 6200), (4600, 9200), (7600, 12800), (11200, 15800)] | |
def test_processAudioForGivenText_en(self): | |
set_seed() | |
phrase_real = phrases["en"]["real"] | |
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0) | |
expected_result = { | |
'recording_transcript': 'i there how are you', | |
'real_and_transcribed_words': [('Hi', 'i'), ('there,', 'there'), ('how', 'how'), ('are', 'are'), ('you?', 'you')], | |
'recording_ipa': 'aɪ ðɛr haʊ ər ju', 'start_time': '0.0 0.0625 0.2875 0.475 0.7', 'end_time': '0.1625 0.3875 0.575 0.8 0.9875', | |
'real_and_transcribed_words_ipa': [('haɪ', 'aɪ'), ('ðɛr,', 'ðɛr'), ('haʊ', 'haʊ'), ('ər', 'ər'), ('ju?', 'ju')], | |
'pronunciation_accuracy': 94.0, 'pronunciation_categories': [2, 0, 0, 0, 0], | |
'start_time': '0.0 0.0625 0.2875 0.475 0.7', | |
'end_time': '0.1625 0.3875 0.575 0.8 0.9875' | |
} | |
result = trainer_SST_lambda_en.processAudioForGivenText(signal_transformed, phrase_real) | |
self.assertDictEqual(result, expected_result) | |
def test_getPronunciationCategoryFromAccuracy_en(self): | |
accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5] | |
expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] | |
all_categories = [] | |
for accuracy in accuracies: | |
category = trainer_SST_lambda_en.getPronunciationCategoryFromAccuracy(accuracy) | |
all_categories.append(category) | |
self.assertEqual(all_categories, expected_categories) | |
def test_matchSampleAndRecordedWords(self): | |
set_seed() | |
phrase_real = phrases["de"]["real"] | |
phrase_transcribed = phrases["de"]["transcribed"] | |
real_and_transcribed_words, real_words, transcribed_words = trainer_SST_lambda_de.matchSampleAndRecordedWords(phrase_real, phrase_transcribed) | |
self.assertIsInstance(real_and_transcribed_words, list) | |
self.assertIsInstance(real_words, list) | |
self.assertIsInstance(transcribed_words, list) | |
self.assertEqual(len(real_and_transcribed_words), len(real_words)) | |
self.assertEqual(len(real_and_transcribed_words), len(transcribed_words)) | |
def test_removePunctuation_en(self): | |
word = "hello," | |
cleaned_word = trainer_SST_lambda_en.removePunctuation(word) | |
self.assertEqual(cleaned_word, "hello") | |
word = "hello,\n\rworld..." | |
cleaned_word = trainer_SST_lambda_en.removePunctuation(word) | |
self.assertEqual(cleaned_word, "hello\n\rworld") | |
def test_getWordsPronunciationCategory_en(self): | |
accuracies = [x for x in range(-121, 121, 10)] + [np.inf, -np.inf, np.nan, 1.5, -1.5] | |
expected_categories = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] | |
categories = trainer_SST_lambda_en.getWordsPronunciationCategory(accuracies) | |
self.assertEqual(categories, expected_categories) | |
def test_preprocessAudio_en(self): | |
output_hash = utilities.hash_calculate(signal_en, is_file=False) | |
assert output_hash == b'zBAV/y7mecyPHLGiitHRP9vK7oU9hnYvyuatU0PQfts=' | |
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0) | |
preprocessed_audio = trainer_SST_lambda_en.preprocessAudio(signal_transformed) | |
self.assertIsInstance(preprocessed_audio, torch.Tensor) | |
self.assertEqual(preprocessed_audio.shape, (1, 16800)) | |
output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False) | |
assert output_hash == b'KsyH1MXIc+5e5B6CcijhitsGPUDRJjrJU2qg8bQi600=' | |
def test_preprocessAudioStandalone_en(self): | |
output_hash = utilities.hash_calculate(signal_en, is_file=False) | |
assert output_hash == b'zBAV/y7mecyPHLGiitHRP9vK7oU9hnYvyuatU0PQfts=' | |
signal_transformed = transform(torch.Tensor(signal_en)).unsqueeze(0) | |
preprocessed_audio = pronunciationTrainer.preprocessAudioStandalone(signal_transformed) | |
self.assertIsInstance(preprocessed_audio, torch.Tensor) | |
self.assertEqual(preprocessed_audio.shape, (1, 16800)) | |
output_hash = utilities.hash_calculate(preprocessed_audio.numpy(), is_file=False) | |
assert output_hash == b'KsyH1MXIc+5e5B6CcijhitsGPUDRJjrJU2qg8bQi600=' | |
if __name__ == '__main__': | |
unittest.main() | |