thiagohgl's picture
First repository code commit
28d0c5f
raw
history blame
2.53 kB
import torch
import torch.nn as nn
import pickle
import pickle
def getASRModel(language: str) -> nn.Module:
if language == 'de':
model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models',
model='silero_stt',
language='de',
device=torch.device('cpu'))
elif language == 'en':
model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models',
model='silero_stt',
language='en',
device=torch.device('cpu'))
elif language == 'fr':
model, decoder, utils = torch.hub.load(repo_or_dir='snakers4/silero-models',
model='silero_stt',
language='fr',
device=torch.device('cpu'))
return (model, decoder)
def getTTSModel(language: str) -> nn.Module:
if language == 'de':
speaker = 'thorsten_v2' # 16 kHz
model, _ = torch.hub.load(repo_or_dir='snakers4/silero-models',
model='silero_tts',
language=language,
speaker=speaker)
elif language == 'en':
speaker = 'lj_16khz' # 16 kHz
model = torch.hub.load(repo_or_dir='snakers4/silero-models',
model='silero_tts',
language=language,
speaker=speaker)
else:
raise ValueError('Language not implemented')
return model
def getTranslationModel(language: str) -> nn.Module:
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
if language == 'de':
model = AutoModelForSeq2SeqLM.from_pretrained(
"Helsinki-NLP/opus-mt-de-en")
tokenizer = AutoTokenizer.from_pretrained(
"Helsinki-NLP/opus-mt-de-en")
# Cache models to avoid Hugging face processing
with open('translation_model_de.pickle', 'wb') as handle:
pickle.dump(model, handle)
with open('translation_tokenizer_de.pickle', 'wb') as handle:
pickle.dump(tokenizer, handle)
else:
raise ValueError('Language not implemented')
return model, tokenizer